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Thispaper is a tutorial on the theory of antennas, and it has been 
written as an introduction for the nonspecialist and as a review for 
the expert. The paper traces the history of antennas and some of 
the most basic radiating elements, demonstrates the fundamental 
principles of antenna radiation, reviews Maxwell’s equations and 
electromagnetic boundary conditions, and outlines basic proce- 
dures and equations of radiation. Modeling of antenna source 
excitation is illustrated, and antenna parameters and fisures-of- 
merit are reviewed. Finally, theorems, arraying principles, and 
advanced asymptotic methods for antenna analysis and design are 
summarized. 

I. INTRODUCTION 
For wireless communication systems, the antenna is 

one of the most critical components. A good design of 
the antenna can relax system requirements and improve 
overall system performance. A typical example is TV for 
which the overall broadcast reception can be improved by 
utilizing a high performance antenna. An antenna is the 
system component that is designed to radiate or receive 
electromagnetic waves. In other words, the antenna is the 
electromagnetic transducer which is used to convert, in the 
transmitting mode, guided waves within a transmission line 
to radiated free-space waves or to convert, in the receiving 
mode, free-space waves to guided waves. In a modern 
wireless system, the antenna must also act as a directional 
device to optimize or accentuate the transmitted or received 
energy in some directions while suppressing it in others [l]. 
The antenna serves to a communication system the same 
purpose that eyes and eyeglasses serve to a human. 

The history of antennas [ 2 ]  dates back to James Clerk 
Maxwell who unified the theories of electricity and mag- 
netism, and eloquently represented their relations through 
a set of profound equations best known as Maxwell’s 
Equations. His work was first published in 1873 [3]. He also 
showed that light was electromagnetic and that both light 
and electromagnetic waves travel by wave disturbances of 
the same speed. In 1886, Professor Heinrich Rudolph Hertz 
demonstrated the first wireless electromagnetic system. He 
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was able to produce in his laboratory at a wavelength of 4 
m a spark in the gap of a transmitting X/2 dipole which 
was then detected as a spark in the gap of a nearby loop. 
It was not until 1901 that Guglielmo Marconi was able to 
send signals over large distances. He performed, in 1901, 
the first transatlantic transmission from Poldhu in Cornwall, 
England, to St. John’s, Newfoundland. 

His transmitting antenna consisted of 50 vertical wires 
in the form of a fan connected to ground through a 
spark transmitter. The wires were supported horizontally 
by a guyed wire between two 60-m wooden poles. The 
receiving antenna at St. John’s was a 200-m wire pulled 
and supported by a kite. This was the dawn of the antenna 
era. 

From Marconi’s inception through the 1940’s, antenna 
technology was primarily centered on wire related radiating 
elements and frequencies up to about UHF. It was not 
until World War I1 that modern antenna technology was 
launched and new elements (such as waveguide apertures, 
horns, reflectors, etc.) were primarily introduced. Much 
of this work is captured in the book by Silver [4]. A 
contributing factor to this new era was the invention of 
microwave sources (such as the klystron and magnetron) 
with frequencies of 1 GHz and above. 

While World War I1 launched a new era in antennas, 
advances made in computer architecture and technology 
during the 1960’~-1980’s have had a major impact on 
the advance of modern antenna technology, and they are 
expected to have an even greater influence on antenna 
engineering in the 1990’s and beyond. Beginning primarily 
in the early 1960’s, numerical methods were introduced 
that allowed previously intractable complex antenna system 
configurations to be analyzed and designed very accurately. 
In addition, asymptotic methods for both low frequencies 
(e.g., Moment Method (MM), Finite-Difference, Finite- 
Element) and high frequencies (e.g., Geometrical and Phys- 
ical Theories of Diffraction) were introduced, contributing 
significantly to the maturity of the antenna field. While 
in the past antenna design may have been considered a 
secondary issue in overall system design, today it plays 
a critical role. In fact, many system successes rely on 
the design and performance of the antenna. Also, while 
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in the first half of this century antenna technology may 
have been considered almost a “cut and try” operation, 
today it is truly an engineering art. Analysis and design 
methods are such that antenna system performance can be 
predicted with remarkable accuracy. In fact, many antenna 
designs proceed directly from the ’ initial design stage to 
the prototype without intermediate testing. The level of 
confidence has increased tremendously. 

The widespread interest in antennas is reflected by the 
large number of books written on the subject [5]. These 
have been classified under four categories: Fundamental, 
Handbooks, Measurements, and Specialized. In English, 
in all four categories, there were 4 books published in 
the 1940’s, 9 in the 1950’s, 17 in the 1960’s, 20 in the 
1970’s, 69 in the 1 9 8 0 ’ ~ ~  and 1 already in the 1990’s. 
This is an outstanding collection of books, and it reflects 
the popularity of the antenna subject, especially since the 
1950’s. Because of space limitations, only a partial list is 
included here [l], [4], [6]-[32]. Some of these books are 
now out of print. 

In this paper, the basic theory of antenna analysis, the pa- 
rameters and figures-of-merit used to characterize antenna 
performance, and significant advances made in the last three 
decades that have contributed to the maturity of the field 
will be outlined. It will be concluded with a discussion 
of challenging opportunities for the future. Some of the 
material in this paper has been borrowed from the author’s 
textbooks on antennas [ 11 and advanced electromagnetics 
[331. 

11. ANTENNA ELEMENTS 
Prior to World War I1 most antenna elements were of 

the wire type (long wires, dipoles, helices, rhombuses, 
fans, etc.), and they were used either as single elements 
or in arrays. During and after World War 11, many other 
radiators, some of which may have been known for some 
time and others of which were relatively new, were put 
into service. This created a need for better understanding 
and optimization of their radiation characteristics. Many 
of these antennas were of the aperture type (such as 
open-ended waveguides, slots, horns, reflectors, lenses, 
and others), and they have been used for communication, 
radar, remote sensing, and deep space applications both on 
airborne and earth based platforms. Many of these operate 
in the microwave region. In this issue, reflector antennas 
are discussed in “The current state of the reflector antenna 
art-Entering the 1990’s,” by W. V. T. Rusch. 

Prior to the 1 9 5 0 ’ ~ ~  antennas with broadband pattern 
and impedance characteristics had bandwidths not much 
greater than about 2:l.  In the 1950’s, a breakthrough in 
antenna evolution was created which extended the max- 
imum bandwidth to as great as 40:l or more [34]-[36]. 
Because the geometries of these antennas are specified 
by angles instead of linear dimensions, they have ideally 
an infinite bandwidth. Therefore, they are referred to as 
frequency independent. These antennas are primarily used 
in the 10-10 000 MHz region in a variety of applications 

including TV, point-to-point communications, feeds for re- 
flectors and lenses, and many others. This class of antennas 
is discussed in more detail in this issue in “Frequency- 
independent antennas and broad-band derivatives thereof,” 
by P. E. Mayes. 

It was not until almost 20 years later that a fundamental 
new radiating element, that has received a lot of attention 
and many applications since its inception, was introduced. 
This occurred in the early 1970’s when the microstrip or 
patch antennas was reported [30], [37]-[44]. This element 
is simple, lightweight, inexpensive, low profile, and con- 
formal to the surface. Microstrip antennas and arrays can 
be flush-mounted to metallic or other existing surfaces. 
Operational disadvantages of microstrip antennas include 
low efficiency, narrow bandwidth, and low power handling 
capabilities. These antennas are discussed in more detail in 
this issue in “Microstrip antennas,” by D. M. Pozar. Major 
advances in millimeter wave antennas have been made in 
recent years, including integrated antennas where active and 
passive circuits are combined with the radiating elements 
in one compact unit (monolithic form). These antennas are 
discussed in this issue in “Millimeter wave antennas,” by 
F. K. Schwering. 

