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Fig.  6.  Variation of beamwidth  with h 2  for  various values of h l .  

(m = 1). The theoretical  position of this second  peak  is 9’. The 
overall agreement  between the theoretical and  the experimental 
radiation  patterns is  good. 

V. COMPARISON  BETWEEN  DIEI-ECTRIC-AD SLAB 
AND AD SLAB ANTENNAS 

As  was  mentioned earlier a dielectric-AD antenna  structure 
has  a significant feature of controlling  beam  position and beam- 
width  independently. For a given dielectric layer  height (and 
hence O,J, the  attenuation  along  the length of the  structure may 
be  controlled by adjusting the thickness of the  AD.  Thus  the 
amplitude distribution  can  be  adjusted without  disturbing phase 
distribution.  This feature  may be utilized in constructing an 
antenna with amplitude  distribution tailored to reduce  side lobe 
levels. This characteristic does not  exist for  grounded AD slabs 

Another  feature of the dielectric-AD antenna is that it requires 
a smaller  volume of AD (and also the overall  volume is smaller) 
when  compared to  an  AD  antenna of similar characteristics. 
This can  be  seen from  the following  example.  At 10 GHz an 
AD antenna with e,,, = 35.5” and BW = 4.8” [ l ]  requires 
Iz = 5 cm and L = 80 cm (bidirectional excitation). For a 
dielectric-AD antenna similar  performance (0, = 37”, BW = 
5.1’)  is obtained for k, = 1 cm, h, = 2 cm, and L = 80 cm 
(bidirectional excitation) when the same AD is  used. 
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Fig. 7. Comparison of experimental  and  theoretical  radiation  patterns  at 
10 GHz  (for  bidirectional  excitation, L = 40  cm). 

height h ,  = 1 cm and effective AD height h, = 2 cm. In  the 
z direction there  are 80 columns of wire  separated by a distance 
of 1 cm. The  structure is  excited  by  feeding  power to the central 
wire  in the first  row  of  wires. The experimental setup  and  the 
procedure for  the measurement of the  radiation  pattern is the 
same  one used in [ l ]  except that  the receiving horn is replaced 
by a parabolic dish. 

An  experimental  radiation pattern measured at 10 GHz is 
shown in Fig. 7. The theoretical pattern calculated from [l ,  
eq. (ll)] for this case is also  shown in this figure. It is noted 
that  the measured  beamwidth  is 5.2” and the theoretical (for 
TEoo mode) is  5.1’. The position of the beam  agrees  within 0.5’. 
The two  side lobe levels in the experimental radiation  pattern 
are 15 dB and 11.5 dB below the peak  whereas  corresponding 
theoretical  values are 1 1  dB and 12.5  dB, respectively. The 
experimental radiation  pattern shows another peak at  about 7’ 
which  is due to the  propagation of the second-order  mode 
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I ~ O D U C T I O N  
Two widely  used  design  techniques for  the synthesis of line 

source  distributions which  yield antenna  radiation  patterns with 
a  narrow main  beam and symmetrical sidelobes are  due to 
Dolph [1] and Taylor  [2].  Dolph's method is  applicable to 
discrete arrays and results in patterns in which all the sidelobes 
are  at a  common  height;  Dolph  has demonstrated that his 
approach, which  uses a transformation of Chebyshev  poly- 
nomials,  gives the narrowest  beamwidth for a specified  sidelobe 
level.  Taylor's  method  deals  with continuous  aperture distribu- 
tions which  correspond to a  radiation  pattern with a narrow 
main  beam and symmetric  sidelobes; a specified  number of these 
sidelobes on each side of the main  beam  (extending to the 
limits of the visible  region, if desired)  can  be  designed to be at 
essentially the same  level,  with the farther  out sidelobes  decaying 
in height. The Taylor pattern is representable as a canonical 
product of factors whose roots  are  the zeros of the  pattern. 
Computer programs  which  will  yield Dolph or Taylor  aperture 
distributions for  patterns with  prescribed  beamwidths and side- 
lobe levels are simple to write and widely  used by antenna 
designers. 

