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A Numerical  Solution for the  Near and Far Fields 
of an Annular  Ring of Magnetic Current 

Abstract-A simple  method  for  calculating the  near  and f a r  
zone fields from an annular ring of circumferentially  directed 
magnetic current which may be used  to  represent coaxial apertures 
is presented. Near-field contours are given  for two ring sizes. The 
utility of the method has  been  illustrated  by its application in 
several practical antenna problems  where the magnetic  ring  current 
serves as  the primary source.  Among these are the analysis of 
dipole antennas  mounted on a conducting  sphere or  cylinder, the 
impedance of a  coaxially fed Yagi-Uda antenna, a coaxially driven 
wire loop, and the radiation  from a  coaxial aperture at the  base 
of a cone. 

INTRODUCTION 

I PIT THE determination of impedances  for  balanced  an- 
tennas such as a  cylindrical dipole, the image-plane 

method  is  frequently used. If this ground-plane  mounted 
antenna  is  driven coaxially, then  the distribut.ed source 
representation of the feed, as originally suggest,ed in [l] 
and implemented in [2]-[4] for the cylindrical dipole, 
can  be used to  better correlate t,he theoret.ica1 and experi- 
mental models. The basic idea  is t,hat  the  current  in t,he 
coaxial feeding apert,ure is interpreted  as  the  primary 
source which then excites the rest of t.he ant,enna.  Accurate 
results  have been obtained [2]-[4] for the cylindrical 
dipole, and applications of this idea Jo several other 
problems appear promising. Hence the fields of t.he  coaxia.1 
source are of interest. 

There exist in t.he literature  several met,hods for  deter- 
nlining the fields of coaxial sources. The far-zone fields for 
ring currents  are given by [5], [SI, and [7] gives the 
fields for  a  vanishing  small ring. In  [SI, [9] the coaxial 
apert.ure  problem is carefully soived by mode matching, 
but t.he resultant near-field expressions involve complex 
infinite  integrals of Bessel funct,ions which may be  costly 
t.0 eva1uat.e. In  t4his  presentation,  a  simple  numerical 
scheme is given svhich readily allows t.he determination 
of fields in t,he near zone, in fact., even  inside t.he ring. 
Results  are also given shoving  the  contour  variations of 
the  near fields for some examples. 
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Fig. 1. Geometry of magnetic frill source. 

I O N  

Consider a coaxial aperture  terminat.ed  in  an  idmite 
ground  plane. A combination of the equivalence principle 
and image theory [7] then allows it t.o be  represented 
simply  as an  annular ring (or frill) of magnetic current. 
The geometry of the problem is depicted in Fig. 1, where 
the annulus has inner  and out.er coax radii a and b, respec- 
tively,  and is centrally  located along the z axis at. z = 2'. 

Making t.he usual TEM mode assumption,  the  aperture 
distribution of the coax is 

1 
3p' In @ / a )  

E,. ( p ' )  = V/m 

for a 1-V excitation. Hence the corresponding  magnetic 
current.  distribut.ion by image theory  is 

With  the  aid of the electric  vector potent'al F, where 

exp ( - j k  1 R - R I )  
ds' (3) 

, R - R f i  
surface 

and  the prime  denotes source coordinat.es, one can  det,er- 
mine the E and H fields by 

1 1 
3wco €0 

1 1 
3WPO PO 

E = - {grad  div + k 2 ]  A - - curl F (4 1 

H = 7 (grad  div + k Z ] F  + - curl A .  ( 5 )  

Since only magnetic  currents are noa-  present, A ES 0. 
For the near-zone-field values,  numerical  integration 

will first  be used t.0 obtain the electric  vector  potential, 
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and  then numerical  differentiation  techniques  are  applied 
to  calculate the fields. For larger  observation  distances 
(still near  zone), closed-form expressions ma.y be  derived 
which not only simplify calculat.ions but also validate the 
preceding  numerical  technique. The fields on the axis of 
the ring and  in  the  far field are  then given. 

