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This paper outlines basic antenna array theory with major 
emphasis on pattern analysis and synthesis for periodic linear and 
planar arrays, phased arrays, and conformal arrays. Extension 
is made to synthesis techniques which use computer algorithms. 
These include arbitrary side lobe control, shaped beams, and 
phase-only null steering. The subjects of random errors and phased 
array quantization errors are outlined. 

I. INTRODUCTION 
In this paper the basics of array theory will be discussed; 

extensions of the topics presented here are given in other 
papers in this issue as well as in the references. The 
characteristics of linear, planar, and conformal arrays will 
be treated here insofar as their patterns, beamwidth, and 
directivity are concerned. 

Linear arrays consist of equally spaced elemental radi- 
ators’ laid out in a straight line, while two-dimensional 
planar arrays consist of radiators oriented on a geometric 
grid in a plane. Rectangular arrays may be thought as 
a set of linear arrays placed next to each other, equally 
spaced, forming the two-dimensional array. A linear array 
may also be wrapped around a curved surface, usually a 
circle or a cylinder. Two-dimensional arrays can be formed 
by replicating these linear arrays along generatrices of 
cylinders and cones, or wrapping them on spheres. 

Linear, planar, and conformal arrays can be designed 
with either a fixed main beam, or a scanned beam which is 
rapidly positioned in space by means of electromechanical 
or electronically actuated devices connected in the feed 
lines behind the array radiators. These devices change 
the phase or time-delay between radiators to produce the 
required phase progression along the array. Scan can be 
one- or two-dimensional. 

The patterns for linear arrays will be analyzed in terms 
of the main beam, side lobes, and grating lobes. Graphical 
and analytical methods, as well as simple examples, will 
be shown. Two synthesis techniques, the Dolph-Chebyshev 
and the discrete Taylor will be outlined. Extensions to 
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‘Only the subject of arrays with periodically spaced elements will be 

considered. For a discussion of aperiodic arrays, the reader should consult 
the literature [1], [2]. 

iterative techniques for pencil and shaped beams will be 
presented. Random and quantization errors will be taken 
up; the discussion will then be extended to two-dimensional 
planar arrays. 

Conformal arrays are presented, using circular arrays as 
an introduction. Characteristics unique to conformal arrays 
are stated; a conformal array pattern synthesis technique is 
applied to a conical array as an illustration of the technique. 

In this last section of the introduction, the electromagnetic 
equations that form the basis for the development of the 
array theory will be given. In these radiation problems, one 
can think of two regions, the first, around the origin of the 
coordinates, wherein lie the sources of radiation, and the 
other, in the field region, where the electric field due to 
these sources is measured. 

From the solution of Maxwell’s equations in unbounded 
space, the radiation field, which can be expressed in terms 
of magnetic and electric vector potentials, simplifies if the 
distance between the source and the far-field regions is large 
(IF1 >> IF’/lmax), a condition met in most practical situations 
[3]. The vectors F and F-7’ may then be considered parallel 
(Fig. 1) and 

We will talk about discrete elements arrayed in a repeti- 
tive grid. The electric field of nth element in an array may 
be expressed as follows: 

- 
E n ( 2 ,  y, z )  = ( e - j k r / T ) Z e n ( Z ’ ,  y’, z’)I,exp(jkr:, cost,). 

P a )  
The X e  term characterizes the individual element and 
specifies its behavior in terms of the polarization and the 
orientation of the electric field. The remaining part of (2a) 
contains the effect of the amplitude, in terms of the currents 
I,, and the phase excitation as observed at the far-field 
point. The field due to the summation of all the array 
elements is 

- 
E ( z ,  y, z )  = ( e - j k r / r )  ze,Inexp(jkrk cost,). (2b) 
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Fig. 1. Geometry for pattern calculations. 

f ‘ ’ ‘ y ’ r ’  
Z 

Fig. 2. Linear array coordinate system. 

For linear and planar array analysis, the element pattern 
can be factored2 from the summation in (2b) [4]. It reads 

where A,, the array factor is given by 

A, = I,exp(jkr; costn). (3) 

The antenna patterns are plots of the amplitude, and some- 
times the phase, of the electric field at a constant distance 
r ;  they are normalized, usually to the peak value. 

