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Design of Line  Source  Antennas  for  Difference 
Patterns  with  Sidelobes of Individually 

Arbitrary  Heights 
ROBERT S .  ELLIOTT, FELLOW, IEEE 

Abstruct-A design  method  previously  developed to give  a sum 
pattern  with  arbitrary  sidelobe  topography is shown to be  applicable to 
difference  patterns as well.  The  basis is Bayliss patterns  (Taylor-type 
patterns  for  the  difference  mode)  which  are  transformed through an 
iterative  procedure to the  desired  result.  For  practical cases the  con- 
vergence is rapid  and a previously  developed  do-loop  computer  program 
has been  modified  to facilitate the  computations  and  provide  final 
patterns  and  aperture  distributions. 

A 
INTRODUCTION 

CLASSIC procedure for  the design  of continuous 
line sources  which yield a  sum  pattern consisting of 

a  narrow  main  beam  and  symmetric low sidelobes has  been 
formulated by Taylor [l]. The typical Taylor  pattern  has, 
in  addition  to  the central main  beam,  a specified number of 
near-in sidelobes on each side which are essentially at  a 
common, controlled height, with  far-out sidelobes which 
decay in height as  a function of angular distance from  the 
main  beam.  The Corresponding aperture  distribution is 
symmetric in amplitude  (nonzero  everywhere,  including 
endpoints) and uniform in phase  when  the  main  beam is 
broadside. A Taylor  pattern  is representable as  a canonical 
product of factors whose roots  are  the zeros of the  pattern. 

Bayliss [2] has extended  Taylor's  technique to  the case 
of the difference pattern. A typical Bayliss pattern consists 
of  a  pair of central  main lobes plus a specified number  of 
near-in sidelobes which are essentially at  a  common, 
controlled height, with  far-out side lobes which decay in 
height as  a  function of angular distance from  the  main 
beam.  The  corresponding  aperture distribution is symmetric 
in  amplitude  (nonzero .everywhere except the midpoint) 
and uniform in phase  over  each  half of the  aperture, there 
being a 180" phase reversal between halves. 

Previous  papers [3],  [4] have dealt with extensions of 
Taylor's  method to  the cases of 1) sum  patterns  with 
asymmetric sidelobes and 2) sum  patterns  with  arbitrary 
sidelobe topography.  The  asymmetric sidelobe case  was 
handled by modifying the  Taylor  canonical  product so that 
its negative-root factors  corresponded to  a different sidelobe 
level than did  its positive-root factors. Arbitrary sidelobe 
topography  was  accomplished by a  perturbation  technique 
which  transforms  a  starting  pattern  through  a series of 
iterations in which a  do-loop  computer  program plays a 
major role. 
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Since the Bayliss pattern is also representable as  a 
canonical  product of factors whose roots  are  the zeros of 
the  pattern, it seemed clear that  a simple  modification  should 
yield  difference patterns with asymmetric sidelobes. More 
generally, it was also anticipated that Bayliss patterns 
could  be  perturbed to give arbitrary sidelobe topography, 
using the same iterative procedure which had  proved 
successful in the case of sum  patterns.  This was found  to be 
the case and  the sections which  follow detail the  extension 
of the  perturbation  procedure  to  the general problem of 
modifying  a Bayliss  difference pattern in order to produce 
sidelobes of individually arbitrary heights. 

BAYLISS  PATTERNS 
A conventional Bayliss  difference pattern [2, p. 6491  is 

expressibie in the form 

in  which z = (241.) cos 8, with 2ali. the  aperture extent 
in wavelengths, and with 8 the  angle  measured  from endfire. 
The parameters Z ,  are given  by 

n = O  
z, = f;, n = 1,2,3,4 

v , A 2  + n2, n = 5,6; . (2) 

wherein A is a  constant related to  the sidelobe level, as 
will  be elaborated shortly. E is a  transition integer such that 
the  innermost E - 1 sidelobes on each side  of the twin 
main lobes in the difference pattern  are essentially at  a 
common height, whereas the iith sidelobe and all others 
further  out decay as z -  '. The  parameter G is  defined  by 

and serves to space the close-in nulls so that  they  blend 
smoothly  with the sequence  of far-out nulls. 