111. THEORY 
To analyze an antenna system, the sources of excitation 

are specified, and the objective is to find the electric and 
magnetic fields radiated by the elements. Once this is 
accomplished, a number of parameters and figures-of-merit 
that characterize the performance of the antenna system can 
be found. To design an antenna system, the characteristics 
of performance are specified, and the sources to satisfy 
the requirements are sought. In this paper, the analysis 
procedure is outlined. Synthesis procedures for pattern 
control of antenna arrays are discussed in this issue in 
“Basic array theory,” by W. H. Kummer and “Array pattern 
control and synthesis,” by R. C. Hansen. Theorems used in 
the solution of antenna problems are also discussed. Design 
and optimization procedures are presented in many of the 
other papers of this issue. 

A.  Radiation Mechanisms and Current Distribution 
One of the most basic questions that may be asked 

concerning antennas is “how do they radiate?” A quali- 
tative understanding of the radiation mechanism may be 
obtained by considering a pulse source attached to an open- 
ended conducting wire, which may be connected to ground 
through a discrete load at its open end. When the wire is 
initially energized, the charges (free electrons) in the wire 
are set in motion by the electric lines of force created by the 
source. When charges are accelerated in the source-end of 
the wire and decelerated (negative acceleration with respect 
to original motion) during reflection from its ends, it is 
suggested that radiated fields are produced at each end and 
along the remaining part of the wire [45]. The acceleration 
of the charges is accomplished by the external source in 
which forces set the charges in motion and produce the 
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associated fields radiated. The deceleration of the charges 
at the end of the wire is accomplished by the internal 
(self) forces associated with the induced field due to the 
buildup of charge concentration at the ends of the wire. 
The internal forces receive energy from the charge buildup 
as its velocity is reduced to zero at the ends of the wire. 
Therefore, charge acceleration due to an exciting electric 
field and deceleration due to impedance discontinuities or 
smooth curves of the wire are mechanisms responsible 
for electromagnetic radiation. While both current density 
( J z )  and charge density (que) appear as source terms 
in Maxwell’s equations (see (lb) and (IC)), charge is 
viewed as a more fundamental quantity. Even though this 
interpretation of radiation is primarily used for transient 
radiation, it can be used to explain steady-state radiation 
[45]. Another qualitative description of antenna radiation 
can be found in [ l ,  ch. 11. 

The previous explanation demonstrates the principles of 
radiation from a single wire. Let us now consider radiation 
and interference amplitude pattern (lobing) formation from 
a two-wire transmission line and antenna element, such as 
a linear dipole. We begin with the geometry of a lossless 
two-wire transmission line, as shown in Fig. l(a). The 
movement of the charges creates a traveling wave current 
of magnitude I o / 2  along each of the wires. When the 
current arrives at the end of each of the wires, it undergoes 
a complete reflection (equal magnitude and 180’ phase 
reversal). The reflected traveling wave, when combined 
with the incident traveling wave, forms in each wire a 
pure standing wave pattern of sinusoidal form as shown in 
Fig. l(a). The current in each wire undergoes a 180” phase 
reversal between adjoining half periods. This is indicated 
in Fig. l(a) by the reversal of the arrow direction. 

For the two-wire balanced (symmetrical) transmission 
line, the current in a half-period of one wire is of the 
same magnitude but 180’ out-of-phase from that in the 
corresponding half-period of the other wire. If, in addition, 
the spacing between the two wires is very small (s << 
A), the fields radiated by the current of each wire are 
essentially canceled by those of the other. The net result 
is an almost ideal (and desired) nonradiating transmission 
line. As the section of the transmission line between 0 5 
e 5 X/4 begins to flare, as shown in Fig. l(b), the current 
distribution is essentially unaltered in form in each of the 
wires. However, because the two wires of the flared section 
are not necessarily close to each other, the fields radiated by 
one do not necessarily cancel those of the other. Therefore, 
there is net radiation by the system. 

Ultimately, the flared section of the transmission line can 
take the form shown in Fig. l(c). This is the geometry of the 
widely used X/2  dipole antenna. Because of the standing 
wave current pattern, it is also classified as a standing wave 
antenna. If e < A, the phase of the current standing wave 
pattern in each arm is the same throughout its length. In 
addition, it is oriented spatially in the same direction as 
that of the other arm, as shown in Fig. l(c). Thus the fields 
radiated by the two arms of the dipole (vertical parts of a 
flared transmission line) will primarily reinforce each other 
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Fig. 1. Radiation from a two-wire transmission line and linear 
dipole, (a) Two-wire transmission line. (b) Flared transmission line. 
(c) Linear dipole. 

in some directions and cancel each other toward others. This 
results in the formation of amplitude pattern lobes which 
are illustrated in the later part of this paper. 

B. Maxwell’s Equations, the Wave Equation, 
and Boundary Conditions 

An antenna configuration is an electromagnetic boundary- 
value problem. Therefore, the fields radiated must satisfy 
Maxwell’s equations which, for a lossless medium (c = 0) 
and time-harmonic fields (assuming an ejwt  time conven- 
tion), can be written as [33]: 

In ( 1 a H l d )  both electric ( J ; )  and magnetic (M;) current 
densities, and electric (que) and magnetic (qum) charge 
densities are allowed to represent the sources of excitation. 
The respective current and charge densities are related by 
the continuity equations 
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V .Mi = - jwq vm'  (2b) 

Although magnetic sources are not physical, they are often 
introduced as electrical equivalents to facilitate solutions 
of physical boundary-value problems. In fact, for some 
configurations, both electric and magnetic equivalent cur- 
rent densities are used to represent actual antenna systems. 
For a metallic wire antenna, such as a dipole, an electric 
current density is used to represent the antenna. However, 
an aperture antenna, such as a waveguide or horn, can be 
represented by either an equivalent magnetic current density 
or by an equivalent electric current density or both. This 
will be demonstrated in Section IV-B. 

In addition to satisfying Maxwell's equations of 
( l a H l d ) ,  the fields radiated by the antenna must satisfy 
the boundary conditions of [33] 

-f i x Ed = M ,  
f i  x Hd = Js 

ii . ( € E d )  = qse 

f i  ' ( P H d )  = qsm.  

( 3 4  
(3b) 
( 3 4  
( 3 4  

The first two equations, (3a) and (3b), enforce the boundary 
conditions on the discontinuity of the tangential components 
of the electric and magnetic fields while (3c) and (3d) 
enforce the boundary conditions on the discontinuity of 
the normal components of the electric and magnetic flux 
densities. In (3a)43d), J , / M ,  and y s e / q s m  represent, 
respectively, the electridmagnetic surface current densities 
and electric/magnetic surface charge densities. For time- 
harmonic fields, all four boundary conditions of (3a)-(3d) 
are not independent. The first two, (3a) and (3b), form an 
independent and sufficient set [33]. 

In addition to the boundary conditions of (3a)-(3d), the 
solutions for the fields radiated by the antenna must also 
satisfy the radiation condition which requires in an infinite 
homogeneous medium that the waves travel outwardly from 
the source and vanish at infinity. 

