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Act = 0.4c0a, where a = cylinder radius = 0.1016 m. Note  that 
the principal effect of the dielectric cylinder is to shift the reson- 
ance  to a lower frequency. 

VII. DL~CU~~ION 
The impedance sheet approximation for thin dielectric shells 

has been used to compute the electromagnetic behavior of thin 
shells using computer  programs developed for  loaded bodies. 
Far-field quantities, such as  radar cross section and  antenna gain 
patterns, are probably accurate. It is expected that near-field 
quantities would be less accurate. The method  could be extended 
to include the normal  component of polarization  current,  in 
which case it would, in principle, be exact. However, this would 
complicate the solution and require the development of  new 
computer programs. 
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Analysis of Various Numerical Techniques  Applied to Thin- 
Wire Scatterers 

CHALMERS M. BUTLER AND D. R. WILTON 

AbstractSeveral numerical schemes for solving Pocklington’s and 
Hallen’s equations for thin-wire scatterers  are investigated. Convergence 
rates of solutions obtained from seven methods are given and reasons for 
different rates  are delineated. 

IN-IRODUCTXON 
In moment method  solutions of antenna  and scattering 

problems associated with thin-wire structures, both Pocklington 
(electric field) and Hallen (magnetic vector potential) type 
integral equations are commonly used. From either, one may 
obtain solutions  for the current on a wire antenna  or a scatterer 
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Fig. 1. Straight  wire  subject to incident  illumination. 

and subsequently calculate  all other quantities of interest. Even 
though the two equations are intimately related [I], each 
exhibits distinct advantages and disadvantages. The  authors 
present the findings of their investigations of several numerical 
schemes for solving wire problems. They discuss the relative 
merits of various techniques, point  out pitfalls to be avoided, 
and summarize their findings. 

In  the numerical methods, different basis sets for representing 
the unknown wire current are employed and relative convergences 
are investigated. So that  one may  focus  attention on  the generic 
feature of the capacity of a given basis set to represent adequately, 
and converge to, the correct  current on  the wire, only the case of 
a scatterer subject to normally incident illumination is considered 
here. With illumination constant over the length of the scatterer, 
the problem of inadequate  sampling [2] of the integral equation’s 
driving term has  no bearing on convergence. Also, in the interest 
of simplicity and of addressing only the fundamental question 
of convergence in the sense of how well the actual wire current 
is represented by the solution, the wire junction  problem is not 
treated nor is any record of computer times given for  the various 
methods. 

Tm-WIRE EQUATIONS 

From basic electromagnetic theory, one may readily obtain 
the following fundamental integro-differential equation : 

($ + k’)  SL/’ i ( r ) K ( ~  - () d( = - ~ ~ z w E E , ~ ( z )  (I) 
5 = - L / 2  

which. relates the unknown total axial current i on a cylinder 
to  the known incident electric field having an axial component 
E,’ on the surface of the scatterer. The scatterer is perfectly 
conducting and resides in a homogeneous space characterized 
by (p, E ,  D = 0), and,  as suggested in Fig. 1, it is a tube of 
length L and radius a. The kernel in (1) is 

where k is 2~/wavelength  at  the angular frequency w of the 
suppressed harmonic  time  variation e‘”‘. For present purposes, 
the wire radius is looked  upon as being very small relative to  the 
wavelength I, as well as  to  the cylinder length. Such restrictions, 
common in thin-wire analyses, assure one that  the current on 
the cylinder is circumferentially independent and  that it can  be 
accounted for by the total axial current i. The thin-wire assump- 
tions also lead to  the so-called reduced kernel approximation 
to K(5)  
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From (l), one may readily derive HallCn's equation 

1L2 i ( [ ) K ( z  - C) d( = C cos k z  + B sin k z  

.471 
- JTIJc=o €:(r) sin k ( z  - r )  d l  (4) 

I- 

where 17 (= Y ' ~ / E )  is the intrinsic impedance of the medium and 
where C and B are constants of integration which must be 
consistent with the  boundary  condition that  the current be zero 
at  the wire ends (2 L/2) .  In  the special case of normally incident 
plane wave illumination, E,' is constant over z E (- L/2,L/2)  
allowing one  to perform analytically the integration on  the right 
side of (4), and  i(z) is an even function of z allowing one to 
eliminate the constant B. The exact kernel (2) may be used in 
(4) or, where warranted by thin-wire conditions, the approxima- 
tion (3) often suffices. 