Many applications  exist in which it is not necessary (nor  in 
some cases desirable) to have  uniformly  low sidelobes, and it is 
well  known that some  beam-narrowing  (with a  concomitant 
rise in gain)  will result if some of the sidelobes are permitted to 
rise. Recently,  some  work has been reported  [3] which  indicates 
how a line source may  be  synthesized to yield asymmetric side- 
lobes, that is,  near-in  sidelobes  all of essentially a  common 
height on  one side of the main  beam, and near-in  sidelobes  of a 

' common but different height on the  other side  of the main  beam. 
The general  problem of designing a line source  to yield a 

pattern with an arbitrary sidelobe  level  envelope has been 
studied  by  Hyneman [4]  and Stutzrnan [5]. Starting with a 
suitably  modified Taylor  pattern, Hyneman  developed a  pertur- 
bation  procedure based on the log  derivative  of the envelope 
function.  This led to computable shifts in the pattern zeros 
which  caused an  approximation to  the requisite pattern. Stutzrnan 
used an iterative sampling method  to make the sidelobe  peaks 
conform to a specified shape within a given  tolerance. 

The present paper also  pertains to  the general  problem of 
arbitrary  control of the levels  of  individual sidelobes, and uses a 
Taylor  pattern  as  the  starting point. However, the perturbation 
procedure is fundamentally  different from  those used  by  Hyne- 
man  and  Stutzman, and employs a computer  program which is 
felt to be more economical. For all practical applications  which 
have  been investigated, convergence to the desired pattern  has 
been obtained  to  any degree of accuracy  specified. 

in which 
ii 

G =  (3) 
%'A2 + ( f i  - *)2 

wherein  cosh nA is the voltage  sidelobe  level. f i  is a  transition 
integer  such that  there are ii - 1 near-in  sidelobes on each  side 
of the  main beam, all of essentially the same  height,  whereas the 
iith lobe  and all others  further out  decay in height as z-'. 

A generalization of (l), appropriate  for asymmetrical patterns 
131, is 

ANALYSIS 

A conventional  Taylor  pattern [2, p. 221 is expressible  in the 
form 

in which z = (Za/lL) cos 8, with k/?, the  aperture extent in wave- 
lengths, and with 0 the angle  measured  from endfire. The  roots 
z, are given  by 

sin rz 
7lZ 

in which 

R,O = G R R J ~ R 2  + (n - +)2 L,O = - G,\;A,~ + (n - +12 
with 

f iR  Iz 

J A , ~  + (A,  - +)2 J A , ~  + (A,  - +12 
DR = GL = ( 6 )  

and with  cosh nAR, cosh TCAL the voltage  sidelobe  levels on  the 
right and left sides of the main beam; ZB and ZL are  the  transition 
numbers. 

In  the perturbation  procedure to be  developed, if the desired 
pattern were  symmetrical, one would start  from (l), whereas 
if it were  asymmetrical, one would start  from (4). This  point 
will  be elaborated  later  on  in  the development.  However,  since 
(1) may be viewed as  a special case of  (4), the  theory will  be 
based on (4) as  a  starting  point. 

The patterrirepresented by  (4)  can  be  modified by shifting the 
zeros to new  potisions R,, L,, given  by 

R, = R,' + r, (7) 

L, = L,o + I, (8) 

in which r, and 1, are  the  perturbations.  The new pattern will be 

and  the goal  is to find  those  values of r, and I,, which  will convert 
the starting  pattern F,(z) into  the desired pattern F(z). 

Since 

2 1 - z[(R,O)-l - r,,(R,o)-2] 

it follows that,  to first order, 
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When (10) and  the equivalent  expression for  the left-hand product 
are inserted in (4),  one obtains  the first-order relation 

+ 
a= 1 

Let Rm0 < x,,, < R;,+ and Lm0 < y,,, < L:,+ in which x,,, and 
ym are  the positions of the sidelobe  peaks in the  starting  pattern. 
Then 

Fo(xrn) = L o  = tlmo (1 2) 

in which (,,: is the voltage  level of the mth right-hand sidelobe 
and qmO is the voltage  level of the mth  left-hand  sidelobe in the 
starting  pattern, with the main  beam  level  normalized to unity. 

Now let 

F(xrn) = 51,  Fbrn) = Vnl.  (13) 

It follows that, if the  perturbations r,,, I ,  are small, then (13) 
approximately  gives the heights of the mth right-hand  and left- 
hand sidelobes in the &it& pattern. 

When  (12) and (13) are substituted in (1 l), one obtains 

1 =  
I iR-  1 c 
n =  1 

+ 
EL- 1 c 

J 1 =  1 

(3) (&) 
(1 - $ ) .  