A word about coordinate systems: in the source region, 
the coordinates most natural for the layout of the sources 
are used, namely Cartesian, cylindrical, or spherical. Cylin- 
drical or spherical coordinates are used to describe the 
positions of the field points. A useful relation, in conjunc- 
tion with (l), is 

r r ’ c o s ~ = T . T ’ = z z c ’ + y y ’ + z z ’ .  (4) 

11. LINEAR ARRAYS 

A .  Pattern Analysis and Synthesis 

We postulate a linear array of equally spaced elements, 
located along the 2 axis, with an element spacing of d 
(Fig. 2). The array factor will have no q5 variation, only a 
Q variation; it will be a figure of revolution about the 2 
axis. The 2 axis is chosen for array placement to minimize 
the number of pattern coordinate variables. Only the array 
factor will be examined now, later the characteristics of the 
element will be introduced. From (4): z’ = y’ = 0,z’ = 
(n  - 1)d; z = r cos 8. Equation (3) reduces to 

N 

A, = Inexp(j(n - 1)kdcosQ). ( 5 4  
n= l  

2The elements are assumed to be equally spaced, electrically identical 
and oriented in the same spatial direction. 

It is easiest to visualize the pattern behavior with all 
currents equal, (equal excitation or uniform illumination), 
namely 1, = 1. 

N 

A, = C e x p ( j ( n  - I ) M C O S O ) .  (5b) 
n=l  

At 8 = go’, the exponent becomes zero and all contri- 
butions add algebraically; the sum becomes a maximum 
and equals the peak of the main beam (Fig. 3(a)). This 
condition will also occur when the exponent kd cos Q = 2 ~ ,  
or multiples thereof, then 

COSQ = X/d. (6) 

These secondary peaks, called grating lobes, will repeat 
ad infinitum in the array factor as a function of cosO. 
The grating lobes can be excluded from “visible space,” 
which is the range of the angle Q from 0’ to 180°, by 
a proper choice of element spacing, namely, X/d < 1. 
The pattern characteristics of a four-element array will be 
examined as an example of graphical and mathematical 
analysis techniques. 

To simplify the analysis of the patterns, we let 
kdcos(8) = 11, in (5b). Think of each phasor eJ+ as a line 
segment of unit amplitude and phase 11,, in the complex 
plane. These phasors are added, first with 11, = O’, as 
in Fig. 3(a), with the resulting maximum of 4. Fig. 3(b) 
illustrates the summation for 11, = 30”; the difference 
between successive phasors is 11,. The sum will be smaller 
since the angular difference between successive phasors is 
30’. As 11, reaches 90°, a first null is obtained (Fig. 3(c)). 
Beyond that, the first side lobe is reached around 135’. The 
next null occurs at M O o ,  then the pattern repeats in 11,. A 
plot of the power pattern in decibels is shown in Fig. 4; the 
nulls are equally spaced in the 11, plane. The corresponding 
angles are also indicated for two different element spacings, 
d/X = 1 and 112, and for two beampointing directions, 
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Fig. 3. Phasor presentation of pattern summation. Each phasor is 
equal to one unit. (a) L' = O o ,  sum = 4. (b) 2' = 30°, sum = 3.3. 
(c) L' = 90°, sum = 0. (d) v = 13So, sum = 1.1. 

broadside (0  = 90') and 0 = 60". For d / X  = 1, at 
broadside, a partial grating lobe is evident at 0 = 0" and 
180'. For a larger number of elements, the first null would 
occur at a smaller $, thus the null to null , as well as 
the 3-dB beamwidths would be narrower. If the elements 
have an amplitude taper distributed symmetrically about the 
array center, then, compared with uniform illumination, the 
peak at $ = 0' is at a lower level, the first null occurs at a 
larger angle and the first side lobe is lower and also moves 
out in $.3 This pattern analysis was treated mathematically 
by Schelkunoff [5], and will be described next. 

Schelkunoff makes a further transformation in the angular 
variable, namely, 

(7) w = $!j 

and (5a), with the currents normalized, becomes 

N T  

A,(w) = 5 w n - '  
I1 n=l 

3 A n  alternate way of examining the behavior of these phasors, by 
inscribing them and fanning them out in unit circles, has been presented 
in the literature [4]. 

