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A Numerical Solution for the Near and Far Fields
of an Annular Ring of Magnetic Current

LEONARD L. TSAI, MEMBER, IEEE

Abstract—A simple method for calculating the near and far
zone fields from an annular ring of circumferentially directed
magnetic current which may be used to represent coaxial apertures
is presented. Near-field contours are given for two ring sizes. The
utility of the method has been illustrated by its application in
several practical antenna problems where the magnetic ring current
serves as the primary source. Among these are the analysis of
dipole antennas mounted on a conducting sphere or cylinder, the
impedance of a coaxially fed Yagi-Uda antenna, a coaxially driven
wire loop, and the radiation from a coaxial aperture at the base
of a cone.

INTRODUCTION

N THE determination of impedances for balanced an-
tennas such as a cylindrical dipole, the image-plane
method is frequently used. If this ground-plane mounted
antenna is driven coaxially, then the distributed source
representation of the feed, as originally suggested in [1]
and implemented in [2]-[4] for the cylindrical dipole,
can be used to better correlate the theoretical and experi-
mental models. The basic idea is that the current in the
coaxial feeding aperture is interpreted as the primary
source which then excites the rest of the antenna. Accurate
results have been obtained [2]}-[4] for the cylindrical
dipole, and applications of this idea to several other
problems appear promising. Hence the fields of the coaxial
source are of interest.

There exist in the literature several methods for deter-
mining the fields of coaxial sources. The far-zone fields for
ring currents are given by [5], [6], and [7] gives the
fields for a vanishing small ring. In [8], [9] the coaxial
aperture problem is carefully solved by mode matching,
but the resultant near-field expressions involve complex
infinite integrals of Bessel functions which may be costly
to evaluate. In this presentation, a simple numerical
scheme is given which readily allows the determination
of fields in the near zone, in fact, even inside the ring.
Results are also given showing the contour variations of
the near fields for some examples.
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Fig. 1. Geometry of magnetic frill source.

Consider a coaxial aperture terminated in an infinite
ground plane. A combination of the equivalence prineiple
and image theory [7] then allows it to be represented
simply as an annular ring (or frill) of magnetic eurrent.
The geometry of the problem is depicted in Fig. 1, where
the annulus has inner and outer coax radii a and b, respec-
tively, and is centrally located along the z axis at z = 2’.
Making the usual TEM mode assumption, the aperture
distribution of the coax is

1

20" In (b/a) V/m

Ey(p') = 1)
for a 1-V excitation. Hence the corresponding magnetic
current distribution by image theory is
—1
My = —/—. 2
" oI (b/a) ®)

With the aid of the electric veetor potent’al F, where

exp (—jlc]R—R[)d,

\R— R, ®)

Mm=ﬁiﬂ fM@q

surface

and the prime denotes source coordinates, one can deter-
mine the E and H fields by

1
E = L {grad div + k?}J4A — —curl F 4)
Jweo ()
. 1 .
— {grad div + K2} F + — curl A. (5)
Jwio Ho

Since only magnetic currents are now present, 4 = 0.
For the near-zone-field values, numerical integration
will first be used to obtain the electric vector potential,



)

and then numerical differentiation techniques are applied
to calculate the fields. For larger observation distances
(still near zone), closed-form expressions may be derived
which not only simplify calculations but also validate the
preceding numerieal technique, The fields on the axis of
the ring and in the far field are then given.

THEOEY

Numerical Technique for Near-Zone Fields

For the evaluation of F from (3), the incremental
source area ds’ on the frill is p'dp’'d®’. Dividing the frill
into dp’ wide magnetic ring current, the contribution of
each ring will be evaluated first, i.e., integration in &/,
before summing over all the rings. Because of the rota-
tional symmetry of the problem (@ independence), the
observation point can further be located in the yz plane
with no loss of generality (hence p = y and F is @ polar-
ized). This results in the following expression for F from
(2) and (8):

1 b ex —kR!
Fom — 2 fcosq,,M

onIn (b/a) /. r ¥

(6)

The term | R — R’ | from (3), denoted now snnplv as R,
can be seen from Fig. 2 to be

R =[G— 2+ + ©

Considering the ring in the zy plane (Fig. 3), each
pair of incremental current element d®’, svmmetrically
located at ==&', has only a net & contribution, thus result-
ing in the 2 cos @' factor with integration of @’ from 0 to =.