Since (la) and (lb) are first-order coupled differential 
equations (each contains both electric and magnetic fields), 
it is often more desirable to uncouple the equations. When 
this is done, we obtain two nonhomogeneous vector wave 
equations; one for E and one for E. These are given by [33] 

V 2 E  + p2E = -Vqve + V x M; + jwpJ; (4a) 
1 

1 
CL 

V 2 H  + P2H = -Vqvm - V x Ji + ~ w c M ;  (4b) 

where p2 = w2pe.  
For a radiation problem, the first step is to represent the 

antenna excitation by its source, represented in (4a) and (4b) 
by the current density Ji or Mi or both, having taken into 
account the boundary conditions. This will be demonstrated 
in Section IV. The next step is to solve (4a) and (4b) for 
E and a. This is a difficult step, and it usually involves 
an integral with a complicated intergrand. This procedure 
is represented in Fig. 2 as Path 1. 

To reduce the complexity of the problem, it is a common 
practice to break the procedure into two steps. This is 

Sources Integration Radiated 

(G)Tth43 

Fig. 2. Procedure to solve antenna radiation. 

represented in Fig. 2 by Path 2. The first step involves an 
integration while the second involves a differentiation. To 
accomplish this, auxiliary vector potentials are introduced. 
The most commonly used potentials are A (magnetic vector 
potential) and F (electric vector potential). Although the 
electric and magnetic field intensities (E and H )  represent 
physically measurable quantities, for most engineers the 
vector potentials are strictly mathematical tools. The Hertz 
vector potentials II, and IIh make up another possible pair. 
The Hertz vector potential II, is analogous to A and I I h  

is analogous to F [l], [33]. In the solution of a problem, 
only one set, A and F or II, and IIh, is required. In the 
first step of the Path 2 solution, the vector potentials A and 
F (or 11, and IIh ) are found, once the sources J; and/or 
M; are specified. This step involves an integration but one 
which is not as difficult as the integration of Path 1. The 
next step of the Path 2 solution is to find the fields E and 
E, from the vector potentials A and F (or II, and U,). 
This step involves differentiation. The equations that are 
essential for the solution of Path 2 will be outlined next 
using the vector potentials A and F. The derivation can be 
found in many books, such as [l], [4], [7], [18], [19], [21], 
[33], and others. 

C. The Vector Potentials A and F 
In step one of Path 2, once the sources Ji and Mi 

are specified, the vector potentials A and F are related, 
respectively, to Ji and Mi by 

V2A + p2A = -pJi  
V 2 F  + p2F = -€Mi. 

(5a) 
(5b) 

If the current densities are distributed over a surface S ,  
such as that of a perfect conductor immersed in an infinite 
homogeneous medium, the solutions of (5a) and (5b) can 
be written, by referring to Fig. 3(a), as 

where R is the distance from any point on the source to 
the observation point. For the solutions of (6a) and (6b), J; 
and Mi in (5a) and (5b) are replaced by J,  and M ,  which 
have the units of A/m and V/m, respectively. If the current 
densities are distributed over a volume, the surface integrals 
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Fig. 3. 
far-field radiation. 

Coordinate system arrangements for (a) near-field and (b) 

of (6a) and (6b) are replaced by volume integrals. When 
the currents are distributed over a thin wire, the surface 
integrals of (6a) and (6b) can be approximated by line 
integrals [l],  [33]. 

The most difficult step in the solution of Path 2 is 
the evaluation of the integrals of (6a) and (6b). For 
most practical antenna geometries, these integrals cannot 
be evaluated in closed form. Usually approximations 
are made and/or numerical techniques are employed. 
With today’s computer technology, numerical evaluation 
of integrals is a much simpler, more convenient, and 
more efficient procedure than in the past. Computational 
electromagnetics for antenna radiation are discussed in this 
issue in “Low-frequency computational electromagnetics 
for antenna analysis,” by E. K. Miller and G .  J .  
Burke. 

D. The Electric and Magnetic Fields E and H 
Once the vector potentials A and F have been found by 

(6a) and (6b), the second step in the solution of Path 2 is 
to find the electric and magnetic fields E and E. This is 
accomplished by using the equations [l], [33] 

E = E A + E F  
1 

w w  
- j w A - j - - - V ( V , A )  

The forms of (5a)-(5b) and (7a)-(7b) are based on 
choosing the relationships between A & 4 and F & 4 of 

which each is known as the Lorentz condition or gauge (& 
and are scalar functions of position usually referred to 
as scalar potentials.) The choices of (7c) and (7d) were 
made to reduce (5a), (5b), (7a), and (7b) to their simplest 
forms; however, they are not the only possible choices. 

In (7a) and (7b), the terms within the first brackets are the 
fields due to the vector potential A (and as a consequence 
due to electric current density) while the terms within the 
second brackets are the fields due to the vector potential 
F (and as a consequence due to magnetic current density). 
If either of the sources (electric or magnetic) do not exist, 
the corresponding electric and magnetic fields (and vector 
potentials A or F) are set to zero. It is evident from (7a) 
and (7b) that superposition is used when both electric and 
magnetic sources are needed to represent the source of 
radiation. 

E. Field Regions 
The space surrounding an antenna is usually subdi- 

vided into three regions: the reactive near-field region, 
the radiating near-field (Fresnel) region, and the far-field 
(Fraunhofer} region. These regions are so designated to 
identify the field structure in each. Although no abrupt 
changes in the field configurations are noted as the bound- 
aries are crossed, there are distinct differences among them 
[l], [ll]. The boundaries separating these regions are not 
unique, although various criteria have been established and 
are commonly used to identify the regions. The following 
definitions in quotations are from [46]. 

The reactive near-field region is defined as “that region 
of the field immediately surrounding the antenna wherein 
the reactive field predominates.” For most antennas, the 
outer boundary of this region is commonly taken to exist 
at a distance R < 0.62dm from the antenna, where 
X is the wavelength and D is the largest dimension of the 
antenna. 

The radiating near-field (Fresnel} region is defined as 
“that region of the field of an antenna between the reactive 
near-field region and the far-field region wherein radiation 
fields predominate and wherein the angular field distribu- 
tion is dependent upon the distance from the antenna.” 
The radial distance R over which this region exists is 
0.62dm 5 R < 2D2/X (provided D is large compared 
to the wavelength). This criterion is based on a maximum 
phase error of 7r/8 radians (22.5’) [l], [ll]. In this region 
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the field pattern is, in general, a function of the radial 
distance and the radial field component may be appreciable. 

The fur-field (Fruunhofer) region is defined as "that 
region of the field of an antenna where the angular field 
distribution is essentially independent of the distance from 
the antenna." In this region, the real part of the power 
density is dominant. The radial distance R over which this 
region exists is R 2 2D2/A (provided D is large compared 
to the wavelength). The outer boundary is ideally at infinity. 
This criterion is also based on a maximum phase error of 
7r/8 radians (22.5') [l], [ l l ] ,  [MI. In this region, the field 
components are essentially transverse to the radial distance, 
and the angular distribution is independent of the radial 
distance. The evaluation of the integrals in (6a) and (6b) 
varies according to the region where the observations are 
made. The evaluation is most difficult in the reactive near- 
field region. As the observation point is moved radially 
outward, approximations can be made in the integrands of 
(6a) and (6b) to reduce the complexity of the evaluation. 
The evaluation is easiest in the far-field region, and that is 
usually the region of most applications. 

