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ARRAY DIRECTIVITY AND APERTURE EFFICIENCY 

For high gain apertures where the far-field pattern may be 
expressed as a  Fourier  transform of an  aperture illumination 
u(<,q-), it is possible to show the beam coupling  factor z is also 
given by [4] 

= /;E  /;E UJ(5 , l r )  * U,*(S, t l )  dt  d?l. (41) 

Where u3 and u, are  the  aperture illuminations for  the patterns 
f 3  and f4, respectively, 5 and q- are  the  aperture coordinates, and 
the illuminations are normalized such that 

m 

-m 

It is further possible to show that for  broadside excitation 
(S = O), (34) is equivalent to 

Where utot(<,q) = u3(<,q-) + u4(c,q). This is the  standard  equa- 
tion for  the directivity of an  aperture antenna.  Therefore, the 
beam coupling factor T in (34) reconciles array gain and  area, 
resolving the element gain paradox discussed by Hannan [ 5 ] .  

DISCUSSION AND CONCLUSIONS 

Throughout this paper it has been assumed that  the embedded 
element pattern is “given” and, therefore, z is a known constant 
as provided by (10). In reality, the element patterns and z will 
change as  a function of S,, and SI’. A good illustration of this 
follows directly from (19): for closely spaced antennas with 
T > 0, if the antennas are tuned such that S,, = 0, then 
IS31 1’ = 0 and there is zero far-field power flow! Since this is 
obviously not realistic, what must happen is that a perfect 
passive match must cause the element patterns to change by 
squinting substantially off boresight in opposite directions, such 
that z becomes zero. But the fact that the element pattern can 
change does not invalidate the analysis, which essentially shows 
a quantitative interrelationship between any element pattern, 
mutual coupling, and passive reflection. Even in the example 
just given, the theory provides useful information; it says that a 
“perfect” passive match will inevitably result in a seuere distor- 
tion of the element patterns. 

A second example of the interdependence of the embedded 
element pattern and  the coefficients S,, and SI2 is provided by 
the Hansen-Woodyard excitation example given previously. 
Over a narrow frequency band and  for a fixed scan at endfire it 
will always be possible to  add a matching section to  tune out the 
active reflected  wave and achieve a perfect match in the active 
mode. The matching section evidently must change the embedded 
element pattern such that T becomes equal to zero and De, is 
increased by the excess  gain over the assumed isotropic element 
gain.  Again in this case the theory still provides useful inforrna- 
tion: 1 )  the optimum  mutual coupling as defined by (31) is still 
optimum in the sense that  the reflected wave that must be tuned 
out is minimized: 2) it provides a  quantitative value of the 
minimum VSWR which will occur between the matching device 
and  the element (24: 1 in the numerical example given pre- 
viously); 3) the quantitative value of the minimum reflected 

In  an  array design problem it is typically known what  em- 
bedded element pattern is desired, and  the theory provides 
quantitative results on what values of coupling and passive 
match are consistent with the desired pattern and element 
spacing. The examples of Fig. 2 show that T is not highly sensitive 
to changes in element pattern beamwidth, and that  the  dominant 
variation is due to element spacing. It may be speculated that a 
major  change in T implies a  major change in the element pattern. 
As a specific example, if it is desired to have an element pattern 
with a 75” half-power beamwidth, and  the element spacing 
becomes 0.41 at  the low end of the frequency band, Fig. 2 
indicates a value of z = 0.57 for this case. The theory says that 
it is possible to achieve a  zero active reflection for this case only 
if the passive reflection coefficient and  the  mutual coupling are 
exactly equal  to 0.43 in magnitude (passive VSWR of 2.5: 1) 
and opposite in phase. It may be concluded that any deviation 
from these values will either cause a nonzero active reflection 
coefficient or  an element pattern different from the desired 
pattern. 
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Decoupling and Descattering Networks for Antennas 

J. BACH  ANDERSEN, MEMBER, E=, AND 
HENRIK HASS RASMUSSEN 

Abstract-The  possibilities of connecting a lossless network  between 
input ports and antenna  ports mch that there  is no coupling  and  scattering 
between  the  antennas are discussed. A necessary  condition for complete 
decoupling and descattering is power  orthogonality  between  the  patterns 
of the individual antennas. Numerical and experimental  results  are 
presented  for  monopole antennas. 

