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-.. .... _.____.... .._. ....._______ __.. Ahstruct -A mathematical formulation of the equivalence principle is 
presented. This may lead to a better understanding and easier applications 
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of the principle. 

I. INTRODUCTION 

HE EQUIVALENCE principle in electromagnetics T has been well known for a long time, having been 
presented by Harrington [l] in a descriptive manner in his 
book. Recently, this principle has found many applications 
in problems involving the interaction of EM fields with 
material bodies. In these applications, accurate mathemati- 
cal formulations of this principle are needed. The purpose 
of this paper is to present a mathematical formulation of 
the equivalence principle that may lead to a better under- 
standing of the principle and make its application easier. 

11. MATHEMATICAL FORMULATION 
Consider a problem with a geometry as depicted in Fig. 

1. This geometry consists of region 2 with complex permit- 
tivity and permeability ( e,, p,), the volume V,, the bound- 
ary surf_ace+S, and the electric and magnetic source cur- 
rents (J., M , )  within V,. Region 2 is surrounded by region 
1 of infinite volume V, that h5s Gectric parameters of 
(e,, pl) and source currents of (J,, Ml) within V,. 

We aim to find the EM fields in regions 1 and 2 in terms 
of the given source currents and equivalent surface cur- 
rents on S.  In the process, we will derive a mathematical 
formulation of the well-known equivalence principle. 

Maxwell’s equations for regions 1 and 2 are 

Fig. 1. Geometry of the problem: region 2 with volume Vz. boundary 
surface S ,  electric parameters ( c 2 . p 2 ) ,  and source currents ( J2,  M , )  is 
surrounded by region 1 with infinite volume V,. electric parameters 
(c l ,p l ) ,  and source currents (.Ti,Ml). ( E , ,  H I )  constitute the EM field 
in Vl and ( E 2 ,  H , )  that in Vz. 

where Q and P‘ are two vector functions which are contin- 
uous up to their second derivatives within V,. S ,  is the 
total boundary surface for V,. We choose 

&F’>  = &+,(F’, r’> =iiexp(- jb1l?’- TI)/IF’- 71 ( 5 )  
Let us consider region 1 first and apply the vector Green’s where 
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In the above equations, F’ is an arbitrary SOUrce (integral- 
igg) point and 7 is a designated field (observation) point, 
El(?’ )  is the electric field at r“ within VI,  2 is a constant 
unit vector, and G1 is the unbounded Green’s function for 
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region 1. It is noted that if r’ is within V,, Gl will not be 
continuous at F“= r’ and it is necessary to remove this 
singularly point before (3) can be applied. 

We can also drive from (1) that 

+ 

(12) 
- j  

itl.El = -0.i itl X H1) 
When the field point r’ is an interior point within V,, 

such as 6 in Fig. 1, +l+oo as F’+<; thus we need to 
W E 1  

+ 

exclude this point with a small sphere having a small 
surface of S, as depicted in Fig. 1. Then the total bound- 
ary surface S, for V, will consist of 

if S is a smooth surface and no source current J1 is 
Present at S. If we use (81, (12) can be rewritten as 

-1 
S, = S + S, + S, (13) 

where S, is the infinite spherical surface enclosing the 
outside of V,. 

The substitution of (4) and (5) into (3), with the help of 
(1) and after a lengthy manipulation [ 2 ] ,  will lead to the 
following equation: 

where p1 is the electric source ckarge associated with 
the continuity equation of V. J1 + j w p ,  = 0. 

by 

It can be shown that 

j--[ 3 ds’= 4aZ1( 6 )  

based on the radiation condition. Thus, (6) becomes 

+ ( i t l . ~ l ) V ’ + l ]  ds‘. (7) 

At this point, we can define the equivalent electric and 

wherey, is the equivalent electric surface charge associated 
with J, by the continuity equation of V . J ,  + jwp,y  = 0. 