Expanded and rearranged it reads [6 ] :  

This polynomial can be written in terms of its roots 

f ( W )  = IW-WlI.IW-W2l"'IW-wN-11 

N - 1  

= n lW-W, l .  

n=l 
(9) 

We have the new variable w which traverses the circum- 
ference of a unit circle (Fig. 5); the product of the terms 
Iw - wnI gives the pattern amplitudes as a function of w. 
If we take the uniformly illuminated array, In = 1, 

N 

f ( w )  = wn-l 
n=l 

which can be rewritten, noting that it is a geometric 
progression: 

and the roots occur at 

The magnitude of the pattern may be written 
I sin N ( $ / 2 ) /  sin ($/2)1 with U = ( d / X )  cos 0 it becomes 

(11) 

For the four-element array, N = 4, the roots are at $ = 
90°, 180", and 270". The function f ( w ) ,  in conjunction 
with (7), was used to plot the pattern as shown in Fig. 
4. The unit circle can be used equally well for a tapered 
distribution. By moving the roots toward ?I, = 180°, the 
side lobe levels will be lowered and the main beam will be 
broadened. By trial and error, the roots can be adjusted until 
the desired side lobe levels are obtained. A substitution of 
the newly found roots into (9) and a multiplication of the 
terms will give the polynomial of (8). The coefficients of the 
polynomial correspond to the values of the relative currents. 
It is clear that this process can be mechanized on a computer 
and iterated. The purpose here was to give familiarity with 
the underlying mathematics and the connections between 
the amplitude taper, the placement of the roots, and the 
side lobe levels. 

To effect beam scanning, by moving the main beam from 
0 = go", a phase progression, a, is introduced between 
adjacent elements, so that I ,  = Ione-ja(n-l). Substituting 
this new expression for the currents into (5a), we obtain 

N 

A ,  = Ionexp(j(n - l ) [kdcose  - a] )  (12) 
n=l  
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Fig. 4. Array factor of four element uniformly excited linear array. 

then 1+5 = kd[cos(O) - cos(6'0)]. It can be shown, that in 
order to avoid grating lobes, the condition for a scanned 
beam becomes 

W3 

Fig. 5. Schelkunoff unit circle-four element array 

At the peak of the main beam, 6' = 6'0, and the exponent 
in (12) equals zero, thus cx = kdcos6'0, and (5a) can be 
rewritten: 

N 

A,  = 1oa,exp(j(n - l)[kd(cos6' -  COS^'^)]) 
n=l  

Now let us introduce the element pattern and its role in 
suppressing the grating lobes. The radiating element chosen 
for many arrays has a pattern of the form sin(6') which, 
when multiplied with the array factor (5a), does suppress 
the peak of the grating lobes, at 6' = 0' and 180' for 
a broadside main beam with an element spacing of one 
wavelength. However the grating lobes are not completely 
suppressed, especially for small arrays; also the deep null 
in the element pattern may not be realized in practice. A 
more conservative spacing, such as d/X = 0.7, may be 
used to avoid the problem. In scanned arrays, the spacing 
is reduced to about d = 0.5X. 

The uniformly illuminated array has a side lobe structure 
which decreases monotonically from the main beam, with a 
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Fig. 6. Pattern of uniformly illuminated array. 

first side lobe around 13 dB as shown in Fig. 6. For many 
applications, lower near-in side lobes are desired. C. L. 
Dolph [7] addressed that problem by noting the behavior of 
the Chebyshev polynomials and devising suitable transfor- 
mations of variables to link the behavior of the polynomials 
to array side lobe levels. Chebyshev polynomials oscillate 
between k l  for -1 5 U 5 1 (the inner region) and then 
increase in absolute value outside the oscillatory region. 
Figure 7 shows the polynomial of order 4. The oscillations 
represent the equal side lobe region; the outside region is 
the main beam. The polynomial can be written, for an odd 
number of elements [8], 

T2N(U) = cos(2Narccosu), -1 5 U _< 1 
= cosh(2Narccoshu), U 2 1. (14) 

for (2N + 1) elements, where the order of the polynomial 
is 2N.  Transformation of variables is as follows: 

= ~ c d ( ~ ~ ~  e - cos eo) 
U = cos ($/2) 

lsidelobe levellin dB. = 20log77, T~N(uo) = 7. 

The polynomial can also be written in terms of the 
product of its roots: 

N 

T2N(U) = cf(w) = n (w - wp) 
p=l 

where c is a constant and the roots are given by 

cos ($Jp/2) = (l/UO)(COS (2P - 1)7r/4N), 
p =  1 , * * * , 2 N .  

With a symmetrical amplitude distribution, roots occur in 
complex conjugate pairs, so that the pattern becomes, after 

1.00 

-1.0 

Fig. 7. Chebyshev polynomial of order four. 

some manipulations, 

which is the Chebyshev pattern for 2 N  + 1 elements. 
This distribution is not used in present day pattern designs 
because the ratio of outer to center currents is high and thus 
difficult to implement and it does not have low far-out side 
lobes. However, it is the starting point for the derivation of 
the Taylor distribution, which will be taken up next. 