Bayliss has  shown that  the parameters A and <, can be 
related to  the desired sidelobe level quite accurately by 
fourth-degree  polynomials [2, p. 6321. When  one uses his 
polynomial coefficients, computed values of A and <, can 
be constructed, as shown in Table 1. 

After ii and  the sidelobe level are selected, Table I and (2) 
and (3) can be  used to determine all the  parameter values 
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TABLE I 
PARAMETER VALUE VERSUS SIDELOBE LEVEL 

FOR BAYLISS DIFFERENCE PATTERN 

Sidelobe  Level in dB 

15 I 2 0   1 2 5   I 3 0   1 3 5  1 4 0 .  
1 A I 1.0079 I 1.2247 I 1.4355 1 1.6413 I 1.8431 I 2.0415 1 

1.5124 1.6962 1.8826 2:0708 2.2602 2.4504 
2.2561 2.3698 2.4943 2.6275 2.7675 2.9123 
3.1693 3.2473 3.3351 3.4314 3.5352 3.6452 

~~. 

1 !; I 4.1264 I 4.1854 I 4.2527 1 4.3276 1 4.4093 1 4.4973 I 

z 
Fig. 1. Conventional Bayliss pattern  with  30 dB sidelobes. 

needed in (I) ,  so that  a  pattern  can be computed. As an 
example, if ii = 10 and  a sidelobe level of 30 dB is desired, 
then A = 1.6413 and Zlo = d m  = 10.1338. Thus 
t~ = 10.5/ZI0 = 1.0361, and  the  roots needed in (1) are  as 
given in Table 11. When Fo(z) is computed from (1) using 
these entries, the result is as shown in Fig. 1. One  can  observe 
the features that  are generally present in a Bayliss pattern- 
two symmetrical center lobes, surrounded by symmetrical 
sidelobes. The near-in sidelobes tail-off only slightly from 
the design  level, and  the  far-out sidelobes diminish in height 
as z- ' .  It is this prototype  pattern  that we  wish to modify. 

DIFFERENCE PATTERNS WITH 
ARBITRARY SIDE LOBE TOPOGRAPHY 

> 

The  perturbation  procedure  developed  in [4], and which 
served to convert  a  starting sum pattern to a desired sum 
pattern,  can be  used (with some modifications) to accom- 
plish the same objective when dealing  with difference 
patterns. 

Equation (1) can be  generalized and written in the  form 
BR-  1 

fl (zno - Z) 
F,(z) = c, cos RZ Tin- n =  -(iiL-1) 

n (1 - x) n=O 
Tiijl (I + +) 

n = O  n + T  

(4) 
in which Co is a constant,  and in which 

z,," = O R Z n , R ,  n = 1, 2 , . * * ,  i iR - 1 

z,," = n = -1,-2;.. Y -(EL - 1) 

zoo = 0. (5 )  

The  parameters Zn,R and Zn,L are given  by  (2), but  with 
different values  of A (call them A ,  and AL) corresponding 

TABLE I1 
ROOTS OF THE BAYLJSS 30/30  PATTERN 

9 
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TABLE 111 AMP-= AND POSITIONS OF LOBE PEAKS IN BAYLISS  30/30 PATTERN 