Having accepted the  approximation (3), one may interchange 
at will the integral and differential operators in (1) and, thereby, 
convert it to any of several equivalent forms usually referred to 
as Pocklington-type equations. For  the present discussion, the 
form which is most useful is 

Piecewise  Sine 

l : : L / 2  1 1 - + k2   i ( r )   K( z  - I) d( 

K ( z  - r )  - - z(T)K(z  - [) d .  
di 

= - j4nweE,'(z). (5) 

BASES 

The unknown current i(z) is represented in a numerical solution 
technique by a  linear  combination of known elements i,(z) of a 
basis set {i,(z)} selected to approximate  the  current  as 

i ( z )  C I,,i,(z). ( 6 )  

With i in the integral equations replaced by its  approximation of 
(6),  Hallen's and Pocklington's equations become, respectively, 

n 

E:([) sin k ( z  - r)  d( (7a) 

and 

= - j4nweE,'(z). (7b) 

One chooses the set { in }  for its capacity to represent the current 
well and  from  the viewpoint of its utility in the numerical pro- 
cedure. The basis sets considered here are illustrated in Fig. 2 
and  are defined subsequently where one sees them to be  of the 
subdomain type, since each element i, differs from zero over only 
a single subdomain of the  total  domain of interest z E (- L/2,L/2). 

Piecewise  Sinusoidal: 

sin k ( A  - ! z  - z.1) 
1 z E (z,-1,zfl+d i,(z) = sin kA 

Piecewise Linear 

Piecewise Linear: 

@b) 

Trigonometric: 

1 + C, COS k(z - z / )  + B, sin k(z  - z z ) ,  
i,,(z) = (0. z E (z; - A/2, z,' + A/2) 

z $ (z; - A/2, z,' + A/2). ( 8 ~ )  

Entire  domain basis sets where each element exists over the full 
domain ( -L/2 ,L/2)  are useful in special cases, but, since their 
application is limited, they are  not treated  in this paper. 

Implicit in  the use of (8) in (7) is the division of the scatterer 
length L into N subintervals of length A = L / N .  In all cases the 
boundary  conditions i( kL/2)  = 0 are satisfied by (6)  a priori 
which, in using (Sa) and (Sb), means that one sets the I, associated 
with the in over the intervals (L/2  - A,   L/2  + A) and 
(- L/2  - A,   -L/2  + A) equal to zero whereas with (Sc) 
the  C,  and B, of the end-most intervals are adjusted so that 
i( k L / 2 )  = 0. For piecewise linear and piecewise sinusoidal 
basis sets, the interval (ln,u3 must  be  partitioned into (z,.-l,z,,) 
plus (Z,,Z,+~) and  the terms on  the left side of (7b) must be 
evaluated in  each of these two open intervals and summed to 
obtain the contribution  from (l,,u,). This  partitioning is necessary 
due  to  the derivative discontinuity at  z, exhibited by both (Sa) 
and (Sb). For  the trigonometric set, I ,  = z,' - A/2 and 14, = 
z," + A/2, where znC is the center of the nth subdomain. 

As discussed in detail subsequently, the convergence rate of a 
solution  method can be enhanced by modification of (6) through 
certain  constraints applied to {i,}.  Two such constraints are 
employed by the  authors in methods discussed forthwith. In 
one case they adjust the C, and B, of (Sc) to force i of (6) plus its 
derivative to be continuous at each  common  boundary  point of 
adjacent  subdomains. Subject to these adjustments of the coef- 
ficients in (Sc), a basis set is obtained which renders the current 
and its first derivative continuous everywhere in ( -L/2 ,L/2) .  
In  another case employing (Sc),  i,,(z), the current in the nth 
subdomain, is required to satisfy1 in ( z i - l )  = i,-l(zi-l)  and 
i , , (zi+l)  = i , ,+ l ( z l+ l ) .  One might refer to this as extrapolared 
continuity, and it is evident that  the requirements do not force 
the  current or its derivative to be continuous at  the boundary of 
subdomains. 