The Taylor distribution [9] has been the major focus 
of closed form synthesis techniques. Taylor postulated 
a pattern from a uniformly illuminated array (with the 
decreasing side lobe levels) but modified to give equal 
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close-in lowered side lobes. The technique is a melding 
of the two, uniform and Chebyshev. Taylor’s design was 
for continuous apertures, wherein the excitation is con- 
tinuous across the aperture, while we are concerned with 
discrete elements. Villeneuve has developed the technique 
for the latter case which obviates the discretization of the 
continuous distribution [8]. The pattern is written for the 
uniformly illuminated array; the first f i  roots, of the array 
factor of the uniform distribution, are replaced with those of 
the corresponding modified roots of the Dolph-Chebyshev 
distribution. 

- n-1 n sin (($ - $6)/2) sin (($ + $l)/2) 
n=l 

TI sin ((let - Qhn)/’) sir1 (($ + $hn)/2) 

- n-1 

n=l  

The second factor of (16) is the pattern for the uniform 
distribution, it is multiplied by a fraction: in the numerator 
are the modified Chebyshev roots for the first E close-in side 
lobes, and in the denominator are the roots corresponding 
to the uniform distribution for the same E roots. Thus the 
resulting pattern has approximately equal heights for the 
first A roots. The modified Chebyshev roots are used to 
prevent a sudden jump in the roots at n = a. They are 
shifted progressively so that the nth zero coincides with 
that of the sin(2N + 1)($/2)/sin($/2) pattern at E. To 
accomplish this shift, each Chebyshev zero is multiplied 
by U ( E .  2 ~ ) / ( ( 2 N  + l ) $ ~ )  , $& = crk , and & is 
the Chebyshev root. An example for a 21-element array 
with n = 6 and 20-dB side lobe levels is shown in Fig. 8. 

Other distributions have been developed, several based 
on Taylor [lo]. The usefulness of a particular technique de- 
pends on matching system requirements against physically 
realizable side lobe level distributions, main beamwidth, 
and gain. These in turn depend on the constraints of array 
architecture, fabrication, cost, and the resulting unavoidable 
phase and amplitude errors. 

B. Directivity and Beamwidth 

half-wavelength spaced isotropic elements reduces to [6] 
For linear arrays, the general equation for directivity, with 

where D is the directivity. It shows the basis for antenna 
directivity and gain, namely, it is proportional to the square 
of the coherent addition of the currents (phasor addition) 
divided by the summation of the powers. Also, due to the 
nature of the conical beams, the directivity is independent 
of the scan angle. The main beam (in 0) broadens as it is 
scanned from broadside, while the solid angle occupied by 
the main beam decreases, just cancelling the widening of 
the main beam.4 

4For element spacings between X/2  and A, for a constant array length 
L, the directivity is substantially constant for up to several beamwidths 
away from broadside. A more general expression may be found in 1111. 
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Fig. 8. 
side lobe level 20 dB, 2 N  + 1 = 21 (from Villeneuve IS]). 

Computed pattern of discretized Taylor pattern f i  = 6, 

Expressions have been developed for the directivity and 
beamwidth of uniformly illuminated arrays. One such ex- 
pression for directivity is D = 2L/A, where the array 
length L = N d ,  and ( L  >> A). For beams around 
broadside, it is equal to O.SSSA/[L sin(&)]. The relation- 
ship between directivity D and beamwidth at broadside is 
D = 101.5/ beamwidth, where the beamwidth is expressed 
in degrees. Corresponding expressions are available for 
Dolph-Chebyshev distributions [6]. 

111. TWO-DIMENSIONAL ARRAYS 
Simple two-dimensional rectangular arrays are composed 

of linear arrays arranged side by side. The subject of pattern 
analysis will be examined first. The convention is to locate 
the array in the X Y  plane, with the broadside direction 
along the $2 axis (Fig. 9). The inputs to (4) take the 
following form: 

x’ = md,, y‘ = n d y ,  z’ = 0;  
x = rsinOcos4, y = r s inds in4 .  

The general pattern for a broadside beam is 

where d ,  and d, are the interelement spacings in the x’ 
and y’ directions, respectively. 