Numerical integration may now be used to evaluate
(6). Typically, integration in dg’ can be done very accu-
rately by summing over merely five or less equally divided
segments. If b/a now becomes large, then of course more
segments may be needed. The integration in d®’, on the
other hand, c¢an also be obtained directly, but the follow-
ing subtraction of singularities simplifies the caleulations.
Suppose now the observation point is close to the source,
ie., p~p' in Fig. 2. Ther R’ — 0 as & — 0, thus yielding
a singular integrand in (6). Removing this singular term
results in

— 2pp’ cos 2,

d<I>’

. —¢€
Fo =5 in (b/a) [

= — kR 1
+ L <cos &' eXp—(R,J—R) - E) dcp'] o' (8)

where the second integral now has a well-behaved inte-
grand. Furthermore, it may be shown that

' rE? (
wherte
Bi=[e—2r+ (ot p)pe (10)
4 4
p = £ (11)

T =P+ (o)
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and K (r/2,p*) is the complete elliptical integral of the
first kind with a readily available polynomial approxima-
tion algorithm [10] for its computation. Equations (8)
and (9) may now be used for the aceurate numerical
determination of Fs at any observation point not on the
frill surface (even for p < a). The second integral in (8)
may be evaluated by Simpson’s rule and, typically, a
division of only five segments from 0 to = for & gives
convergent results. (For p < a, up to 15 divisions may
be needed).

To find the fields from the vector potential numerical
differentiation is used. From (4) and (5), and for the
cylindrical coordinate system, we obtain

119
E.,=—-=— (oFs) (12)
€ p dp
19
E, = —— (Fo) (13)
() dz
Hs = —juFs (14)

where Es, H,, and H, are identically zero. The partial
derivatives may be evaluated numerically using Lagrange’s
three-point (equally spaced abscissas) formula [10],
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which is

)9}

(15)

1
» = I (%0 + ph) =%{(p — 5 fa— 2:vfn+(z>+

whaere z, is the center point in the range =ph (now either
p or z) in which the derivative is needed and fy is the
value of the function at = z, &= h. The corresponding
four-point formula

Jo' = f'(xo + ph)

_l{_3p2—-6p+2 3pt —4p — 1
) 6

2

3p? — 2p — 2 3p2 — 1
__p P f1+p f2}

Ja+ Jo

2 6 (16)

is used both as an accuracy check and to calculate (13)
when z = 2’ (in the plane of the frill). Except at z = 2’
or p = 0, computations using (15) or (16) converged to
better than 2 percent. Since F's was found to be a rather
well-behaved function, the usual numerical differentiation
sensitivity to h, the differentiation interval [117], was not
evident. Variations in h by orders of magnitude yielded
negligible differences in field values. For convenience, h
can be selected to be b/100.

Closed-Form Expressions for the Far Near Zone (p > b)

Closed-form expressions for £ and H can now be de-
rived in order to both simplify calculations when p>>b
and to provide a further check on the accuracy of the
preceding numerical technique. The usual far-field or
Fresnel-zone approximations are not used here because
A>> p>> b, hence this may be thought of as a “far near-
zone” form.

From (7), let

Ry = [(e— 2 + 9] an

and after suitable series approximations on (6) one finds

—€o X exp (—jkRo)
4ln 0/a)'" T Rg
,{—j(b2+a2) 1

4R + okms T 5} - (18)

Fg(pz) ~ (®* — a?)

From (12)-(14), the closed-form field expressions are then
E, @ —a) (z—2')exp (—jkRy)
kE 8In(/a)’ R, Ry

N CIICETO\S
-G+ ) 5

2b2 2
+j[ : R;a)_z:%]}

(19)
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E;N @ — a®) exp (—jkRo) {9 (i j(®® + a?)

% = 8In (b/a)  R# wE, V0T omg )

& R\ YA
+ [ kRo +i 2R¢? ) ( 7k Ro)
@+ a)
+ (LR :H TR )}} 20
Ho __§ G-,

k= 1207 81n (b/a)

exp (—jkRs) . j* 4+ a?)
[ x (kRo”_ 2Rs )] U

Azial Form (p = 0)

On the axis, at p = 0, the & symmetry of the problem
dictates that E,(0,2) = 0. Equations (19)-(21), however,
are no longer accurate when p— 0. Consequently, a
simple form for axial fields must be given. At p = 0, we
have R’ = [{z — 2')? -+ p2]/2, hence