Equations (14) and (15)  comprise the basis  of the  perturbation 
procedure. If one selects a starting  pattern Fo(z), the  quantities 
R,,“, L,,”, SI,,,’, q,,:, x ,,,, and ynl are  known.  From  the desired 
pattern, 5, and qm are  known. It follows that (14) and (15) 
constitute (5, + - 2) simultaneous linear equations  to solve 
for  the  perturbations r,, and 1,. 

Once  the Y,, and I,, values are  obtained, (7) and (8) can be  used 
to determine R, and L,, which  can then  be inserted in F ( z )  to 
determine a first approximation to  the desired pattern. If this 
approximation is not  adequate,  the whole  procedure  can be 
repeated,  with the newly found F ( z )  playing the role of starting 
pattern. A series of iterations  has been found to converge to  the 
desired pattern  for all practical cases  which  have  been investi- 
gated. The rapidity of convergence  depends on  the complexity 
of the desired pattern and  the  appropriateness of the original 
Fo(z) selected as  the  starting  pattern. The number of iterations 
also depends on how  closely one wishes to approximate  the 
desired pattern. 

Several  examples  will illustrate the design  procedure. 

Example 1 

As a first demonstration of the design  procedure, let it  be 
desired to  create  a 30 dB sidelobe  level Taylor  pattern except 
that  the second  sidelobe to  the right of  the main  beam is to be 
depressed to  -40 dB. 

We  select Fo(z) to be  a conventional  30 dB  Taylor  pattern and 
choose FiR = EL = 8. From [l ,  p. 231, it follows that A,’ = 
AL2 = 1.74229 and  that a, = G~ = 1.05052.  Use  of ( 5 )  gives 
the null positions in the  starting  pattern, listed in column 2 of 
Table I. When these null positions are used in (4), Fo(z) is found 
to be the  pattern displayed in Fig. l(a).  The sidelobe  peak  posi- 
tions  for this pattern  are listed in column 3 of Table I. 

Since the desired pattern F ( z )  is to have sidelobes  whose 
levels  agree  with those of Fo(z) except for the second  sidelobe 
on  the right side, it follows that 

For m = 2, we have’ 

( 2  = 0.01 = 0.0316 ;o 52 - 1 = -0.6835. (17) 
5 2  

When the  information containled in (16) and (17) is inserted in 
(14) and (15), together with the  data from  columns 2 and 3 of 
Table I, one  obtains 14 simultaneous linear equations  in  the 
unknowns  (vl/Rlo), . ,(l,/L,O). A computer solution  gives the 
results listed in  columns 4 and 5 of Table  I. When  these results 
are used  in  (7) and (8), the zeros of F ( z )  are readily  deduced. 
These  zeros are found in columns 6 and 7 of  Table I. Finally, if 
these  zeros are used in (9), the  pattern shown in  Fig. l(b) is 
obtained. Careful  comparison of  Figs. l(a)  and  l(b) shows that 
the levels  of all sidelobes  agree  except for  the first two to  the 
right of the main  beam. F ( z )  as displayed  in Fig. l(b) is therefore 
the desired pattern except that  the height of the first  right-hand 
sidelobe  is - 3  1  dB when it should  be - 30  dB, and  that  the 
height of the second  right-hand  sidelobe  is -37 dB  when it 
should  be -40 dB. 

A second iteration, using  Fig. l(b)  as  the  “starting”  pattern 
results in Fig. l(c). Now all sidelobes are within  0.25 dB of their 
desired heights. The  main beam is slightly broadened (1.5 
percent), consistent  with  having  depressed a lobe, and  the posi- 
tions of the first and  third lobes on  the right side are shifted 
some\vhat  toward the second lobe, consistent  with the primary 
result of  having  brought the second and third nulls closer to- 
gether in  order to depress the second sidelobe. 

Example 2 
As a further illustration of the design  technique, let it be  desired 

to create a symmetrical pattern with the  three innermost  sidelobes 
on each side of the main  beam  down -40 dB, the next four on 
each side down  only -20 dB, and  the  far-out sidelobes tailing 
off as z- ’ .  