I. INTRODUC~ON 
Mutual  interaction between individual antennas is responsible 

for many effects, which often are undesirable. Some of the 
mechanisms are indicated schematically on Fig. l(a), which 

wave plus a knowledge of the location of the matching section Manuscript  received  August  19, 1975; revised  February 25, 1976. 
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Fig. 2. Network  model of interacting  antennas  and decoupling network N. 

stringent requirement than  the  one mentioned above, since 
contribution @ is not necessarily zero  in the phased-array case. 

The new and  important aspects of the networks to be presented 
are  the descattering aspects, while the decoupling problems seem 
to be solved automatically. There  are some necessary conditions 
which should be satisfied in order that descattering may take 
place. An obvious one is that  the scattering pattern of an element 
should equal  the transmit  pattern, since we want to cancel the 
scattered field from  an element over all  real angles by exciting 
the  antenna  port of that element with a  proper wave. This con- 
dition is a severe limitation, since only minimum scattering 
antennas  have  this property. In practice, this means that  the 
technique is useful for simple wire- and slot-antennas or similar 
one-mode  antennas. It is also for these antennas that a decoupl- 
ing and descattering network is most needed, though. 

11. A NECESSARY CONDITION FOR DESCATTEIUNG 
AND DECOUPLING 

( b )  
We assume that  the interaction between the N identical anten- 

Fig. 1. Schematic  representation of interaction  between  antennas. (a) nas is described by an N x N impedance matrix, ZA. We also 
assume that  the antennas are matched when isolated, such that Without  network. (b) With network. 

shows a three-element array which could be a small phased array 
(the element pattern) or a feed cluster for a  multibeam reflector 
or lens antenna.  One antenna is excited and  the others resistively 
t e r m i n a t 4 . a  symbolizes the wanted radiation  from the excited 
element when alone. Due to the interaction between the elements 
there will be  some scattering @, either induced directly or in- 
directly through other elements. The scattered field may or may 
not have the same far-field pattern as@ but will in  any case 
distort the primary field, maybe both  in  amplitude, phase and 
polarization. In  the multibeam case, 0 will lead to crosstalk 
between the beams. @ represents the power coupled into  the 
loads of adjacent antennas  and is usually referred to  as  the 
coupling loss. 3 is also related to  the active impedance of a 
phased array. 8 4 represents the power coupled back into  the 
source, leading to a mismatch. 

The object of this  paper is to find a 2N-port !ossless network, 
inserted between the N antenna ports and  the N input  ports, 
having the effect of decoupling and descattering the system 
completely, such that  one  input  port excites only one antenna. 
The remaining antennas  are not  radiating at all and  no power 
is lost in the loads (Fig. l(b)). 

ZiiA = Z,, = R, = 1 (1) 

where Z,, is the characteristic  impedance of the feed lines and R, 
is the impedance of the generators, all normalized to unity. 
Fig. 2 shows the configuration, where Z N  is the impedance 
matrix for  the lossless network; even-numbered ports  are con- 
nected to  the  antenna  input ports,  odd-numbered  ports to  the 
excitations. 

Writing out  the network equations, we find 

v1 = Z,,"Z, + ZI2"I2 + Z13NZ3 + . . . 