Substituting (8), (9), and (13) into (7) leads to 

The physical meaning of (14) is as follow_s: The electric 
field at an interior point 6 withn Vl,Ed<), is main- 
tained by the given source 2urLents (J , ,  M,)  in V, and 
equivalent surface currents ( J,, M,)  on the surface S while 
the medium of region Lis Leplaced by that of region 1 and 
the source currents ( J,, M , )  in V, are-rezoved. This is 
because the parameters ( e 2 ,  p2)  and ( J,, M,) do not ap- 
pear in (14) and the unbounded Green’s function +1 ap- 
pears in both the volume and-surface integrals in (14). 
From the appearaye ,Of (14), El( 6 )  is maintained by the 
source c>rr5nts ( J,, M , )  and the equivalent surface cur- 
rents (J, ,  M,)  located in the unbounded homogeneous 
region with electric parameters of ( c l ,  pl). 

Next, let us consider the case when the field point r’ is 
on the surface S, such as 6 in Fig. 1. For this case, we 
need to exclude the singularly point 6 from V, with a 
hemisphere which has a hemispherical surface S, as shown 
in Fig. 1 before we can use ( 3 ) .  With this S,, the surface 
integral over S, in (6) becomes 

Lo[ ] ds’ = 277Z1( 6 ) .  

magnetic surface currents as Therefore, (6) can be rearranged to give G ( 6 )  as 
+ + + 

J s ~ ‘ i X H , = - i t 1 X H l  
+ + + 

M, = - A x E , =  A ,  x El 

where A is the unit vector pointing outward from region 2 1 1 P5 
€1 

on S, and A ,  is the outgoing unit vector-of reg@ 1 on S. 
Since the tangential 2ompon:nts of E and H fields are 

conti~-~uous across S,  J, and Ms can also be expressed as 

(I0) 

+ 2, L[ - jwp,<+, - A?, X v’+, + -VI+, ds’. (16) 

Comparing (16) with (14), there is a factor of 2 between 
them. The surface integral in (16) is a principal value 
integral whch excludes the contribution from the singular- 

Lastly, if the field point r‘is located outside V,, or inside 
V,, such as 6 in Fig. 1, +1 is continuous throughout Vl. 
Therefore, we do not need to create a small sphere to 

- + 

+ + + (11) ity point. 
J , = ~ ~ x E ? ~ = A ~ x H ~  

M, = - A X E,  = - A, X E,  

where A ,  is the outgoing unit vector of region 2 on S ,  and 
it is in the same direction as it. 
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exclude the field point < from V,. Thus, ( 6 )  becomes 

+ (Al - l ? l )~ ’+ l ]  ds‘ for r‘= <. (17) 

Since the surface integral over S, is zero due to the 
radiation condition, (17) leads to 

for 7=<. (18) 

Now, if we try to express the ebctrjc field at < maintained 
by the given source curre_nts_(J,, Ml) in Vl and the equiva- 
lent surface currents (Js, M,) on S while replacing the 
medium in region: with that of region 1 and removing the 
source cuzrents ( J2, M2) in V,, we should have an expres- 
sion for E2(<)  of the following form: 

with r’= <. (19) 

Combining (18) and (19), we have 

Z2(<) = 0. (20) 
This is an-ntefesting result. It means that if the source 
currents ( J2, M 2 )  in V, are removed and the medium of 
region 2 is replaced by that of region 1 (to make t&e ?hole 
space homogeneous), then the source curKen2 ( J1, M,) in 
V, and the equivalent surface currents ( J , ,  M,) on S will 
maintain a zero electric field at any poi2t within region 2. 

We can derive simjlar_results fo: tke H field in regions 1 
and 2 in terms of ( J1, M I )  and (J , ,  M,): 

for r’= yi (interior point withn Vl) (21) 

for r‘= 6 (surface point on S )  (22) 

4 ”  

Fig. 2. When the source currents ( J , ,  M , )  in V2 are removed and the 
medium of region 2 is replaced with that of region 1, the source 
currents (J1, M I )  in Vl and the equivalent surface currents (4 .  M,)  on 
S will maintain the correct EM field (El, H I )  in V, and zero EM field 
( E 2 = H 2 = O ) i n  V,. 

where 

pml = -v .M, j +  and p,,, = -V.M,. j -  
0 w 

The results obtained so far are consistent with the 

We can repeat a similar derivation for region 2. Choos- 
equivalence principle. The situation is depicted in Fig. 2. 

ing 

F ( 7 )  =Z2(r’?) (24) 

and 

&T’) = i ~ ~ ( F ’ , r ’ )  = i e x p ( -  j f l 2 ~ r “ r ’ ~ ) / ~ r ’ ’ - - r ‘ ~  (25) 

where f12 = a&, and substituting P‘ and d into (3), we 
have 

= L 2 [ - j w P 2 ( ~ 2 ~ ~ 2 ~ + 2 + 1 ~ 2 ~ Z 2 j ~ ~ ~ + 2  

+ ( A 2’ E2 jv !G2] ds’. 