€0 1
Fol02) = = 4t o/a)
b A 1) 27
.f M [/ cos @I d@l] dp’ = O.
a R 0
(22)
Then
Ha(0,2) = 0. (23)
From (12),
1F 14 20F
E.02) = —=— —=—Fg=—=—=|  (24)
€ p anp € ap

where PHospital’s rule is used to account for the 0/0
term. Interchanging the order of integration and differ-
entiation and carrying out the details, we find simply

[2] [12]

E.(0,2) = !

rIn (b/a)

b x —'k ’
: / f COSQI[EM] 4% dp'

s 0

g {exp [—jhL(z — ) + 1]
"~ 2In (b/a) [(z—2):+ a2

_exp[—jk[(z —2')* + 62]1’2]} (25)

[l — )+ b1

Equation (25) has been derived rigorously with no
approximations, hence it may be regarded as a standard to
check the accuracy of the numerical form. In summary,
the near-zome fields of the magnetic frill source can be
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TABLE I

CompaRIsoN OF AxiaL FiELps &,/k FOR A FriLL wrTH DIMENSIONS
(@ = 0.06), b = 0.065x))

z(\) Axial Form (25) (Exact) Numerical Solution

1.34083 £ —~1.03884°

1.20423 £ —1.15519°

1.02382 £ —1.356608°
0.839214 £ —1.64989°
0.537892 £ —2.55444°
0.229912 £ —5.83331°
0.053865 £ —22.5689°

1.33949 £ —1.03873°
1.20389 £ —1.15584°
1.02387 £ —1.35584°
0.839089 £ —1.64991°
0.537786 £ —2.55534°
0.229877 £ —5.83356°
0.053862 £ —22.5712°

co00000
ScERE8=

calculated by a combination of the various methods just
described. A discussion of their accuracies and conver-
gences will be given in the results section. Their respective
regions of applicability are illustrated in Fig. 4.

Far-Field Expressions

With suitable series approximations the far-zone poten-
tial and fields for even relatively large frills, i.e., A =~
o' < Ry, are given by

Foore — 2 1 .exp (—JkR,) = (b* — a?)
T T4 0/’ T R 5
kp 1 @) L s } .
{Ro 16 (Ro ® +a?)r  (26)
y 71'2 (b?'/)\.2 —_— a2/>\2)
Eg: - ¢
2 In (b/a)
. 2 (0 a?\ . ) exp (—jkRy) ..
’%m”‘z ﬁ+iaﬂﬁ4——i§——.(m)

Simple Magnetic Ring Sources (b = a)

In the limit as b — @, the magnetic current then becomes
M (0’) = 6(p" = a). In this case the numerical method
for near-field computations derived originally for the friil
would apply with but a minor modification [127]. The
axial form (p = 0) can be derived, in manner similar to
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Fig. 5. Comparison of fields caleulated by numerical solution with
closed-form expression along 45° line in yz plane for frill with
a = 0.002x, b = 0.005x.

the frill, with the result

at| . 1 Jexp (—jkR")
— k == 4 7
‘P+H]

Ez (O,Z) 5 R’Z ’

with

R =[(—#)+ o (28)

It should be noted that (28) is exact, whereas a similar
expression in [13] assumes a 3> A (hence the absence of
the 1/R’ term). The far field for the simple ring can be
integrated in closed-form with the resulting expression

(6], [12]
exp (—jkRq)

B (29)

k
By = — = J1(kasin 6)

where J; is the Bessel function of the first order.

DisCUSSIONS AND RESULTS

In this presentation numerical techniques are used, and
a simple and efficient method for caleulating the vector
potential was obtained because the singular part of its
integral can be expressed as a known function (elliptical
integral). The E and H fields are then conveniently eval-
uated by numerical differentiation methods. Consider now
the complexity involved if the fields were to be calculated
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by more conventional methods. Interchanging the order
of differentiation and integration, the near fields ean be
found from

1 1 b exp (—JjkR’)
2r In (b/a)./; fo (ﬂ‘ + ) R®

(2 — 2') cos D' do' dp’

1 1 boom exp (—jkR')
E, =— ‘—f / o8 & P I
o in /). J, €7 R’
1 ) 1\ (p — p' cos @’)]
of — — k —_— - -7 ’ ’
[p (J +R’) R’ e’ dp” (31)

He = j:_rmln (b/a)f f = (_]kR :

E, =

(30)

d¢’ dp'.