(y,l 0.8216  2.3846  3.1205 4.0104 

0.0224 0.0244  0.0262 0.0297 1 0.0288 1 0.0276 1 1.0 1 0.0308 1 0.0309 1 0.0305 

9.9785 8.9620 7.9488 4.9620  5.9432 6.9413 

19m01 

~~~~~~~~~ 

to  the desired right-hand  and  left-hand sidelobe levels. 
(The requisite values of A ,  and A ,  can be read from  Table I 
along with the  companion values of l,,, and f,,,.) Similarly, 
as extensions of (3), 

One could use (4H6) with specified left-hand and right- 
hand sidelobe levels and  compute  a  pattern with asymmetric 
sidelobes, just as was done  for  the sum pattern in [3]. The 
result is, generally, a difference pattern in which the  two 
main  lobes are  not quite at  a  common height,  the boresight 
position is not  quite at z = 0, and  the differential between 
left-hand  and  right-hand sidelobe levels is systematically 
somewhat less than specified.  Since all these minor defects 
can be overcome  by  the  perturbation  procedure used to 
obtain  an  arbitrary sidelobe topography,  that is the  course 
which  will  be pursued here, and (4) will  be  viewed as 
representing the starting  pattern. 

The  perturbation  procedure involves shifting the nulls to 
new positions 

z, = z,o + 6z, (7) 

thus giving  rise to the desired pattern 
Am- 1 

(8) 

In this  procedure, ii, + EL - 1 nulls are being repositioned. 
nR - 1 near-in sidelobes on the  right side are affected; 
nL - 1 near-in sidelobes on  the left side are affected; in 
addition,  the  two  main lobes are perturbed.  When  one 
counts  main lobes and sidelobes, the  total is ii, + E,. 
If the level of the  right-hand  main  lobe is taken  as reference, 
one sees that the relative levels  of i iR + EL - 1 lobes are 
being adjusted by shifting i i R  + ii, - 1 null positions; 
thus the  procedure is deterministic. 

It is also necessary to provide a link between the level of 
the desired pattern F(z) and  the  starting  pattern Fo(z). 
This  can be done by requiring that the  peak values of the 
right-hand  main lobes in  both  patterns be the same. One 
can accomplish this by appropriate  adjustment of 6C in 

- 
- 

c = co + 6C. (9) 

When (7) and (9) are inserted in (8), the  first-order result is 

Let the  mth  peak  (main  lobe or sidelobe) in the starting 
pattern occur at z = y,. Then Fo(y,) = qmo is the field 
strength of this lobe. If the  perturbations are small, 
F(y,) = q, is approximately  the field strength of the  mth 
lobe  in the desired pattern.  Thus,  from (IO), 

in which m ranges from - E L  to + E R ,  excluding zero. 
Equations (11) constitute a set of E, + ii, simultaneous 

linear  equations in which all the q,,t,-,o,zno,y, values are 
known, and in which there are ii, + ii, unknowns [SC 
plus the ( E R  + E, - 1) perturbations Sz,]. Since Co can 
be taken  as unity with no loss in generality, the  set is 
complete. 

With  the  establishment of (1 l), the  remainder of the 
perturbation  procedure is quite similar to what has been 
done  earlier in the case of the sum  pattern.  Here,  one  can 
normalize  both  patterns by letting q lo  = ql = 1. The 
values of 6C and 6z, are  then  computed  and used in (8) 
to calculate the first iterative  attempt at obtaining  the 
desired pattern.  If  this  initial result is not  adequate,  the 
first iteration is  used as a new starting pattern  and the whole 
procedure is repeated. A reasonable  number of iterations 
will usually yield an acceptable  approximation to the 
desired pattern. Several examples are offered in  the next 
section. 

EXAMPLES OF THE b R W A T I O N  PROCEDURE 

Case 1 

As an illustration of the use of the  iterative  technique 
developed in  the previous section, let  the desired pattern 
be a Bayliss 30/30 except that the second sidelobe on  the 