Once  again we  select Fo(z) to be the conventional 30 dB Taylor 
pattern with ii = 8, shown in Fig. l(a).  The  data of columns 2 
and 3 of Table I apply,  but  now by symmetry 

sidelobes  tail off slightly.  Use of a  more  accurate  value in the tirst  Iteration 
czo is actually  slightly  smaller than 0.0316, since thc near-in Taylor 

is unwarranted. 
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TABLE I 

79 

n - L.' -y .  rJR,,' IJL.' Rn 
R.' = X,, = 

Ln 

2 2.099 2.534 0.0568 -0.0053 2.218 -2.088 
1 1.483 1.791 0.0464 -0.0121 1.552 -1.465 

3 2.970 3.450 -0.0401 -0.0032 2.851 -2.961 
4 3.930 4.428 -0.0090 -0.0019 3.895 -3.922 
5 4.927  5.434  -0.0038  -0.0012 4.908 -4.921 
6 5.942 6.455 -0.0019 -0.0007 5.931 -5.938 
7 6.968 7.484 -0.0008 -0.0004 6.962 -6.965 
8 8.000 
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Fig. 1 .  Radiation  patterns  for  Example 1. (a)  Original 30 dB  Taylor 
pattern. (b) First  iteration. (c) Second  iteration. 
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Fig. 2. Radiation  patterns  for  Example 2. (a)  First  iteration. (b) Second 
iteration.  (c)  Third  iteration.  (d)  Expanded  range. 
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so that (15) is redundant and only (14) needs to be solved.  Since 
Lno = - Rno,  (14) assumes the more compact  form 

6" 
ii- 1 c n= 1 

For this example, 

When  this  information is  used in (18), a simultaneous solution 
gives rn values  which,  when  inserted in (7), give the zeros of the 
f is t  iteration of F(z). When these  zeros are used in (l) ,  the  pattern 
of Fig. 2(a) results. One can observe overshoot on  both  the low 
sidelobes and  the  high sidelobes. A second iteration gives  Fig. 
2@), and improvement  is noted in the levels of all seven  near-in 
sidelobes. A third  iteration gives the  pattern of Fig.  2(c), and 
now all seven  sidelobes are within 0.5 dB of the desired  values. 

To show  how the far-out sidelobes  behave,  Fig.  2(d) repeats 
Fig.  2(c)  with the extent of the z scale doubled. A z-l behavior 
is noted, in conformance with  theory. 

For  the  third iteration (Fig.  2(c)) the first zero occurs at 
R1 = 1.591. Since Rlo = 1.483, it follows that R1/RI0 = 1.07 
and  thus  that there  has been  a  seven  percent broadening  in the 
main beam. Apparently lowering the inner  three sidelobes out- 
weighed  raising the remainder of the sidelobes in the effect on 
beamwidth. 

Example 3 
As a final illustration of the perturbation procedure, let it  be 

desired to create an asymmetrical pattern with the seven inner- 
most sidelobes on  the right side at - 25 dB, the seven  innermost 
sidelobes on  the left side at - 15 dB, and  the far-out sidelobes 
tailing off as 2-l .  

This  time we  select Fo(z) to be a conventional  20 dB Taylor 
pattern with 2 = 8, depicted in Fig.  3(a). The first iteration gives 
the pattern shown in Fig.  3(b). The left-hand  sidelobes  average 
about 15 dB in height, but  the innermost are  too high and  the 
outermost too low. The right-hand sidelobes  average  somewhat 
lower than 25 dB, although  four of the lobes are quite close to 
design. 

A second iteration is  shown in Fig. 3(c). Now all seven side- 
lobes are within 1 dl3 of specification. Another  iteration could 
have improved on this  but was not  undertaken. The main lobe 
is seen to be shifted to  the right, as  it  should be, but to a position 
zo = 0.3, which is greater than  the shift found using an earlier 
technique to create a  15/25  dB pattern [3]. This  has been found 
to be entirely attributable to  the fact  that  the earlier pattern was 
less  asymmetric  since it had close-in sidelobes  which tailed off, 
whereas the present pattern  has close-in sidelobes of a common 
height. The beam shift can  be compensated for easily with the 
superposition of a  small uniform  phase progression. 

Beamwidth comparisons are also interesting. The main  beam 
in Fig.  3(c) is 8 percent narrower than  the main beam in the  com- 
parable  pattern  found by the earlier technique [3]. This  can  be 
understood by noting  that Fig. 3(c) has seven  sidelobes of a 
common height on each side  of the main beam (15 dB on  the left, 
25 dB on the right) whereas  Fig.  2 of [3] shows  a pattern in 

z 

L 

z 
Fig. 3. Radiation  patterns  for  Example 3. (a) g r i p i n $  20 dB Taylor 

pattern. @) Flrst  Iteratlon. (c) Second Iteratlon. 

which the average  height of the seven innermost left-hand side- 
lobes is 22 dB, and  the average height of the seven  innermost 
right-hand sidelobes is 26 dB. 