Let us outline the procedure for the evaluation of integrals 
for the potentials A and F as the observation point is moved 
to the far-field region. This will be done for the surface 
integrals of (6a) and (6b). As the observation point is moved 
radially outward, the distance R can be approximated and 
leads to a simplification in the evaluation of the integral. 

In the far-field (Fraunhofer) region, the radial distance R 
of Fig. 3(a) can be approximated by [l], [33] 

N- { r - r' cos$ for phase terms ( 8 4  
r for amplitude terms. (8b) 

Graphically, the approximation of (sa) is illustrated in Fig. 
3(b) where the radial vectors R and r are parallel to each 
other. Although such a relation is strictly valid only at 
infinity, it becomes more accurate as the observation point 
is moved outward at radial distances exceeding 2D2/A. 
Since the far-field region extends at radial distances of 
R 2 2D2/A, the approximation of (sa) for the radial 
distance R leads to phase errors which do not exceed T / 8  
radians (22.5'). It has been shown that such phase errors 
do not have a pronounced effect on the variations of the 
far-field amplitude patterns (at least at parts of the patterns 
in which the relative field strength is not lower than about 
25 dB) [l], [ll]. 

Using the approximations of (sa) and (8b) for observa- 
tions in the far-field region, the integrals of (6a) and (6b) 
can be reduced to 

With the approximations of (9)-(lOa), the spherical com- 
ponents of the electric and magnetic fields of (7a) and (7b) 
can be written in scalar form as [l], [33] 

Er N 0 ( W  

where 7 is the intrinsic impedance of the medium (7 = 
fi while N O ,  N+, and Le, L+ are the spherical 0 and 4 
components of N and L from (sa) and (loa). In antenna 
theory, the spherical coordinate system is the most widely 
used system. 

By examining (l la)412c),  it is apparent that 

E8 21 vH+ (134  
E+ N -THO. (13b) 

The relations of (13a) and (13b) indicate that in the far- 
field region the fields radiated by an antenna and observed 
in a small neighborhood on the surface of a large radius 
sphere have all the attributes of a plane wave whereby the 
corresponding electric and magnetic fields are orthogonal 
to each other and to the radial direction. 

To use the above procedure, the sources representing 
the physical antenna structure must radiate into an infinite 
homogeneous medium. If that is not the case, then the 
problem must be reduced further (e.g., though the use of 
a theorem, such as the image theorem) until the sources 
radiate into an infinite homogeneous medium. This again 
will be demonstrated in Section IV-A for the analysis of 
the aperture antenna. 

IV. ANTENNA SOURCE MODELING 
The first step in the analysis of the fields radiated by 

an antenna is the specification of the sources to represent 
the antenna. Here we will present two examples of source 
modeling; one for a thin wire antenna (such a dipole) and 
the other for an aperture antenna (such as a waveguide). 
These are two distinct examples each with a different source 
modeling; the wire requires an electric current density 
while the aperture is represented by an equivalent magnetic 
current density. 

A.  Wire Source Modeling 
Let us assume that the wire antenna is a dipole, as shown 

in Fig. 4. If the wire has circular cross section with radius 
a,  the electric current density induced on the surface of 
the wire will be symmetrical about the circumference (no 
4 variations). If the wire is also very thin (U  << A), it is 
common to assume that the excitation source representing 
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Fig. 4. Dipole geometry for electromagnetic wave radiation. 

the antenna is a current along the axis of the wire. This 
current must vanish at the ends of the wire, and for very thin 
wires assumes a sinusoidal distribution. For a center-fed 
dipole, this excitation is often represented by 

6,10 sin [p( ( t /2)  - z’)] 0 5 Z’ 5 e l 2  (144 
6,Io sin [ /3 ( ( l / 2 )  + z’)] - l / 2  5 z’ 5 0. (14b) 

No magnetic source representation is necessary for this type 
of an antenna. The fields radiated by the antenna can now be 
found by first determining the potential A using (6a), where 
the surface integral is reduced to a line integral, and in turn 
the fields are determined by (7a) and (7b). For observations 
in the far-field region, the approximations of (Sa) and (8b) 
can be used. When this is done, it can be shown by also 
using (9)-(12c) that the electric and magnetic fields can be 
written as 

I,= { 

EB H+ 2 - 
v 

To illustrate the field variations of (lsa), a three- 
dimensional graph of the normalized field amplitude pattern 
for a half-wavelength ( e  = X/2) dipole is plotted in Fig. 
5 using software from [47]. A 90’ angular section of 
the pattern has been omitted to illustrate the figure-eight 
elevation plane pattern variation. As the length of the wire 
increases, the pattern becomes narrower. When the length 
exceeds one wavelength ( e  > A), sidelobes are introduced 
into the elevation plane pattern [l]. 

B. Aperture Source Modeling 
To analyze aperture antennas, the most often used proce- 

dure is to model the source representing the actual antenna 
by the Field Equivalence Principle (FEP), also referred 
to as Huygen’s Principle [l] ,  [lS], [19], [21], [33]. With 
this method, the actual antenna is replaced by equivalent 
sources that, externally to a closed surface enclosing the 
actual antenna, produce the same fields as those radiated 
by the actual antenna. This procedure is analogous to the 
Thevenin Equivalent of circuit analysis which produces the 
same response, to an external load, as the actual circuit. 

The FEP requires that first an imaginary surface is chosen 
which encloses the actual antenna. This is shown dashed 

- A 1 2  dipo le  

Fig. 5. 
dipole. 

Three-dimensional amplitude radiation pattern of a X / 2  

in Fig. 6(a). Once the imaginary closed surface is chosen, 
one of the equivalents of the FEP requires that the volume 
within the closed surface be replaced by a perfect electric 
conductor (PEC) and an equivalent magnetic current density 
source placed over the entire surface of the conductor, as 
shown in Fig. 6(b). To insure equivalence, the magnetic 
current density source over the closed surface must be equal 
to 

where 7i is a unit vector normal to the surface and E,,  E ,  
are the electric and magnetic fields produced by the actual 
antenna on the chosen closed surface. Therefore, to form 
J ,  by (16) and M, by (17), the tangential components of 
the magnetic and electric fields due to the actual antenna 
must be known over the chosen imaginary closed surface. 
Since J ,  of (16) is tangent to the PEC, it is shorted out and 
it produces no radiation. Therefore, using the equivalent of 
Fig. 6(b), J ,  does not contribute and it can be set to zero, 
as shown in Fig. 6(b). The critical step here is to choose 
the imaginary closed surface so that M, can be formed 
everywhere on it. Often the closed surface is chosen SO 

that M, is finite over a limited area of the surface and zero 
elsewhere. 

The equivalent problem now is to determine the fields 
radiated by a magnetic current density next to a PEC. 
The procedure outlined in Section 111 cannot be used 
here, because the source does not radiate into an infinite 
homogeneous medium (the PEC is present). Therefore, 
a further equivalent reduction of the problem must be 
performed. It may seem that the equivalent problem of 
Fig. 6(b) is no simpler than the actual problem. However, 
in some cases, it can be solved exactly while in others it 
suggests useful approximations. This will be demonstrated 
by the example that follows, 

Another equivalence of the FEP requires that the volume 
within the closed surface be replaced by a perfect magnetic 
conductor (PMC) with equivalent electric and magnetic 
current density sources over its entire closed surface, as 
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Fig. 6. Electric and magnetic conductor field equivalents for radi- 
ation. (a) Actual antenna system. (b) Electric conductor equivalent. 
(c) Magnetic conductor equivalent. 

shown in Fig. 6(c). A PMC, although nonphysical, is 
often used as an equivalent medium and requires that 
the tangential components of the magnetic field vanish 
on its surface. To insure equivalence, the electric and 
magnetic current densities must be equal to (16) and (17). 
Therefore, to form J ,  by (16) and M, by (17), the 
tangential components of the magnetic and electric fields 
radiated by the antenna must be known. Since Ms of (17) 
is tangent to the PMC, it is shorted out and it produces no 
radiation. Therefore, using the equivalent of Fig. 6(c), M, 
does not contribute and it can be set to zero, as shown in 
Fig. 6(c). 