THEORY 

Numerical Technique for  Near-Zone  Fields 

For the evaluat,ion of F from (3), the incremental 
source area ds’ on t.he frill is p‘dp’da’. Dividing the frill 
into dp’ wide magnet.ic ring current,  the cont.ribution of 
each  ring will be  evaluated  &st, i.e., integration  in @’, 
before summing  over  all the rings. Because of the rota- 
tional  symmetry of the problem (@ independence), the 
observation  point  can  further  be  located  in the yz plane 
vi th  no loss of generality (hence p = y and F is @ polar- 
ized).  This results in t.he  folloming expression for F from 
(2) and (3) :  

€0 1 F - exp ( - jkR’)  
R‘ * -  2~ In ( b / a )  [ [ cos 9’ d@’ dp’. 

(6 1 
The  t,erm I R - R’ 1 from (3), denoted noFv simply as Rf:  
ca.n be  seen from Fig. 2 to be 

R’ = [ (z  - z’)2 + p2 + p’2 - 2pp’ cos a q ’ 2 .  (7) 

Considering the ring in  the zy plane  (Fig. 3), each 
pair of incremental  current  element d@’, symmetrically 
located at  ha’, has only a net 6 contribution,  thus  result- 
ing in  the 2 cos @ fact,or  with hegrat ion of @’ from 0 to X. 

Numerical  integration  may now be used to evaluate 
(6). Typically,  integration  in dp‘ can be done  very accu- 
rately  by summing  over merely five or less equally  divided 
segments. If b/a now becomes large, then of course more 
segments  may be needed. The  integration in d@‘, on the 
other  hand, can also be obtained  directly, but  the follow- 
ing subtraction of singularit,ies simplifies the calculations. 
Suppose now the observation  point is close to  the source, 
i.e., p ‘V p’ in Fig. 2 .  Then R’ -+ 0 as @‘ -+ 0, thus yielding 
a singular  integrand  in (6). Removing t.his singular tern1 
results in 

+ Ja” @’ exp ( - jkR‘ )  - L) ] 
R’ R’ d@’ dp‘ ( S )  

where the second int.egra1 now has  a n-ell-behaved inte- 
grand.  Furthermore, i t  may be shown that 
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Fig. 2. Detailed  geometry for source and observat.ion coordinates 
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Fig. 3. Polarization  vectors for source and  observation coordinates. 

and K ( r j 2 , p 2 )  is the complete  elliptical  integral of the 
first kind  with  a  readily  available polynomial approdma- 
tion  algorithm [ l o ]  for  its  computation.  Equations (8) 
and (9) may now be used for the accurate  numerical 
determination of F* at  any observation  point not. on t.he 
frill surface (even for p < a ) .  The second integral  in ( 8 )  
may  be  evaluated  by Simpson’s rule and,  typically, a 
division of only five segments  from 0 to T for a’ gives 
convergent  results. (For p < a, up t.0 15 divisions may 
be  needed). 

To find the fields from the vector  pot,ential  numerical 
differentiation is used. From (4) and (a), and for the 
cylindrical  coordinate  system, n-e obtain 

where E*, H,, and H z  are identically zero. The pa.rtia1 
derivat.ives may  be  evaluat.ed  numerically using Lagrange’s 
t,hree-point. (equally spaced  abscissas)  formula [lo], 
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which is 

whare x.  is t.he cent.er point, in  the  range f p h  (now either 
p or z )  in which the derivat,ive  is  needed and f*l is the + (; + j (b2 + “2))]} 

value of the funetaion a t  x = x .  f h.  The corresponding SR? Ro3 
four-point  formula 

H a  j (b2 - a2) 
fp’ = f’ (20 + p h )  

-cv- 
k 120r  8 In @ / a )  
- k 

- I (- 3p2 - 6 p  + 2 3p2 - 4p - 1 .-  
h 6 f-1+ 2 fo 

3p’ - 2p - 2 3p2 - 1 - 
2 fl + -f2} 6 (16) A x i d  Form (p = 0) 

- EO exp ( - jkRo)  
F O ( ( p J z )  ‘v 4 In @ / a )  JSP Ro2 

(b’ - u’) 

is used both  as  an  accuracy check a.nd to  ca.lculate (13) 
when z = z’ (in  the  plane of t.he frill).  Except at z = 2’ 

or p = 0, computations using (15) or (16) converged to 
better t.han 2 percent. Since FQ was found to  be  a rather 
well-behaved function, t.he usual  numerical  differentiation 
sensitivity t.o h, the differentiation  interval [ll], was not 
evident. Va.riations in h by orders of magnit,ude yielded 
negligible differences in field values. For convenience, h 
can  be  selected to be b/100. 