While the excitation of the elements is at the command 
of the designer, the overall design is constrained by feed 
complexity and cost. Thus many practical designs use 
identical feeds that sum one row of radiating elements at 
a time (thus creating a linear array), the outputs of all 
linear arrays are then connected by a feeding network. This 
reduces feed complexity, volume, and cost, but restricts 
the available array amplitude distributions, and side lobe 
control. The array factor for such a separable distribution, 
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Fig. 9. Planar array coordinate system. 

as it is called, may be written as follows: 
M 

A,(@, 4) = I,exp(jmkd, sin 8 cos 4) LM 
. ($ Inexp(jnlcdy sin 0 sin 4) . (19) 

We have the product of two linear array factors. The 
patterns along the principal planes are those of the cor- 
responding linear array distributions, while, in the intercar- 
dinal planes, they are the products of the two. Figure 10 
shows a typical pattern. One of the limitations of separable 
distributions is higher side lobes along the principal planes 
and much lower ones elsewhere. Synthesis techniques for 
linear arrays may be used separately for both axes. For the 
nonseparable case, other synthesis techniques are available. 
For rectangular arrays, the Tseng-Cheng distributions are 
analogous to the Dolph-Chebyshev [ 121. The character- 
istics of two-dimensional scanned arrays with separable 
distributions will be examined in the next few paragraphs. 

The equation for a scanned beam with a separable dis- 
tribution is 

) 

M 

I,exp(jm(kd, sin 8 cos $ - a,)) 

. (2 I,exp(jn(lcd, sin Bsin $ - a y ) )  (20) ) 
where a, = kd, sin 00 cos0 and ay = lcd, sin BO sin 40. 
The beam due to the array summed along the X axis will be 
a cone rotationally symmetric about the X axis, while the 
beam from the elements arranged parallel to the Y axis will 
be symmetric about the Y axis. The following condition 
must be met for these two beams to form a pencil beam 
[4], (cxz/kdx)2 + (cx.y/kdy)2 5 1. The confluence of these 
two beams at, say the -3-dB contour, gives a pencil beam 
contour which changes with scan angle as shown in Fig. 11. 

The areal beamwidth, that is, the area of the 3-dB 
beamwidth contour expressed in degrees squared, is [6] 

B = p,o~,ol/ cos e cos eo 
where B is the beamwidth, Oxo is the broadside beamwidth 
of the X-directed cut of the beam; O,o is the corresponding 

Fig. 10. Planar array pattern-separable distribution. 

Fig. 11. Beam broadening with scan angle (from Von Aulock 
~ 4 1 ) .  

one for the Y -cut. There is beam broadening as one departs 
from the broadside direction. One can think of this as 
resulting from a decrease in the projected area, the area in 
the direction perpendicular to the beam pointing direction. 

The directivity for a uniformly excited array is D = 
47rAX2 where A is the projected area. The directivity de- 
creases for arrays consisting of discrete elements and further 
depends on the aperture illumination [6]. The beamwidth 
and the directivity are related by the approximate expression 
D = 32400/B, where B is the areal beamwidth in square 
degrees. 

As was the case with linear arrays, lattice spacing will 
determine the onset of grating lobes5 In the principal planes 
(13) applies 

where is the maximum scan angle in the 2 and y 
planes, respectively. In other directions, the relations are 
more complicated [14]. 

While the previous analysis was applied to rectangular 
lattices, other lattices are also used in practice. The type of 
configuration of the elements in the array, the array lattice, 
is related to the number of radiating elements and phase 

5Mutual coupling between elements must be taken into account in the 
design of the array. As the array is scanned from broadside, effects, such 
as mismatch and blind spots can occur; these are not taken into account 
by the analysis outlined here. For more on this subject, the reader should 
consult the literature [ 131. 
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shifters required in a phased array for a given beam scan, 
before the onset of grating lobes. It has led to different 
element lattices; both rectangular and triangular lattices 
have been employed, Fig. 12, with the triangular lattice 
using 15% fewer elements for the same scan limits [15]. 

IV. ARRAY ERRORS 
The theoretical patterns of the linear and planar ar- 

rays, discussed so far, have exhibited infinitely deep nulls 
and perfect symmetry. Practical arrays have errors due to 
fabrication tolerances as well as position and orientation 
errors of the radiating elements. Some of the errors may 
be systematic due to say, array bending, feed network 
architecture [ 161, and phase shifter quantization, others will 
be random. We will examine random errors first. 