right side is to be depressed to -40 dB. 

Obviously, the  appropriate  starting  pattern is the Bayliss 
30/30,  whose roots were  given earlier in Table 11. The 
pattern itself  was shown in Fig. I .  The  computer,  working 
with (l), and using the  roots listed in Table 11, provides 
through  a  subroutine the amplitudes  and  positions of the 
lobe  peaks in the Bayliss pattern. These are shown  in 
Table III. 

In this example, we wish to have qm = qm0 except for 
m = 2. To get that lobe  down to -40 dB, we choose 
lqrl = 0.01. When  this  information is  used in (ll),  the 
computer is able to  determine the nineteen 6z, perturba- 
tions  and 6C. When these results are used in (7) and (9), 
and ultimately in (8), the first iteration F(z) emerges. This 
is shown in Fig. 2(a) and is seen to be a good  step  toward 
the desired pattern. 
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Fig. 2. Bayliss 30/30 pattern  except for one lobe depressed to 40 dB. 

With Fig. 2(a) used as the new starting  pattern,  two THE APERTURE DISTRIBUTIONS 
iterations of the process lead to Fig. 2(b) in which all lobes If  the  aperture  has  the  extent -a I x a and  the 
are within one  quarter dB of specification. normalized aperture variable is denoted by p = nx/a, then 
Case 2 the  pattern is given by 

As a  further  illustration  of  the design procedure, let it 
be desired to create  a  pattern which  is  Bayliss 30/30 except F ( z )  = g(p)eiP2 d p  
that  the first four sidelobes on both sides of the  two  main 
peaks are  at -40 dB. in which g ( p )  is the  aperture  distribution function. 

the sequence shown in Fig.  3 results. Only three  iterations 
were needed to get all lobes within one  quarter  dB  of 1 "  
specification. 2n m = - - m  

SI. (12) 

With  the Bayliss 30/30 once again used as starting  pattern,  The  Fourier series representation 

d P )  = - c Dme 
-i(rn+ 1 1 2 ) ~  
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Fig. 3. Bayliss 30/30 pattern  except four inner lobes on each side are  depressed to 40 dB. 

leads to In  the  range -EL I m I - 1 the  result is 

F(m + 4) 
= (-l)"(m + +)XC 

so that 
F(n + 4) = D,. (1 5 )  

Thus  the  aperture  distribution  function may  be written 
as 

The series (16) truncates  as shown because F(n + 3) = 0 
for n an integer beyond this  range. 

If one  attempts  to  compute F(n + 4) from (8) an in- 
determinacy of the  form O/O arises. This  can be resolved 
by standard  means,  the  result  being,  for 0 I m I FiR - 1 

F ( m  + +) = (- l)"(m + +)ZC 
R R -  1 n [zn - ( m  + +)I 

With  the  normalized  aperture divided into 120 intervals 
(Ap = 7c/60), g(p) was computed  from (1 7) at each interval's 
end  point  for  the Bayliss 30130 pattern  and  for  many cases 
which have been studied,  including  the  two whose final 
patterns  are shown in  Figs. 2(b) and 3(c). The  aperture 
distribution  corresponding to Fig. 2(b) is tabulated  in 
Table IV. Also listed  is the  distribution  for  the Bayliss 30130. 
One can  conclude  from a study of Table IV that  the two 
patterns  are  comparably difficult to achieve, but that  to be 
able to shift from  one to the  other is beyond present  state 
of  the  art. 

Fig. 4 shows the  aperture  distribution  corresponding to 
the  pattern of Fig. 3(c),  in  which the  four  inner  sidelobes 
on each side are depressed to -40 dB. Since this is a 
symmetric  pattern,  the  phase is uniform except for the 
180" jump at p = 0. The  amplitude is symmetric,  has a 
null at  the  center,  and  a small rise at  the ends. This amplitude 
distribution is significantly  different from  the 30/30 Bayliss, 