The choice of whether to use the magnetic current 
density equivalent of (17) and Fig. 6(b) or the electric 
current density equivalent of (16) and Fig. 6(c) as the 

FEP equivalent is left to the investigator. However, a 
judicious choice can significantly simplify the analysis. This 
is demonstrated by the example that follows. Once the FEP 
equivalent choice is made, the next step is to find A or 
P using (6a) or (6b) and then to find the fields using (7a) 
and (7b). For far-field observations, the approximations of 
(9H13b) can be used in lieu of (6a)-(7b). 

To demonstrate the procedure, let us assume that an 
open-ended rectangular waveguide aperture mounted on an 
infinite planar PEC radiates on a semi-infinite homogeneous 
medium, as shown in Fig. 7(a). Let us assume that the 
fields in the waveguide aperture are those of the dominant 
TElo mode. Hence, the tangential electric field over the 
z-y plane is 

iLYEo C O S ( ~ X ’ )  - ~ / 2  5 5’ 5 ~ / 2  (18a) 
E , =  { -b /2  5 y‘ 5 b / 2  

0 elsewhere over the PEC. (18b) 

By adopting the FEP equivalent of Fig. 6(b), an imaginary 
closed surface is chosen to coincide with the infinite PEC 
(z-y plane) and covers also the waveguide aperture. The 
imaginary closed surface is chosen to coincide with the 
z-y plane because the tangential components of the electric 
field, and thus the equivalent magnetic current density, are 
nonzero only in the aperture. Using (17) and (18a)-(18b), 
we can write 

M, = -6 x E, 
~L,EOCOS((T/U)~’)  - ~ / 2  5 2’ 5 ~ / 2  

-b /2  5 y’ 5 b / 2  (19a) 
= { o  elsewhere over the PEC. 

(19b) 

The equivalent problem to solve now is that shown in Fig. 
6(b); i.e., the magnetic current density of (19a) and (19b) 
next to the PEC. Using image theory, the equivalent of Fig. 
6(b) is replaced by a magnetic current density of twice the 
strength of (19a) radiating into an infinite homogeneous 
medium, as shown in Fig. 7(b). Now using (9)-(12c), 
the far-field electric and magnetic fields radiated by the 
waveguide can be written as [l] 

E, N H, 2: 0 . ,  

Gob) 
7r cos(X)  sin(Y) Eo N - -Cs in4  
2 ( X ) 2  - ( $ ) 2  Y 
T cos(X)  sin(Y) 

E+ N --CCOSOCOS~ (20c) 2 ( X ) *  - (T /2 )2  Y 

Ee H+ N +- 
rl 
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Fig. 7. (a) Waveguide aperture on an infinite ground plane and 
(b) its equivalent. 

Fig. 8. 
aperture (a = 3X,  b = 3X) on an infinite ground plane. 

Three-dimensional amplitude radiation pattern for an 

A three-dimensional normalized field pattern of a rectan- 
gular aperture with dimensions of a = 3X and b = 3X is 
shown in Fig. 8. The minor lobes formed throughout the 
space are clearly shown. 

v. ANTENNA PARAMETERS AND FIGURES-OF-MERIT 
There are many parameters and figures-of-merit that 

characterize the performance of an antenna system. The 

definitions of these can be found in [l], [46], and those 
used here from [46] are found in quotation marks. Because 
of limited space, some of the most important are included 
here. 

An antenna pattern is defined as a graphical representa- 
tion, usually in the far-field region, of one of the antenna’s 
parameters. For a complete description, the parameters of 
interest are usually plotted as a function of the spherical 
directional angles 8,4. Parameters of  interest include am- 
plitude, phase, polarization, and directivity. An amplitude 
pattern is usually comprised of a number of lobes. 

A main (major) lobe is defined as “the radiation lobe 
containing the direction of maximum radiation. In certain 
antennas, such as multilobed or split-beam antennas, there 
may exist more than one major lobe.” 

A side lobe is defined as “a radiation lobe in any direction 
other than that of the major lobe.” The amplitude level of 
a side lobe relative to the main lobe (usually expressed in 
decibels) is referred to as side lobe level. 

It is instructive in characterizing antenna operation and 
performance to use circuit equivalents. For the antenna 
system of Fig. 9(a), two of the simplest are those of 
Fig. 9(b) and (c) representing, respectively, the Thevenin 
equivalent of the antenna in the transmitting and receiving 
modes. The resistance R, is referred to as the radiation 
resistance, and it is this resistance that represents antenna 
radiation or scattering. The radiation resistance is part of the 
antenna impedance whose imaginary part is represented by 
X A .  The conductive and dielectric losses of the antenna 
are accounted by RL while the impedance of the generator 
and receiver (load) are represented, respectively, by 2, = 
R, + j X ,  and ZT = RT + jX,. 

Input Impedance is defined as “the impedance presented 
by an antenna at its terminals.” It is expressed at the 
terminals as the ratio of the voltage to current or the 
ratio of the appropriate components of the electric to 
magnetic fields, and it is usually complex. When the 
antenna impedance Z A  of Fig. 9(a) is referred to the input 
terminals of the antenna, it reduces to the input impedance 

Radiation efficiency is defined as “the ratio of the total 
power radiated by an antenna to the net power accepted 
by an antenna from the connected transmitter.” Using the 
equivalent circuit of Fig. 9(b) and (c), it can be written as 

(11. 

where Rr = radiation resistance RL = loss resistance. 
Power density S is defined as the power density (W/m2) 

of the fields radiated by the antenna. In general, the 
power density is complex. In the reactive near-field, the 
imaginary component is dominant. In the far-field, the real 
part is dominant. In equation form, the power density S is 
expressed as [l] 
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(c) 
Fig. 9. Thevenin equivalents for transmitting and receiving an- 
tennas. (a) Antenna system. (b) Thevenin equivalent: transmitting. 
(c )  Thevenin equivalent: receiving. 

where E and H are the fields radiated by the antenna 
(* indicates complex conjugate). The real part is usually 
referred to as radiation density. 

Radiation intensity U is defined as “the power radiated 
from an antenna per unit solid angle (steredian).” The 
radiation intensity is usually determined in the far field, 
and it is related to the real part of the power density by 

U = r2sr (23) 

where T is the spherical radial distance. 
Beamwidth is defined as the angular separation between 

two directions in which the radiation intensity is identical, 
with no other intermediate points of the same value. When 
the intensity is one-half of the maximum, it is referred to 
as halfpower beamwidth. 