(32)

However, there now may occur singularities of the order
(1/R"?) and (1/R’3) which would require significantly
more numerical integration time and, furthermore, we
will have three different integrands to contend with.,
Since numerical differentiation is not a frequently used
method, its aceuracy needs to be carefully checked. To-
ward this end we compare the results from the numerical

1L.OF T
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o i =
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] - X
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103+ AN s =
=
10°3 e A I
1.0 10 N 100
Fig. 7. Comparison of numerical solution to closed-form expressions

along 45° line with a = 0.06x, b = 0.065).

solution (7)-(16) with those from the axial form (25)
and the far pear-zone expressions (19)-(21) in their
respective regions of validity. Table I compares E, along
the z axis as calculated from (25), which is exact, and the
numerical solution using four-point differentiation. Close
agreement is noted even for z < a. Figs. 5-7 give the com-
parison between the closed-form expressions in the far
near zone and the numerical solution. In Fig. 5 the field
plot is along a 45° line (p = z = Nb), while Fig. 6 plots
the field in the plane of the frill for a small frill with
dimensions ¢ = 0.002\, b = 0.005A. Fig. 7 gives the results
for a larger frill (& = 0.06), b = 0.065)). As can be seen,
the numerical solution converges quite closely to the
closed-form expressions with increasing N (when (19)-
(21) become valid). In fact, farther away from the frill,
ie., at N > 100, where numerical differentiation is per-
haps least accurate, the agreement between the two
methods was found to be better than four significant
figures for all field components. From Figs. 5-7, the
switching from the numerical solution to the closed-form
expressions depicted in Fig. 4 can be empirically selected
as Ry = 100b.

As an additional check, the electric fields computed
using numerical differentiation, (12) and (13), are com-
pared to those using only numerical integration, (30) and
(31). Tables II and III give the E, and E, along a 45°
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TABLE II

CoMpARISON OF E,/k FOrR A FRILL witE DIMENSIONS (@ = 0.0037, b = 0.0051) ALoNG a 45° LINE

p=z{) Numerical Integration (30) Numerical Differentiation (13)
0.0005 0.5576263F 4 0 + j0.7576563 E-8 0.5574430E +- 0 + 70.4139300E-5
0.0015 0.4047861E + 1 4- j0.5202933E-7 0.4040245E + 1 — j0.1468615E-5
0.0035 0.4298512E -+ 1 <+ 70.4292032E-7 0.4299359EF +- 1 + 70.6686963E-6
0.0055 0.1683159EF + 1 — 70.2954753E-7 0.1683143E + 1 — 50.3253601E-6
0.0075 0.7301296E 4 0 — 70.1660948E-7 0.7302407E + 0 + 70.7756228E-7
0.0095 0.3711905E 4+ 0 — j0.6506248E-8 0.3712679E + 0 — ;0.1284663E-6

TABLE III

CoMpaRrIsoN OF E./k FoR A FRILL wite DmMENSIONs (@ = 0.003A, b = 0.005)) Arong A 45° LiNe

p=2z()

Numerical Integration (31)

Numerical Differentiation (12)

0.0005
0.0015
0.0035
0.0055
0.0075
0.0095

0.2047232F + 2 — j0.1278110E-3
0.1688541F + 2 — 50.1159331E-3
0.4387288F + 1 — j0.1070034E-3
0.1019517E + 1 — j0.1050501E-3
0.3493413E + 0 — j0.1045860E-3
0.1576679E + 0 — 70.1053756E-3

0.2046579EF -+ 2 — j0.1119673E-3
0.1688470F 4+ 2 — j0.1044982E-3
0.4387884EF + 1 — j0.1037690E-3
0.1019675F + 1 — j0.1042650E-3
0.3491055E + 0 — j0.1038956E-3
0.1576202E + 0 — j0.1035746E-3

Fig. 8.
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line for a frill with @ = 0.003\ and & = 0.005\. For these
P cases, because the observation distance is actually smaller
than the frill radius, a larger number of integration inter-
vals are required for convergence. As can be seen, the
agreement is excellent. It is also worth noting that (12)

0.003A

0.005 A
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Fig. 12. Near-field constant | E,/k | contours for short electric
dipole with constant eurrent distribution and length = 0.01x.

and (13) requires only one fourth the computer time
required by (30) and (31).

From the preceding agreement among the various
methods in their mutual regions of validity, it may be
concluded that the numerical procedures employed can
indeed efficiently give very accurate near-field informa-
tion. Typical computation time is 15 ms on the IBM 7094
computer. Furthermore, the ease with which numerical
differentiation may be used when functions are well be-
haved indicates that its use should be considered for other
electromagnetic field problems.