Closed-Form Expressions for the Far Near  Zone (p >> b )  

Closed-form expressions for E and H can now be de- 
rived  in  order to  both simplify calculations when p>>b 
and t.0 provide  a further check on the accuracy of the 
preceding numerical  technique.  The  usual far-field or 
Fresnel-zone approximations are not, used here because 
X >> p >> b, hence this  may be thought of as a  “far  near- 
zone” form. 

From (7) ,  let 

and  after  suitable series approximations on (6) one finds 

On t.he axis, a t  p = 0, the 0 symmetry of the problem 
dict,at.es t.hat E,(O,z) 0. Equat,ions (19)-(21), however, 
are no longer  accurat,e when p -+ 0. Consequently, a 
simple form for  axial fields must. be given.  At p = 0, we 
have R’ = [ ( z  - z ’ ) ~  + p‘2]1/2, hence 

Then 

H*(O,z)  = 0. 
Prom ( E ) ,  

where 1’Hospital’s rule  is  used to  account  for the 0/0 
term.  Interchanging  the  order of int.egration and differ- 
entiat.ion and carrying out. the details, we find simply 
PI, C W  

From (12)-(14), the closed-form field expressions are  then exp [-jk[ (z  - z ’ ) ~  + u2]1/2] 

E, (b2 - u 2 )  (z  - z ’ )  exp ( - j k R o )  
- - 

-rv - 
k 8 In @ / a )  Ro RO’ 
- P- 

exp [- jk[  (z - x ’ ) ~  + b2]1/2] 

[ (z. - z’)2 + b2]1/2 

Equation (25)  has  been  derived rigorously with  no 
approximations,  hence it may be  regarded  as a standard  to 

(19) check the a.ccuracy of the numerical  form. In summary, 
the near-zone fields of the magnetic  frill  source  can be 

- 

2 

Ro 
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Fig. 4. Regions of applicability  for  various  methods of computing 
near field of magnetic  frill source. 

TABLE I 
COBPARISOX OF AXML FIELDS E J k  FOR A FRILL m m  DINENSIONS 

(a = O.O6X, b = 0.065X) 

z(h)  kx<al Form (25) (Exact)  Numerical  Solution 

0.01 1.34083L--1.03884"  1.33949L--1.03873" 
1 .20389 L - 1.15.584° 

10-5 d 
1 .o 10.0 100.0 

N 

calculated  by a combination of t.he various  methods  just 
described. A discussion of their accuracies and conver- 
gences will  be given in  the  results section. Their respect.ive 
regions of applicabi1it.y are  illustrated  in  Fig. 4. 

Far-Field Expressions 
'8it.h  suitable series approximations  the far-zone poten- 

tial  and fields for even  relatively  large frills, i.e., X N 

p' <<-Ro, are given by 

S i m p l e  Magnetic Ring Sources ( b  = a )  
In  the limit as b 4 a,, the  magnetic  current  then becomes 

M a ' ( p ' )  = 6 (p' = a ) .  In  this case t,he numerical  method 
for near-field comput,ations  derived originally for the  frill 
would apply &h but.  a  minor  modification [lz]. The 
axial  form ( p  = 0) can  be  derived,  in  manner  similar t.0 

Fig. 5.  Comparison of fields calculated by numerical solution  with 

a = O.O02X, b = 0.005X. 
closed-form  expression  along 45" line  in yz plane for frill with 

the frill, with the result 

with 

R' = [ ( X  - 2')' + u?]~'~.  (2s 1 
It should  be  noted that (28) is exact,, whereas  a  similar 
expression  in [13] assumes a >> X (hence the absence of 
the 1/R' term).  The  far field for the simple  ring  can  be 
int.egrated  in  closed-form  with t.he resuking expression 
C6ll  C12l 

where J1 is the Bessel function of the first order. 