An isotropic radiator is defined as “a hypothetical, loss- 
less antenna having equal radiation intensity in all direc- 
tions.” Although such an antenna is an idealization, it is 
often used as a convenient reference to express the directive 
properties of actual antennas. Its radiation density Sro and 
intensity U0 are defined, respectively, as 

Pr U0 = - 
4?T 

where P, represents the power radiated by the antenna. 
Directivity is one of the most important figures-of-merit 

that describes the performance of an antenna. It is defined 
as “the ratio of the radiation intensity in a given direction 

from the antenna to the radiation intensity averaged over 
all directions.” Using (24b), it can be written as 

where U(B,4)  is the radiation intensity in the direction 
B,d and Pr is the radiated power. If the direction is not 
specified, it implies the direction of maximum radiation 
intensity (maximum directivity) expressed as 

The directivity is an indicator of the relative directional 
properties of the antenna. As defined in (25) and (25a), 
the directional properties of the antenna in question are 
compared to those of an isotropic radiator. Sometimes this 
comparison is made relative to another standard radiator 
whose directivity (relative to an isotropic radiator) is known 
(like a X/2 dipole or a standard gain horn). This allows us 
to relate the directivity of the element in question to that 
of an isotropic radiator by simply adding (if expressed in 
decibels) the relative directivities of one element to another. 
This procedure is analogous to that used to determine the 
overall gain of cascaded amplifiers. 

To demonstrate the significance of directivity, let us 
examine the directivity of a half-wavelength dipole (e = 
X/2) approximated as 

where 19 is measured from the axis along the length 
of the dipole. The values represented by (26) and 
those of an isotropic source ( D  = 1) are plotted 
three-dimensionally in Fig. 10. At each point, only the 
largest value of the two directivities is plotted. It is 
apparent that when s i n - ’ ( l / m )  = 57.44’ 5 B <_ 
122.56’, the dipole radiator has greater directivity (greater 
intensity concentration) in those directions than that of an 
isotropic source. Outside this range of angles, the isotropic 
radiator has higher directivity (more intense radiation). The 
maximum directivity of the dipole (relative to the isotropic 
radiator) occurs when B = 7r/2, and it is 1.67 (or 2.23 dB). 
It simply means that at # = 90’ the dipole radiation is 2.23 
dB more intense than that of the isotropic radiator (with 
the same radiated power). 

Gain is probably the most important figure-of-merit of an 
antenna. It is defined as “the ratio of the radiation intensity 
in a given direction, to the radiation intensity that would be 
obtained if the power accepted by the antenna were radiated 
isotropically.” Using (24b), it can be written as 

(27) 
G - u(e,4> 4Tu(B,4) - 

U,  Pa 
where Pa is the accepted (input) power to the antenna. If 
the direction is not specified, it implies the direction of 
maximum radiation (maximum gain). In simplest terms, 
the main difference between the definitions of directivity, 
as given by (25), and gain, as given by (27), is that the 
directivity is based on the radiated power while the gain 
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Fig. 10. Three-dimensional directivity pattern for a X / 2  dipole and an isotropic source. 

is based on the accepted (input) power. Since all of the 
accepted (input) power is not radiated (because of losses), 
the two are related by 

where e, is the radiation efficiency of the antenna as defined 
by (21). By using (25)-(28) the gain can be expressed as 

For a lossless antenna, its gain is equal to its directivity. 

complex vector quantity represented by 
Vector effective length (height) h, for an antenna is a 

M O ,  4 )  = &he(0, 4) + %A#J(~, 4) (30) 

and it is related to the far zone electric field E radiated by 
the antenna, with current I in  in its terminals, by [48] 

E = &EO + &,E+ = -jq-hee-j". P I i n  
(30a) 

The effective height represents the antenna in the transmit- 
ting and receiving modes, and it is particularly useful in 
relating the open-circuit voltage V,, of receiving antennas. 
This relation can be expressed as 

4 ~ r  

V,, = E 9 he (31) 
where 

V,, 
E incident electric field, 
he vector effective length. 

open-circuit voltage at antenna terminals, 

In. (31) V,, can be thought as the voltage induced in a linear 
atlienna of length e = he when he and E are linearly 
polarized [21]. 

For the dipole antenna of Fig. 4 with length e < 
A/10 whose current distribution can be approximated by 
triangular distribution and whose far zone electric field is 
given by 

the effective length is 

(324  
e .  he = -60 - sin 0. 

The maximum value of the effective length of this antenna 
is 50% of its actual length. The maximum value of the 
effective length of a A/2  dipole is 2 0 0 / ~  E 63.66% of its 
actual length. The maximum effective length of an element 
with a uniform current distribution is 100% of its actual 
length ( h  = e ) .  It is apparent then that the effective length 
of an antenna element depends largely upon the direction 
of wave incidence and the source distribution supported by 
the wave structure. 

Antenna polarization in a given direction is determined 
by the polarization of the fields radiated by the antenna. 
In general, the polarization of an antenna is classified as 
linear, circular or elliptical. Although linear and circular 
polarizations are special cases of elliptical, in practice 
they are usually treated separately. Circular and elliptical 
polarizations also are classified according to the rotation 
of the transmitted field vectors; this rotation can be either 
clockwise (right-hand) or counterclockwise (left-hand) as 
viewed in the direction of propagation. 

2 
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Polarization efficiency (polarization mismatch or loss 
factor) is defined as “the ratio of the power received by an 
antenna from a given plane wave of arbitrary polarization 
to the power that would be received by the same antenna 
from a plane wave of the same power flux density and 
direction of propagation, whose state of polarization has 
been adjusted for a maximum received power.” This is an 
important factor that must be included in the power budget 
of communications systems, and it is one that sometimes is 
neglected. Expressed in decibels, the polarization efficiency 
p can be written as 

Ih, . EincI2 
IS, l 2  I EinC l 2  p(dB) = 1Ologl0 [ ] (33) 

where 

h, vector effective length, 
incident electric field. E i n c  

Effective area in a given direction is defined as “the ratio of 
the available power at the terminals of a receiving antenna 
to the power flux density of a plane wave incident on the 
antenna from that direction, the wave being polarization 
matched to the antenna. If the direction is not specified, the 
direction of maximum radiation intensity is implied.” Its 
maximum value is related to the antenna gain by 

\ 2  

(34) 

where Go is the maximum gain of the antenna. In (34), p is 
the polarization loss factor of (33) and q is the impedance 
matching efficiency between the transmission line and the 
antenna defined as 

(35) 

where Fin is the reflection coefficient at the input terminals 
of the antenna. When multiplied by the power density of 
the incident wave that impinges upon the antenna, the 
maximum effective area determines the maximum power 
that is delivered to a matched load connected to the antenna. 

Aperture efficiency, usually expressed in percent, is de- 
fined as the ratio of the antenna’s maximum effective 
aperture to its physical aperture which can also be expressed 
on the ratio of the maximum directivity of the aperture to 
its standard directivity, or 

A, 
D, standard directivity of antenna 

physical area of the antenna, 

(47rA,/X2 when Ap >> X2 and with 
radiation confined to a half space). 

For a rectangular aperture mounted on an infinite ground 
plane and with a triangular aperture field distribution, its 

aperture efficiency is 75%. However, for an aperture with 
a sinusoidal aperture distribution, its aperture efficiency is 
81%. Again we see that the aperture distribution, which 
satisfies the wave equation and the boundary conditions 
of the structure, determines its aperture efficiency. If an 
aperture could support a uniform field distribution, its 
aperture efficiency would be 100%. 

VI. ANTENNA THEOREMS 
A number of theorems are associated with antenna theory. 

Some of the most important are those of duality, image, and 
reciprocity. They are used to aid in the solution of antenna 
problems. Each of these will be outlined and related to 
antennas. 