Indeed, the beamwidth in Fig.  3(c) is even 5 percent narrower 
than  the beamwidth in Fig. 3(a). This result seems  reasonable, 
since one can argue that  the beamwidth in Fig. 3(c) should  be 
about  the same as in a pattern  in which the seven  innermost side- 
lobes on  both sides of the main  beam are at a common height 
of 20 dB.  However,  such a pattern would  have  higher  average 
sidelobes than  the  pattern of Fig.  3(a), and  thus should  have a 
narrower beamwidth. 

APERTURE DISTRI~U~ON 
When  the  aperture  distribution f ( p )  is represented  by a Fourier 

series, the transform of (9) is [3] 
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Fig. 4. Aperture  distribution for pattern of Fig. l(c). 
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Fig. 5. Aperture  distribution for pattern of Fig. 2(d). 
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Fig. 6. Aperture distribution for pattern of Fig. 3(c). 

' in which m is an integer and p = nx/u is the normalized aperture 
variable;-the  actual  aperture runs from x = - u  to x = +a. 

The computer  printouts  for F(z)  for each of the  three  illustrated 
examples whose patterns  have been displayed in Figs. 1-3  were 
used to  determine  the values of F(m) needed in (21). The results 
are shown in Figs. 4-6. 

The amplitude  and  phase  functions of the  aperture  distribution 
for Example 1 (30 dl3 Taylor except the second right-hand side- 
lobe  is suppressed to -40 dB) are shown in Fig. 4. The  aperture 
distribution  (not shown) for  the  conventional 30 dB Taylor 
pattern  has an amplitude  function only slightly  different from 
Fig.  4(a) and  has  a  uniform phase function. The differences in 
the two distributions are listed in Table 11. 

It seems reasonable to argue that  the two aperture  distributions 
are comparably  diEcult to achieve. It follows that  the  patterns 
of  Figs. l(a)  and  l(c)  are also comparably &cult to achieve. 
However, the ability  to  obtain  either at will and  change from 
one  to  the  other is a  considerably  more difEcult proposition. 
Table Il shows the percent change  in  amplitude and  the change 
in phase needed to  convert  from  one  pattern to  the other. It 
would be  quite  a challenge to  the  state of the  art  to  attempt  to 
control  amplitude  and  phase in a discrete linear  array within 
this  tolerance level. Table II thus also sheds light on  the tight 
tolerances needed for  aperture  distributions if one wishes to 
obtain very  low sidelobe level patterns,  and gives an  indication 
of the size  of the  errors needed to affect a single  sidelobe. 

Fig. 5 displays the  aperture  distribution  for Example 2 (three 
depressed lobes on each side of the main beam).  Because of the 

pattern symmetry, this is an equiphase  distribution. The amplitude 
variations  are somewhat severe, but  it would seem  well within 
state of the art to construct  a  large  linear  array with the necessary 
tolerance  to achieve this distribution. 

Fig. 6 gives the  aperture  distribution  for Example 3 (25 dl3 
near-in sidelobes on one side, 15 dB on the  other). This result 
should be contrasted  to Fig. 3  of  [3] which shows the  aperture 
distribution  for  a 15/25 dB modified Taylor  pattern. Fig. 6 
indicates  a similar phase  variation,  but with ripples, and with 
about five  times the swing (k 75" as opposed to k lSO). The 
amplitude  distribution in  Fig. 6 is strongly  rippled  and  higher 
at  the ends  than in the middle, not  at  all like the  smooth  amplitude 
distribution  for  the 15/25 dl3 modifhi Taylor. The difference has 
been traced  to  the stringency of the uniform sidelobe level, as 
opposed  to  the declining level found in the moditied Taylor. 

CONCLUSIONS 

A perturbation  procedure  has been  developed  which appears 
to be broadly applicable to  the design of narrow  beam-low side- 
lobe level sum patterns from line sources with the  important 
feature  that  the height of each individual sidelobe can be specified. 
The procedure involves starting with a  factorable expression for 
a known pattern (such as a  Taylor or Dolph-Chebyshev pattern), 
moving the zeros of this  pattern in a  controlled way, checking 
the  outcome,  and  iterating  until  the desired pattern is approached 
to within a specified  tolerance. In many  widely  different  special 
cases which have been tried, convergence has been positive and 
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TABLE II 