DISCUSSIONS AND RESULTS 
In  this present,ation  numerical  techniques  are  used,  and 

a simple and efficient. method for calculating  the  vector 
potential was obtained because the singular  part, of its 
integral  can be  expressed as  a known function (elliptical 
integral).  The E and H fields are  then convenientl>r eval- 
uated  by numerical  differentiation  methods.  Consider now 
the complexity  involved if the fields were to be  calculated 
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Fig. 6. Comparison of numerical solution to closed-form  expression 
in  plane of frill  with a = O.O02X, b = 0 . 0 0 5 ~  

by more conventional  methods.  Interchanging the order 
of differentiat.ion and integrat,ion, the  near fields can  be 
found from 

. (Z  - z ' )  C O S  @' &' dp' (30) 

1 E -____  exp (- jkR') 
z -  29 In (b/a) R' 

.[f - ( j k  + 2) 1 ( p  - p' cos @') ] dm' dp' (31) 

(32) 

However, there now may occur singularities of t.he  order 
( l / P )  and ( l / R t 3 )  -which would require  significantly 
more numerical  integration  time  and,  furthermore, we 
will have  three different. integrands  to  contend  with. 

Since numerical  differentiation is not a frequently used 
method, its accuracy needs to  be  carefully checked. To- 
ward  this  end we compare the result.s from the numerical 

1.0 

10-l 

t 1 1.0 
lo N 

1 6 7 2  
100 

Fig. 7. Comparison of numerical  solution to closed-form  expressions 
along 45' line wit,h a = O.O6X, 6 = 0.063,. 

solution (7)-(16) with  those  from  the axial  form (25) 
and  the  far near-zone expressions (19)-(21) in their 
respective regions of validity.  Table I compares E,  along 
the z axis as  calculated from (25), which is exact,  and t,he 
numerical  solution using four-point  differentiation. Close 
agreement is noted  even  for z < a. Figs. 5-7 give the com- 
parison bet,w-een the closed-form expressions in the  far 
near zone and t.he numerical  solution. In Fig. 5 the field 
plot. is along a 45" line ( p  = z = Nb), while Fig. 6 plot,s 
t,he field in  the plane of the frill  for  a  small  frill with 
dimensions a = O.O02X, b = 0.005X. Fig. 7 gives t.he results 
for a larger frill (a = O.O6X, b = 0.065X). As can  be seen, 
the numerical  solution converges quite closely to  the 
closed-form expressions with  increasing N (when (19)- 
(21) become valid). In  fact,  fart.her  away  from  the frill, 
i.e., a t  N 2 100, where  numerical  differentiat.ion is per- 
haps  least  accurate, the agreement  between the  two 
methods was found to  be  bett,er  than four  significant 
figures for all field components. From Figs. 5-7, the 
switching  from the numerica.1 solut,ion to the closed-form 
expressions depicted in Fig. 4 can be empirically select.ed 
as & = lob. 

-4s a.n additional check, the electric fields computed 
using numerical  differentiation, (12) and (13), are com- 
pared  to  those using only  numerical  integration, (30) and 
(31). Tables I1 and I11 give the E, and E,  along a 45" 
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TABLE I1 
COMPARISON OF EJk FOR A FRILL w m  DIMENSIOKS (a  = 0.0031, b = 0.005X) ALONG A 45"  LINE 

P = 2 (X) Numerical  Integration (30) Numerical  Differentiation (13) 

0.0005  0.5576263E + 0 + jO.75765633-8 0.55744303 + 0 + jO.4139300E-5 
0.0015  0.4047861E + 1 + jO.5202933E-7 0.40402453 + 1 -j0.1468615E-5 
0.0035  0.42985122 + 1 + jO.42929323-7 0.4299359E + 1 + j0.6686963E-6 
0.0055  0.16831593 + 1 - iO.2954753E-7 0.1683143E + 1 - iO.3253601E-6 
0.0075  0.73012963 + 0 - 30.1660948E-7 0.730!hW7E + 0 + 30.7756228E-7 
0.0095 0.3711905E + 0 - jO.6506248E-8 0.37126793 + 0 - j0.1284663E-6 