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Fig. 4. Aperture  distribution  for  perturbed Bayliss pattern  of Fig. 3(c)  with four inner lobes  each  side at -40 dB. 

TABLE IV 
APERTURE DISTRIBIJITONS FOR  BAY^ 30/30 AND FOR 

SUPPRESSION OF ONE SIDEJBBE TO - 40 DB 

Bayliss 30130 I One  Lobe at -40 dB 

P t  

--x 
-11/12n 
- 5/6n 
- 3/4n 
-2.311 
-71121 
- 1 /2x 
-5/12n 
- 1 1 3 ~  
- 1/41 
- 1 / 6 ~  
- 111272 

0 

I g(P)l 

0.3456 
0.3616 
0.4591 
0.6292 
0.7855 
0.9093 
0.9871 
0.9938 
0.9265 
0.7804 
0.5636 
0.2963 
0 

90" 
90 
90 
90 
90 
90 
90 
90 
90 
90 
90 
90 
0 

0.3343 
0.3437 
0.4333 
0.6044 
0.7676 

0.9855 
0.9006 

0.9939 
0.9239 
0.7735 
0.5549 
0.2903 
0 

90" 
89.0 
87.3 
86.8 
86.8 
87.3 
88.0 
88.7 
89.4 

89.9 
89.7 

89.8 
0 

and  arg g(p) antisymmetric in p for  both  distributions. 
t Only  half the  aperture  distribution is listed. Ig(p)I is symmetric 

particularly in the  end regions, and  its physical realization 
is  well within  the state of the  art. 

DISCUSSION 

Quite obviously, the rapidity of  convergence from  the 
starting  pattern  to  the desired pattern  depends  on the com- 
plexity of the desired pattern. But  it also depends  on  the 

choice of starting  pattern.  More  rapid  convergence  would 
have resulted in Case 2 if a Bayliss 35/35 pattern  had been 
chosen to initiate the process. However, the 30/30 Bayliss 
was already available and,  as  has been  seen, only  three 
iterations were  needed anyway. More generally, if one 
desires to  control (E, - 1) sidelobes on  the left side and 
(Z, - 1) sidelobes on  the right side of  the  twin  peaks  in  a 
difference pattern, it is best to use those values of E, and 
E, in (4) and  to select A ,  and A ,  so that  the left-hand and 
right-hand sidelobe levels in the  starting  pattern  approximate 
the corresponding  average sidelobe levels of  the controlled 
sidelobes in the desired pattern. 

It should be emphasized that  the  aperture distributions 
generated by this  technique are  for continuous line sources. 
Discrete linear arrays  can result from  sampling these con- 
tinuous distributions. The complexity  of the desired pattern 
is  reflected in the  complexity of the  aperture  distribution, 
which in turn dictates the  maximum  sampling interval. 

Pattern multiplication permits the foregoing  procedures 
to be extended to  planar apertures. 

CONCLUSIONS 
A design technique has been described which  will  yield 

difference patterns with arbitrary sidelobe topographies, 
together  with  the requisite continuous  aperture distributions. 
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Succinct Papers 

Analysis of the Symmetric  Center-Fed  V-Dipole  Antenna 
J. EARL JONES, MEMBER, IEEE 

Abstraci-A wire  antenna  moment  method  using  piecewise  sinusoidal 
expansion and testing functions is used to obtain properties of  a symmetric 
center-fed  V-dipofe  antenna  driven by a slice generator.  The impdance, 
admittance,  current  distribution,  radiation  patterns  in  the  dipole plane, 
and  other  properties are computed as functions of the  parameters 
0 < h / l  I 0.60, 100 5 h/a S 20000, and 30’ 5 JJ I 180”,  where 
h = arm length, 1. = free  space  wavelength, a = wire radius, and 
@ = apex  angle.  The results are checked  with  experiment  and  compared 
with similar results previously  reported  for the linear  dipole.  It is shown 
that 1) omnidirectional  patterns  over a wide  bandwidth are achieved  for 
@ I 90”, but at  the  expense  of  reduced resonant radiation  resistance  and 
reduced  bandwidth,  insofar as the  impedance is concerned, 2) for $ less 
than  about 75”-80”, lowest resonant length 1 l / 4  and  increases as h/a 
decreases,  and 3) lowest  antiresonant  length  for @ > 30” is within 