A 30 dB TAYLOR PATERN so THAT THE SECOND RIGHT- 
CHANGE IN APERTURE DISIWBUTION NEEDED TO MODIFY 

HAND LOBE Is AT -40 dB 

Incremental  Percent  Phase 
= X Normalized Change in Change in 

a Amplitude  Amplitude  Degrees 

0 

n - 
12 

72 - 
6 
R - 
4 

72 - 
3 

- 572 
12 

72 - 
2 

7n 
12 
- 

- 372 
4 

5n 
6 

1172 
12 

- 

- 

72 

- 0.0072 

- 0.0120 

- 0.0187 

- 0.01  75 

- 0.0096 

- 0.0004 

+0.0080 
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rapid. The corresponding aperture distributions  can be found 
routinely and computer costs are extremely  reasonable. 

Perhaps  one of the most fruitful areas of application  of this 
perturbation technique is diagnostics. It is now  possible to take 
an experimental pattern (providing it has deep nulls) and analyze 
why it does not achieve the design  goal  merely  by perturbing the 
design pattern until it is transformed to  the experimental pattern. 
The resulting aperture  distribution, when  compared to  the 
design aperture distribution, reveals  exactly what changes  need 
to be made in aperture excitation in order to correct the experi- 
mental  pattern. 
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Efficient Numerical Techniques for Solving Pocklington’s 
Equation  and Their Relationships to Other  Methods 
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CHALMERS M. BUTLER, MEMBER, IEEE 

Abstract-It is shown that testing Pocklington’s  equation  with 
piecewise  sinnsoidal  functions  yields an integrodifference equation  whose 
numerical  solntion is identical  to  that of the point-matched  Hallen’s 
equation  when a common set  of basis functions is used  with each. For 
any choice of basis functions, the integrodifference equation has the 
simple  kernel,  the fast convergence,  the  simplicity of point-matching, 
and  the  adequate  treatment of rapidly  varying  incident  fields,  but  none 
of the additional unknowns normally associated with Hallen’s eqnation. 
Fnrthermore, for the  special choice of piecewise  sinusoids as the basis 
functions,  the  method reduces to  Richmond’s  piecewise  sinusoidal  reaction 
matching  technique, or Galerkin’s  method. It is also shown that testing 
with  piecewise linear (triangle)  functions  yields  an integrodilference 
equation  whose solution converges  asymptotically at the  same  rate as 
that of Hallen’s  equation.  The  resulting  equation is essentially that 
obtained  by  approximating  the  second  derivative  in  Pocklington’s 
equation  by its k i t e  difference  equivalent.  The  authors  suggest a simple 
and  highly  efficient  method  for  solving  Pocklington’s  equation. This 
approach is contrasted to the  point-matched  solution of Pocklington’s 
equation and  the reasons for the poor convergence of the  latter are 
examined. 

INTRODUCTION 

In order to handle complicated  problems  using moment 
methods it is necessary to optimize  numerical solution procedures 
from  the  point of  view of speed and convergence. This leads one 
to a study of the properties of various integral equation  formu- 
lations and of the choice  of  basis and testing functions [l ] in 
solution methods, both with an end  toward  improving the 
numerical  efficiency  of  given computations. Also desirable are 
techniques  which are conceptually  simple to apply (so as to 
minimize programming time) and which have a wide range of 
applicability. 

One difficulty  which  frequently arises in the numerical solution 
of an integral  equation is the  appearance of  derivatives outside 
the vector potential integrals on  the induced currents. For thin 
wires, this problem, encountered in Pocklington’s equation, is 
usually handled  in  one of three ways. First, the E-field integro- 
differential equation may be converted to a Hallen  type  equation 
plus  boundary  conditions  on  the  current.  This  procedure has 
the disadvantages of introducing  additional  unknowns  into the 
problem (associated with  the homogeneous  solutions  of the 
differential operator) and of producing a new integral equation 
which does  not  incorporate the boundary  conditions on  the 
unknown current. However, the Hallen-type equation offers good 
convergence for almost all commonly  used basis functions. In 
the second  scheme, the kernel  of the E-field integral equation is 
made regular  by approximations which result in  the so-called 
reduced  kernel, and  the differentiation is brought inside the 
integral and  onto  the unknown current by integration by parts. 
When collocation  (point-matching)  is  used  with this  technique 
and a basis  representation for  current is  chosen  which permits 
slope  discontinuities in  current, e.g.,  piecewise constant or 
piecewise linear representation,  convergence is relatively slow. 
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