TABLE I11 
COMPAREON OF EJk FOR A FRILL WITH DIMENSIONS (a = O.O03X, b = 0.005X) ALONG -4 45" LIKE 

P = 2 (X) Numerical  Integration (31) Numerical  Differentiation (12) 

0.0005 0.20472323 + 2 - iO.127811034 0.2046579E + 2 - i0.11196i3E-X 
0. Ooii oI16&&1E + 2 - jo;ll59331~ . u -  - - ~ - ~  -~ - 

0.0035  0.43872883 + 1 - jO.10700343-3 
0.0055 0.1019517E + 1 - jO.10505013-3 
0.0075 

0.1688470E + 2 - jO.10449823-3 
0.43878- + 1 - jO.103769OE-3 
0.10196753 + 1 - jO.10426503-3 

0.3493413E + 0 - io. lO458603-3 0.34910553 + 0 - iO.10389563-3 
0.0095 0. i576679E + 0 - >0.10537563-3  0.15762023 + o - So. 1035746~3 

z 
t 

o.oo3a 0.005 x - P  

03) 
Fig. 8. (a) Near-field constant 1 E,/k I contours for small frill 

with a = O.O03X, b = 0.005h. (b) Expanded center. 
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Fig. 9. Near-field constant Ee/k contours for a = O.O03X, 

b = 0.005X. 
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Fig. 10. Near-field constant I H 4 / k  I 
b = 0.005X. 

contours for a = O.O03X, 

line for a frill with a, = 0.003X and b = 0.005X. For these 
cases, because the  observation  distance is  act,ually  smaller 
than  the frill radius,  a  larger  number of integration  inter- 
vals a.re required for convergence. As can  be  seen, the 
agreement is excellent. It is also  worth  noting that (12) 
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fig. 11. Near-field constant 1 Er/k  I contours for larger frill with 

a. = O.O6X, b = 0.0625X. 
Fig. 13. Comparison of electric dipole and magnetic frill current 

for frill with a = O.O03X, b = O.O05X, and dipole length = 0.010X. 
near-zone E, patterns on  constant  radius circle (R  = 2b = 0.01h) 
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Fig. 14. Comparison of electric dipole and  magnetic  frill source 
H+ near-zone patterns ( R  = 2b = 0.01X). 
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Fig. 12. Near-field constant I E,/k I contours for short  electric 
dipole with constant. current  distribution  and  length = 0.01X. 

and  (13)  requires only  one fourth  the  computer  time 
required  by  (30)  and  (31). 

From  the preceding  agreement  among t.he various 
methods in  their  mutual regions of validity, it. may  be 
concluded that  the numerical  procedures  employed can 
indeed efficiently give very  accurate near-field informa- 
tion.  Typical  computat,ion  time  is 15 ms on t.he IBM 7094 
computer.  Furthermore,  the ease with  which  numerical 
different.iat,ion may be  used  when  functions are well  be- 
haved  indicates that its use  should  be  considered for other 
electromagnetic field problems. 

Near-field contour  maps  in  the yz plane  are now 
presented for two different, frill sizes. E,, EO, and H* (the 
spherical  component.s) are given in Figs. 8-10 for a small 
frill with a = O.O03X, b = 0.00% The  magnitudes  are 
normalized so that  the  total far-field radiated power  from 
the source is 1 W. Fig. 11 similarly gives the E, contours 
for a  larger frill, a = O.O6X, b = 0.0625X. 

It is interesting  to  note  that  the well-known duality 
between infinitesimal electric dipoles and  magnetic loops 
does not hold in  the  near field for sources that.  are merely 
small. Fig. 12 depicts  the E, cont.ours for an electric line 
source n.it,h a  constant  current  and  having  the  same overall 
physical  dimensions as the frill in Fig. 8. 1-W total  radi- 
ated power normalization is used a.lso with E, computed 
by summing  over 100 incremental dipoles. For a source 

even as  small as 0.01h, as  can be  seen  by  comparing Figs. 
8 and 12, the  near fields of magnetic  loops  and electric 
dipoles are  different. This difference is  furt.her  illustrat,ed 
in  the near-zone patterns for the  two sources (Figs. 13 
and  14), where E, and H a  are  plott.ed  as a function of 8 
along a constant  radius circle at. r = 2b. If t,he sources 
were infinitesimally small, then  their  patterns would both 
coincide with the respect.ive sine and cosine patterns 
shown [14]. Hence duality for these  small  sources  should 
only  be  used a t  large  observation  distances. 