0.011. of that  for  a  linear  dipole with the  same h/u. 

I. INTRODUC~ON 
A symmetric  center-fed  V-dipole  antenna  is  characterized 

geometrically  by  three  basic  parameters: arm length h, wire 
radius u, and apex  angle $. Electromagnetic  properties  of the 
linear  dipole,  which  is a special  case  of the V-dipole for $ = 180°, 
have  been  studied  extensively  over the years, as excellent  historical 
summaries  attest [l, pp. 1-1  1 1, [2].  However,  comparatively  few 
studies of the V-dipole  have  been  made [I, pp.  381-395,  pp. 

The determination of linear  dipole  properties,  particularly the 
driving  point  impedance,  has  been  facilitated  analytically  by 
treating the antenna as a boundary  value  problem and solving 
the appropriate  integral  equation  (IE) for the current  distribution. 
The earliest IE solutions  for the linear  dipole  were  obtained  for 
the mathematically  attractive,  but  historically  controversial 
[I, pp. 1-81, [9] case for which the driving  source is assumed 
to  be a slice  voltage  generator  across a gap of  infinitesimal  width 

687-6911,  [2]-[8]. 
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(a delta-gap), and the King-Middleton  second-order  solution 
(KM2) [l, pp.  149-1931  was  used to obtain an extensive  set  of 
impedance  computations  from  which  various  properties  were 
derived. 

A similar  study for the symmetric  center-fed  V-dipole  does  not 
appear to be  available,  although  King [I ,  pp.  381-3871 did 
develop an IE formulation for the case  for  which  each arm is 
represented  by a thin  right-circular  cylinder  of  length h and 
radius a. The  gap  face  of  each  cylinder  is  located a short distance 
6 from the point of intersection  of the cylinder  center  lines and $ 
is the angle  between the center  lines. For t,b = 180” and 6 = 0, 
King’s  formulation  reduces to that for  a  delta-gap  linear  antenna. 
For t,b < 180°,  a  delta-gap  V-dipole cannot  be  treated  because 
6 # 0 unless u -* 0. Only  when the cylinders are oblique,  result- 
ing  in  elliptical  gap  faces,  is  it  possible  for  a  delta-gap  V-dipole 
to be  represented. 

Although  King  noted that his IE could  be  solved  iteratively 
similar to KM2, no  computations of the current  distribution or 
radiation  patterns  were  made. The only impedance  computations 
made,  which  were a plot  of  impedance  versus @ for a half-wave 
V-dipole [l, p.  3891,  were  based on a zero-order  solution  (KZO), 
valid  for u + 0. 

In this  paper, an IE for the symmetric  center-fed  V-dipole 
delta-gap  model  (with  elliptical  faces for t,b f 180”) is  solved 
implicitly  by  application of the piecewise sinusoidal  reaction 
method  (a  Galerkin  type  moment  method  using  piecewise 
sinusoidal  expansion and testing  functions) of Richmond  [lo]- 
[12].  However, in  this  paper the coefficients in the impedance 
matrix [Z] of the equation [Z] [ I ]  = [VI associated  with  this 
method are computed  using  Runge-Kutta  numerical  integration 
in  lieu of the more  efficient  equations  (using  sine,  cosine, and 
exponential  integrals)  which  were  unavailable  when  this  study 
was  conducted. 

As functions  of the parameters h / l ,  h/a, and t,b, the following 
quantities are computed: a) driving  point  impedance Z ( h / l ,  
h/a,*) = R + j X ,  where R and X are the resistance and reac- 
tance,  respectively,  b)  driving  point  admittance Y(h/i,h/u,t,b) = 
1/Z = G + jB, where G and B are the conductance and suscep- 
tance,  respectively,  c)  magnitude and phase of the current 
distribution, d) radiation  patterns  in  the  dipole  plane, and e) 
other properties known as “critical  parameters” [l, p- 1521. 