A look at the phasor diagrams of Fig. 3 shows the effects 
of random errors in a qualitative way. Small errors in the 
length and angle between phasors will raise the null depths; 
the peak of the main beam will be lowered as well. These 
random errors will appear in the amplitude and phase terms 
of a linear array pattern as follows: 

A,  = L ( l +  ArL)exp(j(nlCI + 8,)) (22) 

where An and 8, the amplitude and phase errors of the nth 
element, respectively. If the errors are independent, and are 
normally distributed with zero mean, the expected value of 
the power pattern A: becomes [17] 

U2 A: = Ai + - D 
where A; is the error-free power pattern, D is the directiv- 
ity, and g is the variance; u2 = 02 + U:. The probability 
of side lobes exceeding a stated level has been examined 
by Hansen [17]. Figure 13 shows this probability for a 
20-element array with uniform excitation. 

A .  Quantization Errors in Phased Arrays 

Phase shifters used in the present-day phased arrays are 
most often digital devices or analog devices which are 
digitally controlled [18]. The phase is quantized, instead of 
being continuously variable and giving the required phase at 
each element. The smallest phase increment, in degrees, is 
360°/2p, where P is the number of bits. The peak phase 
error is &(180°/2P). 

For a two-bit phase shifter the available phase states are 
O", 90°, 180°, 270°, (360"); the peak error is f45'. As 
seen in Fig. 14, there will be a staircase phase progression 
across the array [19]. For example, think of two adjacent 
elements in the array, and suppose that they require phase 
settings of 67.5' and 112.5', the two bit-phase shifter for 
these elements will be set to 90". Pairs of elements will 
have the same phase and act like one entity, or a subarray. 
If the element spacing is X/2, then these pairs are X apart. 
One can imagine that the array structure broken up into two 
arrays, each consisting of elements spaced one wavelength 
apart; as the array is scanned from broadside, quantization 
grating lobes will appear. In order to reduce these lobes, the 

(b) 

Fig. 12. Lattice layout for phased arrays. (a) Rectangular. (b) 
Triangular. 
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Fig. 13. 
distribution, 20 elements (from Hansen [17]). 

Probability of side lobes above-stated level uniform 

phase quantization errors are decorrelated by introducing 
small errors into the array feed network, or by the addition 
of an extra phase bit. A parabolic phase taper may also 
incorporated in the feed. 

The staircase phase progression causes an array gain loss 
which is approximately [20]: 

(23) (AG/Go) = n 2 / ( 3  x 22p). 

For P = 3, the loss is 0.23 dB. Peak quantization side 
lobes are given, for small scan angles, by M 1/22p. For 
P = 3 the peak quantization lobe is -18 dB; for P = 4, 
it becomes -24 dB. The root mean square (rms) side lobe 
level is 5/(N22p) where N is the number of elements. For 
N = 100, with P = 3, the rms side lobe is -31 dB. 

In most cases, with proper phase dispersion incorporated 
in the array, 3- or 4-bit phase shifters are adequate; for 
low side lobe designs, 5 bit may be needed. There may 
also be amplitude quantization due to phase shifter loss 
variations with phase state. During design trade-offs, both 
amplitude and phase errors are incorporated into the pattern 
computations. 
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Fig. 14. Phase quantizations for 2-bit phase shifter. 

V. PAITERN OPTIMIZATION 
The closed-form classical techniques have been used as 

the basis for pattern designs using computer algorithms 
that allow greater freedom in array design. As pointed out 
previously, pattern synthesis involves the positioning of the 
roots of polynomials to get the desired side lobe control or 
pattern shape. First, pencil beams with arbitrary side lobe 
levels will be discussed. 

To obtain arbitrary side lobe control, Elliott [21] has 
generalized the analysis so that the roots of the polynomial 
can be positioned to control individual side lobe heights 
on both sides of the main beam; only a few iterations are 
needed. An example of such a design uses a 19-element slot 
array with the theoretical pattern shown in Fig. 15(a); the 
corresponding pattern for an X band experimental array is 
shown in Fig. 15(b) [22]. As can be seen, good agreement 
between experiment and theory was obtained. Next, a brief 
look will be taken at the synthesis of shaping arbitrary 
beams. 