See [3]. 
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TEST~NG 

Substitution of (6) into (4) and (5) yields (7a) and (7b), 
respectively, in which all integrations and differentiations operate 
on known functions but into which the  additional unknown 
constants I,, are introduced. 

According to  the method of moments [ 4 ] ,  one  can transform 
(7a) or (7b) into a system of linear algebraic equations with 
unknowns I,, by testing both sides of either equation with 
members of a suitable testing set {Wm}. For example, testing of 
(7b) yields 

where 

( L W )  = jL’2 f ( z ) W ( z )   d z .  
z= -LIZ 

In the preceding (9) is a system of linear equations which can  be 
solved for the I,, for proper M.  

DISCUSSION OF METHODS 

In this section the seven solution  methods in Table I are dis- 
cussed in the order of their listing, and relative convergence 
data  are given i? Figs. 3-12. The value of current at  the center 
of the scatterer is the quantity  upon which the study of con- 
vergence is based, since it was ascertained that  the convergence 
rate  at points other  than  the scatterer center was comparable to 
that of the center current. In all cases, data  are normalized with 
respect to  that obtained from Galerkin’s method with 31 piece- 
wise sinusoids. Normalized results of each. method are plotted 
against 1/N where one recalls N to be the  total  number of sub- 
domains into which (- L/2,L/2) is divided. In Methods I, 11,111, 
and VI the number of unknown I,, to be determined is (N  - l ) ,  
while in Method V the number of unknown  current coefficients 
is N. After constraining the C,, and B,, of (8c)  in Method IV, one 
has N unknown I,, to calculate but these constraining equations 
either augment the system of equations (9) or necessitate that 
one solve an auxiliary difference equation.  Finally, the number of 
unknown I,, in Method VI1  is (N  - 1 )  but the two constants C 
and B are unknown a  priori so that, effectively, one must solve 
for N + 1 quantities. 

Data are given for  two  radii and  for selected wire lenghsso 
that they include special cases of practical interest, e.g., L = 
A/2 and L = I.. Trends inferred from data given should be 
representative of typical cases encountered in practice except, of 
course,  for very long wires. 

The real and imaginary parts of the center current are in- 
vestigated separately and each part is normalized with respect 
to the  corresponding  part  obtained  from Galerkin’s method as 
mentioned. The real and imaginary normalization factors, C ,  
and C,, are given in each figure. Normalization of each  part 
separately has  the  advantage that small differences in a part  can 
be independently observed in the  data. However, on  the  other 
hand, when C, and  C, differ appreciably, deviations from the 
norm of data normalized with respect to  the smaller may be in 
large measure due  to round-off errors; such a deviation appears 
extreme to  an observer when actually it is  of no consequence 
upon  comparison with dC,’ + Cr2. 

TABLE I 
NUMERICAL SOLUTION METHODS 

Testing  Key 
Method Equation Basis  Set  Method 

I Pocklington  Piecewise  Collocation  P-PS-C 

I1 Pocklington  Piecewise Collocation/  P-PS-C/G 

111 Pocklineton  Piecewise Galerkin P-PS-G 

sinusoidal 

sinusoidal  Galerkin 
I 

sinusoidal 

continuous  current 
and  continuous 
derivative 

extrapolated 
continuity 

IV Pocklington  Trigonometric  with  Collocation  P-T/C-C 

V Pocklington  Trigonometric  with  Collocation  P-T/E-C 

VI Pocklington  Piecewise  linear  Collocation  P-PL-DE 
(Difference 
Equation) 

VI1 Hallen  Piecewise  linear  Collocation  H-PL-C 

Method I (Pocklirrgton-Piecewise Sinztsoid-Collocation) 