Previous efforts in  this direction have been directed towards 
cancelling only the coupling loss for phased arrays, thereby = - z24A12 - z44A14 - . . . . (2) 
achieving a scan-independent impedance match [1]-[3]. It 
has in  fact been proved that it is theoretically possible to match 
the active impedance of an element in an infinite phased array In (2) the currents flowing into the network are assumed 
by means of an infinite set of connecting circuits [3]. It is positive. The equations for  the even-numbered ports are now 
important  to note that  the coupling loss cancellation is a less rearranged, such that  the  antenna self-impedances are isolated 
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Fig. 3. Network  model, where mutual  antenna  impedances  are  included 
in  network I"'. 

on one side, or 

Equations (3) describe the  situation of Fig. 3, where we have 
a network N' loaded with the  antenna self-impedances. A  com- 
plete lossless decoupling and descattering will result if N' has  the 
following impedance matrix: 

Zll 2 1 2  0 
[Zl2 z,, 0 0 O 0 O O - 1  0 * 

z" = 0 0 z3, z3, 0 0 1 0 0 z34 z44 0 0 . 'I. (4) 
l o  0 0 0 - 1  . . .J 

where all the elements are reactive. 
It follows from (3) that ZijA (i  # j )  should  also be reactive, 

which means  that we have the following necessary condition for 
lossless decoupling and descattering. All the mutual antenna 
impedances  should be reactit'e. 

This is a more severe constraint than the  one about scattering 
patterns, since the distances between elements have to be fixed 
such that  the mutual impedances are reactive. Furthermore,  the 
condition  can only be satisfied exactly at one frequency, although 
it can be satisfied approximately within a certain band of fre- 
quencies. The condition has been derived in detail because we 
also get the matrix 2' as  an  important by-product, but it could 
have been stated immediately from previous work on multibeam 
antennas and minimum scattering antennas. Consider the antenna 
structure  in Fig. l(b)  as a multibeam antenna where the in- 
dividual beam is the radiation  pattern of the single antenna. 
According to Allen [4] and White [5] the beams should be 
orthogonal over real angles in order  to get a lossless network. 
For minimum scattering antennas the real part of the mutual 
impedance is proportional to  the orthogonality integral [ 6 ] ,  thus 
real (zijA) must equal zero. 

This  means that  the distances for which descattering is pos- 
sible only depend on  the power pattern of the element. For 
rotationally symmetric power patterns of the type 

P(B) = COSN (e) (5 )  

Fig. 4. Transmission  line  network for two antennas  realizing F' (eq. (8)). 

it may be found [7] that R,, equals zero  for distances d satisfying 

J(N+1)/2(kOd) = (6) 

where J(.v+1)/2(x) is the Bessel function of order ( N  + 1)/2 and 
ko is the free-space wavenumber. For isotropic antennas ( N  = 0) 
this leads to k,d = nn, which means that a  linear array of 
isotropic antennas with a spacing 4 2  may be decoupled and 
descattered completely. 

The example is important, since it shows that  for linear arrays 
it is possible at least in  theory to avoid the cos 0 factor, which 
is a  fundamental limiting factor for the element pattern  in 
planar phased arrays. 

111. REALIZATION OF NETWORK 

To achieve complete decoupling and descattering the impe- 
dance matrix ZN for the network is  given  by (3) and (4), 

For  the synthesis of the network it is convenient to work with 
the admittance matrix, Y", which may be found directly from (7) 
in the special case of Zii = 0, Z,, = Z3, = z56 = - = j ,  
Z,," = jx,,", z26" = jXZaA,. 

O - j -jXZ4" O -jX,," O 
- j  0 0 

0 0 - j 0 .  . .  
0 - j  . 

0 0 / I - I  . . . (8) 

. .  

This network may be realized by connecting TEM-lines of 
length 1.14 or 3L/4, depending on the sign  of XijA,  and charac- 
teristic admittance / X i j [  between the feeding lines i and j at 
points 3114 from  the  antenna port. An example for two antennas 
is shown  in Fig. 4. 