For many requirements, beamshapes with arbitrary con- 
tours are needed. One well known method to achieve such 
requirements is that due to Woodward [23]. He uses linear 
arrays with uniform amplitudes and linear progressive phase 
distributions as the building blocks. These arrays have 
beams, each of which is scanned to a different angle theta, 
and are so positioned that the peak of each beam falls on the 
nulls of all the other beams; these beams are thus orthogonal 
in space. The peak of each beam is adjusted to coincide 
with the desired shaped beam at the sample points (Fig. 
16). The pattern of each beam may be written (see [ll]), 
a,[sinNr(u - n)]/Nsin7r(u - n), where a, is the peak 
amplitude of the nth beam, and U = (d/A)(cos 8 - cos 80) .  
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Fig. 15. Patterns for a Taylor distribution 20/20 modified with 
three 30-dB inner side lobes (from Elliott [21], [22]). (a) Computed 
pattern. (b) Pattern for 19-element X band longitudinal shunt slot 
array. 

The sum becomes 

A,(u) = Ca,[sinNK(u - n)]/Nsinr(u - n). (24) 

The composite phase and amplitude distribution is obtained 
by summing the excitations of all the arrays at the location 
of each element, resulting in a composite phase and ampli- 
tude distribution. Ripples in the pattern will occur because 
the side lobes of all the individual beams contribute between 
sample points as well as outside the shaped beam region. 
The ripple and drop-off slopes of the pattern will depend 
on the available aperture size, the number and spacing 
of the elements. Since the publication of Woodward’s 
paper, several iterative techniques have been developed. 
In a recent technique [24], both the ripples on the shaped 
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beam and the height of the side lobes are controlled. Roots 
outside the Schelkunoff unit circle represent minima in 
the ripples of the shaped beam. Iterations on the roots are 
used to obtain the desired patterns. Figure 17 shows both 
the computed and measured E plane patterns from a 15- 
GHz slot array. Design goals were 22-dB ripples and side 
lobe fall-off that for a uniform array; the theoretical and 
experimental patterns show good correlation. 

The full capability of an electronically steered antenna 
array is realized when both the phase and amplitude are 
controlled independently. This capability is used in adaptive 
arrays, with complex weights (equivalent to phase and 
amplitude controls) at each element, to steer pattern nulls 
toward jamming signals received from unknown angles 
of arrival [25]. In most cases, the phased array designer, 
however, is limited to the control of the element phases6 
and to an a priori amplitude taper. To extend the capability 
of phased arrays to include null steering, the sum (output) 
port is used to detect the jamming signals, the phase shifters 
are sequenced through the phase states to reduce the inter- 
ference. The emphasis has been to develop programming 
for the phase shifters and robust algorithms that achieve 
convergence while the jammedarray geometry is stationary 
[281, [291. 

VI. CONFORMAL ARRAYS 
Planar arrays are usually limited to scan angles of about 

+70° from broadside because of gain reductions and aper- 
ture mismatch losses. Scanning beyond that angular range 
would require multiple apertures on multifaceted systems. 

Interestingly enough, beam scanning has also been accomplished by 
amplitude control alone [26], [27]. 
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Fig. 17. E plane pattern for 6 by 26 slot array. (a) Computed 
pattern. (b) Measured pattern, Ku-band array (from Orchard 1241). 

3 

The alternative is the location of radiators on circularly 
symmetric surfaces, such as cylinders, cones or spheres 
[30]. Full circumferential scans may be accomplished by 
illuminating an arc or sector and then advancing that sector 
electronically to cover the 360’ scan. An application for 
the extended scan would be in missiles and high speed 
aircraft, where the substitution of the dielectric radome 
with a metallic surface filled with flush-mounted radiators 
would have several advantages: no large radome, and thus 
no radome heating, ablation, boresight errors and side lobe 
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degradation. 
Practical implementation problems of conformal arrays 

are significant and include element spacing, polarization 
matching, feeding systems, and beam steering. 

Analysis of conformal arrays can be divided into three 
areas: 1) the analysis of active element patterns [31], 2)  
pattern analysis and synthesis that specify excitations on 
the surface, and 3) the problem of designing the radiators 
and the feed networks to obtain the desired excitations. Our 
focus will be on pattern synthesis. 