Since no numerical integration is needed to calculate terms in 
(9), Pocklington’s equation subject to collocation (Wm(z) = 
6(z - z,)) with the piecewise sinusoids (8a) in the current 
approximation (6) appears, superficially, to be a very attractive 
method. No numerical integration is needed in (9), since the 
harmonic differential operator  in the integrand applied to (8a) 
yields zero for 4‘ E ( Z ~ , Z , , + ~ ) ,  leaving one with simply 

sin kA n 
I,,[ K ( zm - z , , - ~ )  - 2 cos kA K ( z m  - z,,) 

f K ( z m  - z , ,+J]  = -j4nw~E,’(z,,J 

where zm = mA,m = 0, +1, + 2 , . . . ,  f(N - 2)/2, are  the 
match points in ( -L/2 ,L/2)  at which (9 )  is enforced.  Un- 
fortunately, the obviation of numerical  integration not with- 
standing, this procedure is unsatisfactory except for large radius 
and/or resonant length wires. Under close scrutiny the method is 
not generally satisfactory even for a large radius wiIe, since the 
solution converges rapidly for relatively small N,  but with further 
increase in N the system of linear equations (9) which one must 
solve to determine the coefficients I,, becomes ill-conditioned [ 5 ] .  
These comments are supported by the data of Figs. 3-12 where 
one sees that  for a = 0.01i. the method enjoys somewhat better 
convergence than  for a = 0.0011 except when L = 0.51; also, 
P-PS-C exhibits better convergence for L = 0.57. and a = 0.001L 
than for  other  lengths and this radius. 

Method 11 (Pocklington-Piecewise  Sinusoid-Collocation/ 
Galerkin) 

Initially the authors attributed the  poor convergence of P-PS-C 
to  the fact that  the integral equation is enforced at  the interior 
points (match points z?,,) but not at  the end  points ( + L / 2 )  with 
the consequence that  the resulting system (9) may characterize 
a scatterer of length L - 2A rather  than of L ,  the  correct value. 
As a remedy, they elected to form (9) by testing over (- L/2, 
-L /2  + 2A) and (L/2 - ZA, L/2) with the piecewise sin- 
usoids of (8a) and point-matching at  the interior points  (match 
points z,). This hybrid testing procedure  (Method 11) is  desig- 
nated P-PS-C/G. Deceptively, it appears to converge for small 
N but is little better than P-PS-C for larger N as is seen from  the 
data of Figs. 3-12. 

Further investigation of (8) and (9) reveals that  the  poor con- 
vergence rates of P-PS-C and P-PS-C/G are due to  the rapidly 
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varying contributions to  the scattered electric field arising from 
the  unnatural discontinuities in derivative of the current  approx- 
imation  formed from  the piecewise sinusoidal basis set [2]. 
Notice, however, in Figs. 5 and 6, the acceptable convergence 
rates of P-PS-C for resonant-length elements, which are  due  to 

, the fact that resonant  current is almost sinusoidal and  the 
discontinuities in derivative almost vanish [l 1, [2]. 

A discontinuity in current or its derivative is unphysical and 
a2y approximation (6) exhibiting either  produces a rapidly 
varying scattered electric field [2]. In particular, at a discontinuity 
in  current,  there is a contribution to scattered field proportional 
to (d/a[)K(z - [),=c as is seen from ( 9 ,  whereas at a dis- 

‘. continuity of derivative of current  there is a contribution  pro- 
portional to K(0).  With either discontinuity, a highly peaked, 
rapidly varying scattered electric field  is produced along the 
scatterer, which according to ( 5 )  must be equal  to  the  constant 
-E,’ (normal incidence). Of course, equating of a constant to a 
rapidly varying function at discrete points z, is unlikely to give 

~ rise to equality at points other than z, over the interval ( - L / 2 ,  
m .  
Method IiI (Pocklington-Piecewise  Sinusoid-Galerkin) 

Failure to satisfy (7b) in some sense at all points on the scat- 
terer implies, of course, a poor solution and, in P-PS-C and 
P-PS-C/G, can be attributed to the  unnatural variation of the 