IV. NUMERICAL AND EXPERIMENTAL RESULTS 

The simplest case with a high degree of coupling is an  array 
consisting of monopoles. The monopoles considered have the 
following data  at  the resonance frequency: 

radius a:a/lko = 0.001 
length L:L/Io = 0.239 
spacing D :  D/L0 = 0.43. 
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Fig. 5.  Numerical  results  for  descattering between  two  monopoles, Dl&, = 0.43. Network  as shown in Fig. 4. @: Hypo- 
thetical case wlth = 0 and no n e t w o g j  

Fig. 6. Experimental  setup  with  two  monopoles  and  stripline  network 
(top  plane  removed). 

The length and spacing are chosen such that  the  antenna self- 
impedances are real and  the mutual impedances reactive, when 
two elements are considered. 

Fig. 5, curve 0, shows some  numerical results for  the normal- 
ized antenna current of the scattering antenna  as a  function of 
frequency. The network is a transmission line network as shown 
in Fig. 4. The perfect descattering at  the resonance frequency is 
clearly shown, but the bandwidth is rather small, about 8 percent 
for a descattering less than 30 dB. The limited bandwidth is 
partly due  to  the changing self-impedance of the monopoles, and 
partly due  to  the nonzero  real part of the  mutual impedance. 

Curve @ shows a hypothetical case of broadband antennas, 
where R I 2  is the only coupling impedance, leading to a slightly 
larger bandwidth. Curve @ represents a fundamental physical 
limit due to  the nonorthogonality of the radiation  patterns. 

The experimental network was constructed in stripline, as 
shown on Fig. 6. Since antenna currents are difficult to measure, 
the horizontal  radiation  patterns were measured over the ground- 
plane shown in Fig. 7(a)-(c). In  order  to avoid finite groundplane 
effects, the measurements were taken on  the groundplane in  the 
near field of the array. The radiation  pattern shown in Fig. 7(a) 
is for  the isolated antenna, while that in  Fig, 7(b) includes a 
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Fig. 8. Numerical  results for descattering of three-element linear  array of 
monopoles,  with  and  without  network.  Network  is  nonplanar. 

matched,  parasitic antenna, but  without the network. The pattern 
in  Fig. 7(c) results when the network is included. It is evident that 
the two antennas are now completely independent. The coupling 
into  the load is  very similar to  the scattering curves in Fig. 5. 

A linear array of three  monopoles cannot be descattered com- 
pletely since a reactive mutual impedance between the two outer 
elements and adjacent elements cannot be obtained simul- 
taneously. Fig. 8 shows what can be achieved \xith a nonplanar 
network and Fig. 9 with a  planar  network (no direct coupling 
between the outer lines). 

Figs. 8 and 9 are a result of an optimization of the structure, 
where the deviation of the complete scattering matrix from  the 
ideal scattering  matrix at f = fo is minimized. The scattering 
coefficients shown are really the  antenna currents normalized 
to  the incident current at  port 1 under matched conditions. 

V. CONCLUSION 
It  has been shown theoretically and experimentally that  the 

effects of mutual interaction between two or more antennas may 
be completely removed by a simple network connecting the lines 
feeding the antennas.  Two  conditions must be satisfied: 1) the 
scattering pattern  should equal  the transmit  pattern for  an 
antenna  and 2) the patterns of two antennas should be ortho- 
gonal in a multibeam sense, i.e., the  mutual impedance should be 
reactive. The connecting network may consist of transmission 
lines with a characteristic impedance different from the feeding 
lines. 

0.9  1.0 1.1 
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Fig. 9. As  in  Fig. 8 except that  network  is  planar. 
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Linearly Polarized Microstrip Antennas 
ANDERS G.  DERNERYD, ~ J D E N T  h a m m z ,  IEEE 

Abstract-An equivalent  network  for  square  and  rectangular shaped 
microstrip  radiating  elements is derived. In order to simplify  the  problem 
the  radiating  element is considered as two slots  separated by a trans- 
mission line of low characteristic  impedance.  The  slots  are  characterized 
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