One of the most challenging problems in conformal 
arrays is pattern synthesis. Most linear and planar array 
analysis is concerned with arrays large in terms of wave- 
length, for all practical purposes infinite in extent insofar 
as analysis of the radiating element is concerned. All 
elements are postulated identical in pattern, polarization, 
gain, orientation, and impedance. In conformal arrays, the 
patterns of the elements point in different directions, the 
element pattern cannot be factored out from the array 
pattern 1321. Figure 18 shows what may be an extreme 
example, a conical array with slots oriented to kive linear 
polarization in the axial direction. Consequently, the usual 
synthesis techniques for planar arrays are not directly trans- 
latable to conformal arrays: there is no proven synthesis 
technique available. To illustrate how conformal arrays 
must be handled differently, let us examine an arc array 
where elements are located on an arc of a circle as in Fig. 
19. The inputs to (4) are d = a cos @, y' = a sin @, z' = 
0; x = p cos 4, y = p sin d, ,  z = 0. The pattern is 

N 

A ( 4 ) =  &n(d, -nA>L 
n=-N 

. exp(jkacos ( d ,  - .A)). (25) 

In order to obtain in-phase addition of the elements (the 
"cophasal condition"), at d, = 0, a feed network with 
appropriate phasing is provided. For purposes of analysis, 
this type of array is sometimes analyzed by projecting it on 
a plane perpendicular to the beam pointing direction. This 
resulting array is considered an equivalent linear array, with 
symmetrically placed, unequally spaced elements with each 
element pattern pointing in a different direction in space. In 
spite of the fact that the spacing is only 0.6 A, a grating lobe 
not predicted by linear array theory appears, as shown in 
Fig. 20 [33]. This grating lobe appears around looo, where 
the radiation of the last few elements tend to add in phase; 
most of the others are not visible from that direction. 

To scan the beam of an arc array around 360°, the array 
is replicated around the periphery and the feed network is 
advanced electronically. Several examples are found in the 
literature 1341, 1351. To obtain narrow or shaped beams in 0, 
linear arrays may be substituted for the radiating elements 
along the generatrices, creating a two-dimensional array, in 
this case a cylindrical array. 

As was seen, the linear array techniques, as applied to 
the circular array, predict near-in side lobes, but not far- 
out grating lobes. Thus conventional planar array synthesis 
techniques are not adequate when applied to conformal 

Fig. 18. 
axial direction. 

Conical array, slots oriented for linear polarization in 

X 

Fig. 19. Geometry for arc array 
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Fig. 20. Computed pattern of 25 Element Arc Array. 
Array radius 6.72X; Element spacing 5.63", 0.66X; 
Array taper 23 dB; Element pattern cos ( e )  in half-space; after 
Howard [33]. 

arrays. One possible approach to a pattern synthesis tech- 
nique is the use of the equivalence principle [3]. The 
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complete fields generated by a fictitious planar array, whose 
aperture distribution is synthesized by known planar array 
techniques, is evaluated on the conformal surface. The 
fictitious aperture is contained entirely within the conformal 
surface. As an illustration, the technique will be applied to 
a conical surface; the method of approach will outlined 
below [36], [37]. 

A reference antenna, say a mechanically scanned planar 
array (Fig. 21), is the antenna whose pattern is desired from 
the excitations of the conical array. The excitations of the 
slots for the planar array are determined by the conventional 
design techniques; it is positioned to be entirely within the 
cone for all scan angles. The components of the electric 
fields tangential to the conformal surface are converted to 
magnetic source currents on the conducting surface, so that 
looking from the outside of the cone, the fields will be 
identical to that generated by the planar array. 

In any practical situation, the required continuous mag- 
netic current density can only be approximated by discrete 

Fig. 21. Planar array located within conical surface. 

magnetic sources distributed over the conica! surface. Con- 
sequently, the resulting pattern from discrete magnetic 
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Fig. 22. Measured E and H plane pattems of conical array located 8.70X from tip. Beam position 
at Op = 50°, r$p = 0'; 00 = 169.75O (from Villeneuve [36]). 
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sources will deviate from the desired pattern. The amount 
of deviation will depend on the spacing of the sources on 
the cone. This spacing should be as large as practical while 
still providing an acceptable pattern. 

The computer mechanization of the synthesis technique 
approximates the pattern of the reference planar array of 
slot radiators by replacing the planar array by an array of 
crossed slots with independently excited arms on the conical 
surface. The radiation pattern of each slot is represented by 
a simple approximate expression that does not include tip 
diffraction. 

An experimental array of 37 crossed slot radiators was 
designed, fabricated, and tested. It had a 20.5” full cone an- 
gle with a stripline feed network for controlling the phases 
and amplitudes of the radiating elements. Excitations were 
adjusted to the one predicted by the theory. Comparison 
between experiment and theory shows good agreement (Fig. 
22). The sharp cutoffs in the theoretical patterns are due to 
approximate element patterns used in the theory. Measured 
cross-polarization was less than 25 dB in the E plane and 
20 dB in the H plane. 
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