* scattered electric field caused by unphysical discontinuities in 
the derivative of (6), the representation of current. In  an  attempt 
to improve solution  methods employing basis sets which in- 
troduce discontinuities in the approximation to  the current or its 
derivative, one may equate weighted averages of both sides of 
(7b) in hopes of achieving a better representation of the scattered 
field over the entire  range (- L/2,L/2) compared with its values 
at discrete z,. Galerkin’s method, which is mentioned under 
TESTING, effects such averaging. P-PS-G is a techniaue for 

b 

3-12 to converge rapidly. Note  that  the Galerkin  procedure 
requires two integrations, one over the basis element and  another 
over the testing function. Richmond, who calls this procedure 
“piecewise sinusoidal reaction matching,” has shown, however, 
that these integrations  can be performed analytically for piece- 
wise sinusoidal basis and testing sets [6], [l].  

Notice that Methods I, 11, and I11 incorporate (8a) in (6), each 
with different testing schemes for solving Pocklington’s equation. 
Since, for A << A, (8b) closely approximates  @a),  comments 
for  the piecewise sinusoid also hold for  the piecewise linear basis 
set. 

Method IV (Pocklington-TI-igonometric/Continuous Current 
and Derivative-Collocation) 

In keeping with the desire to maintain  continuity of current 
and its derivative over the scatterer, the  authors investigated 
the use  of the trigonometric set (8c) in Pocklington’s equation, 
but, in addition to point-matching at  the center of each sub- 
domain, i and (di ldo were forced to be equal at  the common 
boundary  points of adjacent subdomains.’ Note  that such a 
current representation may be called a trigonometric spline 
function.  Solutions  obtained by this  method  P-T/C-C are seen 
to converge rapidly (Figs. 3-12) as  one would expect. 

Method V (Pocklington-Trigonometric/Extrapolated 
Continuity-Collocation) 

Because the introduction in P-T/C-C of the equations to 
maintain continuity of (6) and its derivative adds significant 
complexity to  the method, an alternate scheme, P-TIE-C, for 
suppressing the discontinuities was investigated. Subject to 
extrapolated  continuity3 of P-T/E-C, the discontinuities are not 
zero but are reduced to levels at which their  contributions do 
not  dominate the scattered field. In contrast to the unacceptable - -  

solving Pocklington’s equation by Galerkin’s method with piece- 
wise sinusoids both for representing the current and for testing. 
Solutions  obtained by means Of P-PS-G are seen from Figs. 3 See last paragraph  under  BMD’and [3]. 

See last  paragraph  under BME~ 
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complexities encountered in P-T/C-C in  constraining the C,, 
and B,,, P-T/E-C is not difficult to implement, yet one observes 
from Figs. 3-12 that  the convergence rate of solutions  obtained 
by the  latter  method is near that of those  obtained by the former. 
However, for larger and larger N, P-T/E-C solutions are seen to 
exhibit trends of diverging. This divergence is understandable, 
since in P-T/E-C the discontinuities are not  zero, and,  as A + 0 
for larger and larger Pi, the unnatural  contributions  due to 
K(A/2) and (%/PT)K(z - T)z -5=A,2  become more and more 
significant. 

Modifications of P-T/E-C and P-T/C-C where the trigono- 
metric functions of (8c) are replaced by other  analytic functions, 
e.g., three-term power series, also lead to satisfactory solution 
techniques. 

Method VI (Pocklington-Piecewise Linear-Difference Equation) 

Methods I-V exhibit convergence rates which strongly depend 
upon how one handles discontinuities of (6) and its derivative. 
As an alternative to placing continuity requirements upon (6) 
to suppress the peaked field variations, one  may relax or smooth 
the derivatives in (1) that operate on r2 i ( o K ( z  - dc (10) 

to produce these unnatural contributions to scattered electric 
field at  the discontinuities. In particular  in P-PL-DE the har- 
monic  operator of (1) may be replaced by its corresponding 
difference operator;  the difference operator is insensitive to  the 
local variation of  (10) due to discontinuities of (6) but does 
correctly account  for desired global derivatives. Specifically, 
in  P-PL-DE, the derivative discontinuities of the piecewise linear 
representation, (8b) in (6), do  not manifest themselves in  sharp 
peaks of the scattered field. Moreover, the difference operator 
equation  approximation to (1)  is amenable to use with basis 
sets which cause discontinuities in (6) as well as in its derivative. 
The convergence of P-PL-DE is  given in Figs. 3-12 [l]. 