A.  Duality Theorem 
When two equations that describe the behavior of two 

different variables are of the same mathematical form, 
their solutions are also identical. The variables in the two 
equations that occupy identical positions are known as 
dual quantities and a solution of one can be formed by 
a systematic interchange of symbols to the other, provided 
the boundary conditions for the two problems are dual. This 
concept is known as the duality theorem. 

To demonstrate the theorem, let us assume that an antenna 
under investigation is represented, according to Fig. 2, by 
current densities Ji # 0,M; = 0. The equations that must 
be satisfied for this problem are those shown on the left 
column of Table 1. For another antenna, represented by 
current densities Ji = 0,M; # 0, the equations that must 
be satisfied are those shown on the right column of Table 1. 
Comparing the respective equations in the two columns, it is 
evident that the equations are dual as well as their variables. 
The solution to one of the antennas, represented by the 
equations on the left (right) columns of Table 1, can be 
obtained from the solution of another antenna represented 
by the equations on the right (left) columns, and vice versa. 
This can be accomplished by a proper interchange of the 
quantities in the solution of one to obtain the solution of 
the other. The respective quantities, referred to as dual 
quantities, that must be interchanged are shown listed in 
Table 2. This is analogous to the duality theorem of circuits. 
An application of the duality theorem is in the analysis of 
an infinitesimal magnetic dipole whose equations and fields 
are the duals of those of an infinitesimal linear electric 
dipole, and vice versa. The infinitestimal magnetic dipole is 
equivalent to a small electric loop of radius a and constant 
electric current. 

B. Image Theorem 
To use the formulations outlined in Section I11 in the 

analysis of an antenna, the element must be radiating 
into an infinite homogeneous medium. In practice, such 
an environment is not available but sometimes can be 
approximated. The most common obstacle that is always 
present, even in the absence of anything else, is the ground. 
Any energy from the radiating element directed toward the 
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Table 1 
Current Density Sources 

Dual Equations for Electric ( J t )  and Magnetic (M,) 

Electric Sources Magnetic Sources 
( J ,  #. M ,  = 0) ( J ,  = O,M, # 0) 

Table 2 Dual Quantities for Electric ( J z )  and Magnetic ( M , )  
Current Density Sources 

Electric Sources Magnetic Sources 
(Jo # , M ,  = 0) ( J z  = O,Mt # 0 )  

EA 

H A  

JZ 

A 

E 

P 

P 

7 
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ground will undergo reflection. The amount of reflected 
energy and its direction are dependent upon the geometry 
and electrical properties of the ground. 

When dealing with antennas radiating in the presence 
of obstacles, image theory can sometimes be used to 
reduce the actual problem to an equivalent that will have 
sources radiating in an infinite homogeneous medium and 
aid toward the solution. Ideally, the electrical equivalent 
problem must produce outside the obstacle the same field 
as the actual problem. Often this procedure is used to 
obtain approximate but accurate solutions. To accomplish 
this, virtual sources (images) are introduced to replace the 
obstacles and account for the reflections from their surfaces. 
The number of images, and magnitude and phase of each 
depend upon the configuration and electrical properties of 
the obstacles. 

The ideal obstacle is an infinite planar PEC (CT = 00). 
In Fig. l l(a),  electric and magnetic sources are located 
a height h above an infinite PEC. Shown in Fig. l l (b)  
are the orientation and position of images that must be 
used below the interface, to replace the conductor and 

Electric Electric Magnetic Magnetic 

1 - 1 - Sources 

h 

i tL*c 

U = -  (perfect electric conductor) 
................................. 

Electric Electric Magnetic Magnetic 

1 - Sources T I  - 
I I r . r  

t tL.& 
h 

4 if *. --  Images I 

@) 

Fig. 11. Electric and magnetic sources, and their images, for 
a PEC interface. (a) Sources and ground plane. (b) Equivalent: 
sources and images. 

account for the reflections from its surface [l], [33]. For 
each source above the conductor, the equivalent system 
comprises two sources; one (the actual source) a height 
h above the interface and the other (the image) at depth h 
below the interface. In the equivalent system of Fig. l l(b),  
both the source and image radiate in the same medium 
as the one above the conductor. This equivalent array of 
two sources produces the same field on and above the 
interface as the actual problem, but it does not lead to the 
correct solution of the actual problem below the interface. 
However, the solution within the conductor is known a 
priori (E  = E = 0, because the medium is a PEC). This 
method of analysis is analogous to the Thevenin equivalent 
of circuit theory which produces the correct response to an 
external load, but not within the circuit it replaces, as the 
actual circuit. Similarly, the image theorem of Fig. l l ( a )  
produces the same response on and above the interface as 
the actual physical problem, but not within the conductor. 

As nonphysical magnetic sources are introduced as equiv- 
alents to replace physical radiating systems, nonphysical 
magnetic conductors (on which tangential magnetic fields 
vanish next to their surface, f ix  E = 0) often are introduced 
as equivalent conductors. Electric and magnetic sources, 
each a height h above an infinite PMC, and their images at 
a depth h below the interface can be found in [ l ]  and [33]. 

C. Reciprocity Theorem 
Just as there is a reciprocity theorem in circuit theory, 

there is also one in antenna theory. It is a widely used 
relation, and its derivation is based on Maxwell’s equations. 

Let us assume that within a linear and isotropic (but not 
necessarily homogeneous) medium there exist two sets of 
sources J1, MI and J2,M2 that are allowed to radiate 
simultaneously or individually inside the same medium at 
the same frequency and produce fields El ,  E1 and E2, Ha, 
respectively. It can be shown [l], [18], [19], [21], [33] that 

BALANIS: ANTENNA THEORY: A REVIEW 19 



the sources and fields of the two sets satisfy 

-V. (E1 X H ~ - E ~ X H ~ )  
=El  * J2 + H2 - E2. J1 -HI .M2 (37) 

which is called the Lorentz Reciprocity Theorem in differ- 
ential form. 

Taking a volume integral of both sides of (37) over a 
volume V with surface S sufficiently large to enclose the 
sources of both sets, and using the divergence theorem on 
the left side, we can write (37) as 

-fl (El x H2 - E2 x a,). ds 

S 

- E2 . J1 - H i  . M2)dv (38) 

which is designated as the Lorentz Reciprocity Theorem in 
integral form. 

If the surface of integration is a sphere of infinite radius, 
the fields radiated by the sources when observed at very 
large distances (ideally at infinity) are outgoing spherical 
waves which satisfy the relations of (13a) and (13b). When 
these relations are used in the evaluation of (38), its left 
side vanishes and (38) reduces to 

= / J, / ( E 2  . J1 - H2 . M1)dv. (39) 

The reciprocity theorem as expressed by (39) is the most 
useful form, and it is used, as is reciprocity in circuit theory, 
to establish various important relations. 

In antenna theory, one of the applications of the reci- 
procity theorem of (39) is used to establish a fundamental 
relation between the transmitting and receiving patterns 
of an antenna radiating into a medium that is linear and 
isotropic. Assume two antennas, #1 and #2, are separated 
from each other. In one case, antenna #1 represented by 
the set of sources (51, MI), is transmitting while antenna 
#2 is receiving. In the other case, antenna #2, represented 
by sources (Jz ,  Mz) ,  is transmitting while #1 is receiving. 
Treating these two antennas as a two-port network, each 
port representing one of the antennas, it can be shown that 
the mutual (transfer) impedances between these two ports 
(antennas) are identical ( 2 1 2  = 2 2 1 ) .  This equality is used 
to establish that the transmitting and receiving patterns of 
any antenna are identical, provided the antenna is radiating 
into a medium that is linear and isotropic. Because of 
space limitations, the derivation of this relation will not 
be included here but can be found in [l], [NI,  [19], [21]. 