Near-field contour maps in the yz plane are now
presented for two different frill sizes. E,, Eo, and Hs (the
spherical components) are given in Figs. 8-10 for a small
frill with @ = 0.003\, b = 0.005\. The magnitudes are
normalized so that the total far-field radiated power from
the source is 1 W. Fig. 11 similarly gives the E, contours
for a larger frill, a = 0.06\, b = 0.0625\.

It is interesting to note that the well-known duality
between infinitesimal electric dipoles and magnetic loops
does not hold in the near field for sources that are merely
small. Fig. 12 depicts the E, contours for an electric line
source with a constant current and having the same overall
physical dimensions as the frill in Fig. 8. 1-W total radi-
ated power normalization is used also with E, computed
by summing over 100 ineremental dipoles. For a source
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for frill with @ = 0.003\, b = 0.005), and dipole length = 0.010x.
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Fig. 14. Comparison of electric dipole and magnetic frill source

H, near-zone patterns (R = 2b = 0.01)\).

even as small as 0.01), as can be seen by comparing Figs.
8 and 12, the near fields of magnetic loops and electric
dipoles are different. This difference is further illustrated
in the near-zone patterns for the two sources (Figs. 13
and 14), where E, and Hs are plotted as a function of 9
along a constant radius circle at » = 2b. If the sources
were infinitesimally small, then their patterns would both
coincide with the respective sine and cosine patterns
shown [14]. Hence duality for these small sources should
only be used at large observation distances.

Even though this paper considered contributions only
from the TEM mode in the coaxial aperture, the numer-
ical technique presented is not necessarily restricted to
this case. It should be possible to include the fields from
the higher order mode aperture currents by analogous
techniques once these currents are determined. For large
structures these contributions may be significant and the
method described in 87, [9] can be used for the solution
of these currents.

APPLICATIONS

While the near-field variation for the basic magnetic
ring source presents an interesting problem in its own
right, it is also quite useful for practical applications.
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Accurate near fields would be desirable for studies of
high-power breakdown phenomena in ring slot antennas
or mutual coupling effects among elements of an array of
such slots. In addition to these direct applications, exten-
sions may be made using the magnetic frill source as a
basic building block to analyze complex antenna geom-
etries which are fed coaxially. In the discussions to follow
several examples are briefly described which used the frill
either as a primary radiator or as equivalent sources.

Employing the magnetic frill as the driving source, the
impedance of the Yagi-Uda antenna has been success-
fully analyzed [157, [16]. Using a Fourier series expan-
sion for the currents on the wires with the coefficients
determined by point-matching techniques, the near fields
of the frill calculated by the method in this paper then
constituted the input, or the right-hand side, of the sys-
tem of simultaneous equations. Excellent agreement was
reported between caleculated and measured results for a
four-element array over a wide frequency range. Using
similar techniques, the problems of a coaxially fed circu-
lar loop over a ground plane and a ring slot antenna at
the base of a conducting cone were also successfully
treated [16].

Using the magnetic frills as equivalent sources, a syn-
thesis method was carried out for the solution of coaxially
fed dipole antennas symmetrically mounted on & conduct-
ing sphere or cylinder [127, [17]. The basic idea is that
an array of axially distributed magnetic frills can be
found which will approximately satisfy boundary condi-
tions on the spherical (or eylindrical) surface. Each frill,
of course, excites some current distribution on the wire
antenna with the superposition of the near fields from all
these sources constituting the total solution. Provided
boundary conditions are met, the equivalent source solu-
tion will then generate the same exterior fields and cur-
rents as the original structure with its solid conducting
sphere (or cylinder). For these problems also, close cor-
relation was obtained between measured and calculated
input admittances, radiation patterns, and resonance be-
haviors.

CONCLUSION

An analytically simple method has been obtained for
the calculation of near-zone as well as far-zone fields from
an anhular ring of magnetic current. For the near fields,
an efficient method was developed which uses numerical
integration and differentiation. Closed-form expressions
have also been derived for the far near-zone and along
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the axis of symmetry. From the close agreement among
the various formulations in their mutual regions of valid-
ity, a direct check on their accuracy was established. The
utility of this solution was further demonstrated through
its application in several practical antenna problems.
Because of its efficiency, accuracy, and utility, it is
believed that the techniques and results of this solution
may be useful for many other electromagnetic problems.
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