Method VZZ (HalIkn-Piecewise Linear-Collocation) 

< = - L / Z  

Pocklington’s equation relates the electric field to  the sources 
on the scatterer in such a manner that the value of field  is  very 
sensitive to both the current and its derivative and, consequently, 
any efficient method for solving this equation must include special 
treatment of either  the derivatives or of the discontinuities. On 
the  other  hand, HallCn’s equation is based on  the vector potential 
and  the electric field enters  the relationship only through in- 
tegration. In addition, the vector potential is  less sensitive to 
local variation of current than is its second derivative so HallCn’s 
equation yields to solution  methods in which the current is 
approximated (6) by unphysical currents possessing discon- 
tinuities. Good convergence is seen in solutions of Hallen’s 
equation when the basis set is  piecewise linear (H-PL-C) and in 
which no attempt is made  to lessen the effects  of the discon- 
tinuous derivatives (Figs. 3-12). 

CONCLUSIONS 

Seven methods for determining the  current on a scatterer are 
presented and  the relative convergence rates of the  solutions 
obtained by the methods are investigated. Reasons  for differences 
in rates are delineated. It is shown that, if acceptable convergence 
rates  are to be attained, solution methods applied to Pocklington’s 
equation must incorporate  means of suppressing discontinuities 
in the current  approximation and its derivative, or, on  the  other 
hand,  the deleterious effects of these discontinuities must be 
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circumvented by rendering the equation insensitive to them. The 
latter  can be accomplished by averaging techniques applied to 
both sides of the equation, eg.. Galerkin’s method, or by 
smoothing the derivatives, e.g., use of difference operator. 
Hallen‘s equation governs quantities which are less sensitive to 
discontinuities and it may be  successfully solved numerically 
with almost  any reasonable basis set, even one which causes the 
approximate  current to be discontinuous. For a given basis set, 
the convergence rate of solutions to HallCn’s equation  obtained 
by point-matching is as high as that of solutions to Pocklington’s 
equation with any testing scheme. Solutions by the difference 
equation  method attain a high rate of convergence essentially 
identical to  that of the point-matched HallCn equation. Of further 
importance, the difference equation  procedure is simple, and it is 
highly amenable to numerical implementation, even when 
applied to multiple-wire structures. 
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The Singularity Expansion Method as Applied to 
Perpendicular  Crossed Wires 

TERRY  T.  CROW,  BILLY D. GRAVES, mm 
CLAYBORNE D. TAYLOR 

Abmuct-The singularity  expansion  method (SEM) has been  applied - 
to determine the current  and charge induced on a system of perpen- 
dicular crossed cylinders. The SEM characteristics of this structure 
have  been  studied as the various  parameters are varied. The time  domain 
response  of one  particular geometry has been  obtained by SEM and 
compared to  that determined  by  the more conventional  frequency  domain 
analysis and  Fourier  inversion. 

I. INTRODUCTION 

The singularity expansion method (SEM) as first discussed 
by Baum [l ] has been elaborated and applied in a series of recent 
papers [2]-[5]. Using SEM it is possible to determine the time 
domain scattering from a conducting object in terms of a 
summation of damped sinusoids. This technique appears to be 
particularly advantageous in treating scattering from wire con- 
figurations that may be useful to model complex physical 
structures such as aircraft. In this report SEM is applied to 
determine the current and charge induced on a system of two 
perpendicular crossed thin cylinders (wires) in free space. This 
configuration may be  viewed as a crude model of an aircraft. 
The induced current and charge are obtained as various param- 
eters of the problem are varied. 
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