VII. ARRAYS 
Specific radiation pattern requirements usually cannot 

be achieved by a single antenna element, because single 
elements usually have relatively wide radiation patterns and 
low values of directivity. To design antennas with very large 

directivities, it is usually necessary to increase the electrical 
size of the antenna. This can be accomplished by enlarging 
the electrical dimensions of the chosen single element. 
However, mechanical problems are usually associated with 
very large elements. 

An alternative way to achieve large directivities, without 
increasing the size of the individual elements, is to use 
multiple single elements to form an array [l], [8], [14], 
[15], [18]-[23]. An array is really a sampled version 
of a very large single element. In an array, the me- 
chanical problems of large single elements are traded for 
the electrical problems associated with the feed networks 
of arrays. However, with today’s solid state technology, 
very efficient and low-cost feed networks can be de- 
signed. 

Arrays are the most versatile antenna systems. They find 
wide applications not only in many space-borne systems, 
but in many Earth bound missions as well. In most cases, 
the elements of an array are identical; this is not necessary, 
but it is often more convenient, simpler and more practical. 
With arrays, it is practical to not only synthesize almost 
any desired amplitude radiation pattern, but the main lobe 
can be scanned by controlling the relative phase excitation 
between the elements. This is most convenient for appli- 
cations where the antenna system is not readily accessible, 
especially for space borne missions. The beamwidth of the 
main lobe along with the side lobe level can be controlled 
by the relative amplitude excitation (distribution) between 
the elements of the array. In fact, there is a trade off 
between the beamwidth and the side lobe level based on 
the amplitude distribution of the elements [l]. In this issue, 
array technology is detailed in “Basic array theory,” by 
W. H. Kummer, “Array pattern control and synthesis” 
by R. C. Hansen, “Antenna array architecture,” by R. 
J. Mailloux, “Array technology,” by R. Tang and R. W. 
Bums, and “Adaptive processing array systems,” by W. F. 
Gabriel. 

VIII. ASYMPTOTIC METHODS 
There is a plethora of antenna elements, many of which 

exhibit intricate configurations. To analyze each as a bound- 
ary value problem and obtain solutions in closed form, 
the antenna structure must be described by an orthogonal 
curvilinear coordinate system. This places severe restric- 
tions on the type and number of antenna systems that 
can be analyzed using such a procedure. Therefore, other 
exact or approximate methods are often pursued. Two 
methods which in the last three decades have been pre- 
eminent in the analysis of many previously intractable 
antenna problems are the Integral Equation (IE) method 
[l], [18], [28], [33], [49]-[SI, and the Geometrical Theory 
of Diffaction (GTD) El], [18], [29], [33], [52], [56]-[61]. 
Numerical techniques have played a key role in their 
success. For structures that are not convenient to analyze 
by either of the two methods, a combination of the two 
is often used. Such a technique is referred to as a hybrid 
method, and it is described in more detail in “Overview 
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of selected hybrid methods in radiating system analysis,” 
by G. A. Thiele also in this issue. Most of the research 
in advancing and applying these methods to antennas 
and scatterers was started in the late 1950’s and early 
1960’s. 

Another method which is beginning to gain momentum in 
its application to antenna problems is the finite-difference 
time-domain method [62]. This method has been exten- 
sively used to analyze penetration and scattering problems 
[63], but it is now finding application to antenna radiation 
problems [64]-[66]. 

A. Integral Equation (IE) Method 
This method casts the solution to the antenna problem in 

the form of an integral (hence its name) where the unknown, 
usually the induced current density, is part of the integrand. 
Numerical techniques such as the MM [l], [18], [29], [33], 
[49]-[54] are then used to solve for the unknown. Once the 
current density is found, the radiation integrals of Section 
I11 can be used to find the fields radiated and other system 
parameters. This method is most convenient for wire type 
antennas and more efficient for structures which are small 
electrically. One of the first objectives of this method is 
to formulate the IE for the problem at- hand. In general, 
there are two types of IE’s. One is referred to as the 
Electric Field Integral Equation (EFIE), and it is based on 
the boundary condition of the total tangential electric field. 
The other is the Magnetic Field Integral Equation (MFIE), 
and it is based on the boundary condition that expresses 
the total electric current density induced on the surface in 
terms of the incident magnetic field. The MFIE is only 
valid for closed surfaces. For some problems, it is more 
convenient to formulate an EFIE while for others it is more 
appropriate to use an MFIE. Advances, applications, and 
numerical issues of these methods are addressed in this 
issue in “Low-frequency computational electromagnetics 
for antenna analysis,” by E. K. Miller and G .  J. Burke. 

B. Dieaction Methods 
When the dimensions of the radiating system are many 

wavelengths, low-frequency methods are not as compu- 
tationally efficient. However, high-frequency asymptotic 
techniques can be used to analyze many problems that are 
otherwise mathematically intractable. One such method that 
has received considerable attention and application over 
the years is the GTD [l], [18], [29], [33], [52], [55]-[60]. 
GTD is an extension of geometrical optics (GO), and it 
overcomes some of the limitations of GO by introducing a 
diffraction mechanism. 

At high frequencies diffraction, like reflection and re- 
fraction, is a local phenomenon and it depends on two 
things: 

1) the geometry of the object at the point of diffraction 

2) the amplitude, phase, and polarization of the incident 
(edge, vertex, curved surface); 

field at the point of diffraction. 

A field is associated with each diffracted ray, and 
the total field at a point is the sum of all the rays 
that pass through that point. Some of the diffracted 
rays enter the shadow regions and account for the field 
intensity there. The diffracted field, which is determined 
by a generalization of Fermat’s principle [56], [57], is 
initiated at points on the surface of the object which 
create a discontinuity in the incident GO field (incident 
and reflected shadow boundaries). The theory, advances, 
and applications of GTD are addressed in this issue in 
“High-frequency techniques for antenna analysis,” by P. 
H. Pathak. 

Ix .  CONCLUSIONS 
Antenna engineering has enjoyed a very successful 

period during the past four decades. Responsible for 
its success have been the introduction and technological 
advances of some new elements of radiation, such 
as aperture antennas, reflectors, frequency independent 
antennas, and microstrip antennas. Excitement has been 
created by the advancement of the low-frequency and 
high-frequency asymptotic methods which have been 
instrumental in analyzing many previously intractable 
problems. A major factor in the success of antenna 
technology has been the advances in computer ar- 
chitecture and numerical computation methods. Today 
antenna engineering is considered a truly fine engineering 
art. 

Although a certain level of maturity has been attained, 
there are many challenging opportunities and problems 
to be solved. Phased array architecture integrating mono- 
lithic MIC technology is still a most challenging prob- 
lem. Integration of new materials into antenna technology 
offers many opportunities, and asymptotic methods will 
play key roles in their incorporation and system perfor- 
mance. Computational electromagnetics using supercom- 
puting capabilities will model complex electromagnetic 
wave interactions, in both the frequency and time domains. 
Innovative antenna designs to perform complex and de- 
manding system functions always remain a challenge. New 
basic elements are always welcomed and offer refreshing 
opportunities. 
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