Even  though  this  paper considered  contributions  only 
from the TEM mode in  t,he coaxial apert.ure,  the numer- 
ical technique  presented is not necessarily restricted to 
this case. It should  be possible to include the fields from 
the higher  order  mode aperture  currents  by analogous 
techniques  once  these  currents  are det,ermined. For large 
st.ructures  these  cont,ributions  may  be significant and  the 
method described in [SI, [9] can be  used for t,he solution 
of these  currents. 

While the near-field variation for the basic magnetic 
ring  source  presents an interesting problem in its own 
right, it is also quite useful for practical  applications. 
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Accurate  near fields would be desirable for studies of 
high-power breakdom phenomena in ring  slot  ant.ennas 
or mutual coupling effects among  elements of an  array of 
such  slots. In addition  to  these direct. applications,  exten- 
sions  may  be  made  using the magnetic frill source as a 
basic  building  block to analyze  complex antenna geom- 
etries which are  fed coa.xially. In the discussions t.o  follow 
several  examples are briefly described  which  used the frill 
either  as a primary  radiator or as  equivalent sources. 

Employing  the  magnetic fr i l l  as the driving source, the 
impedance of the Yagi-Uda antenna  has  been success- 
fully  analyzed [15],  [16]. Using a Fourier series expan- 
sion for the  currents  on  the wires  with the coefficients 
determined  by  point-matching  techniques,  the  near fields 
of the frill calculated by  the method in this paper  then 
constituted  the  input,  or  the  right-hand  side, of t,he sys- 
tem of simultaneous  equations.  Excellent  agreement was 
reported betmeen  calculated  and  measured  results for a 
four-element, array  over  a wide  frequency  range.  Using 
similar  techniques, the problems of a coaxially fed circu- 
lar loop  over a ground  plane  and a ring  slot  antenna a t  
the  base of a  conducting cone were also successfulIy 
treat,ed [lS]. 

Using the  magnetic frills as equivalent sources, a  syn- 
thesis  method  was  carried  out  for  the  solution of coaxially 
fed dipole antennas  symmetrically  mounted  on a conduct- 
ing  sphere or cylinder [lZ], [17]. The  basic  idea is that 
an  array of axially distributed  magnetic frills can  be 
found which mill approximately  satisfy  boundary  condi- 
tions on t.he spherical (or cylindrical) surface. Each frill, 
of course, excites some current  distribution on the R-ire 
ant.enna n-ith the superposit,ion of the  near fields from all 
these  sources constituting  the  tot,al solution. Provided 
boundary conditions are  met,  the  equivalent source solu- 
tion will then  generate  the  same exterior fields and cur- 
rent,s  as  the original structure  nith its solid conducting 
sphere (or cylinder).  For  these problems also, close cor- 
relation  was  obtained  between  measured  and  calculated 
input  admitt.ances,  radiation  patterns,  and resonance be- 
haviors. 

CONCLGSION 

An analytically  simple  method  has  been  obtained  for 
the calculation of near-zone as well as far-zone fields from 
an  anhular  ring of magnetic  current.. For t,he near fields, 
an efficient met,hod was developed  which uses numerical 
integration  and diff erentiat.ion. Closed-form expressions 
have also been  derived for the  far near-zone and a.long 

the axis of symmetry.  From  the close agreement  among 
the  various  formulations in  their  mutual regions of valid- 
ity,  a  direct check on  their  accuracy was established.  The 
utility of this  solution was further  demonstrated  through 
its  application  in  several  practical  antenna  problems. 
Because of its efficiency, accuracy,  and  utility, i t  is 
believed t,hat  the  techniques  and  results of this  solution 
may  be useful for many  other  electromagnetic  problems. 
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