The total boundary surface S2 for V2 is 

S2 = S + S, 

where So is the surface of a small sphere (or hemisphere) 
for excluding the singularity point r’. It is noted that the 
infinite spherical surface S,  is not needed because V2 is a 
finite volume. 

Following the same manipulation used for the case of 
f i 7 (  6 )  = 0 for r’= < (outside of V,) (23) - .  - ,  region 1, we can obtain E2(3 at an interior point within 
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V, as 

+ ( 2 2. g2 )V '+,I ds'. 

U$ng_ the definitions of the equivalent surface currents 
(J,,M,) given in (10) and (ll), we can rewrite 

(7  is an interior point within V,) . (27) 

Notice that the equiv_alent surface currents wkch :an 
maintain the correct E field inside V2 are ( -  J,, - M,) ,  
which flow in opposite directions on S compared with the 
case of region 1, Eguation (27) implies that when the 
source currents ( J1, M , )  in Vl are removed and the medium 
of regon 1 is replaced by that of region 2 (to make the 
whole space homogeneous), the correct value of the electric 
field at an interior poi$ inside V, can be calculated from 
the source currents ( J2, M 2 )  in V2 and the negative equiva- 
lent surface currents ( -  J,, - M , )  on S .  

Similarly, the electric field at a field point on S can be 
expressed as 

+ +  

(Tis  on s ) .  (28) 

The electric field at a point outside V2 can be shown to be 
zero, 

I?,( 7') = 0 (;is outside V,) (29) 
+ +  

when it is m@nt_ained by ( J2, M 2 )  in V2 and ( -  X, - G,) 
on S after ( .I1, M , )  in V, are removed and the whole space 
is filled with the m5dium of region 2. 

Results for the H field in region 2 are similar to those 
given by (21) to (23) and are omitted here for brevity. 

Fig. 3 depicts the results obtained above for region 2. 
Again, these results are consistent with the equivalence 
principle. 

Js= n x H 
-.I. t 

S 

s, 
Fig. 3. When the source currcnts (J1,Ml) in VI are removed and the 

medium of region 1 is replaced with that of region 2, the source 
currents ( J 2 ,  M , )  in Vr and the negative equivalent surface currents 
( -  Js,  - M,)  on S will maintain the correct EM field ( E 2 ,  H 2 )  in V, 
and zero EM field ( E ,  = HI = 0) in VI. 

111. APPLICATIONS 

Mathematical formulations of the equivalence principle 
derived in the preceding section may have many applica- 
tions. An example is given here. A finite homogeneous 
body of arbitrary shape with complex permittivity and 
permeability of ( c , p )  located in space is _exposed to an 
impressed E+M field with an electric field E'" and a mag- 
netic field H'". We aim to determine the induced EM field 
inside the body. To solve this problem, we will first derive 
tyo integLal equatGns for the5quivalent surface currents, 
J, = A X H+and M,+= - A X E, on the b5dy surf5ce in 
terms of E'" and HI". After solving for J, and M,, the 
induced EM field inside the body can be easily calculated. 

Let us use the same geometry as th_at in Fig.?. The body 
is represented by region 2 with J2- and v2 removed. 
Regon 1 represents free space, and J1 and M ,  the source 
currents+for the impressed EM field. 

The E field at a point Fon the body surface S in region 
1 side is given by (16) as 

The volume integral of the above equation can be easily 
identified as twice the impI;essed electric field at the body 
surface, or it is equal to 2 E ' " ( q .  Thus, 

+ %V'$J,] ds'. (30) 
€ 1  
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The E' field at the same point r'on S but in region 2 
side is given by (28) as 

&! (F )  = - / - j W P 2 (  - t) $, - ( - G,) x Vf$2 
277 l [  s 

because 
Since the tangential _componeqt of the E' field is contin- 

uous across S,  or iZ X E, = ii X E,, we can obtain from (30) 
and (31) an integral equation as 

and G2 have been removed. 

-p,v' -+ -  d ~ ' = 4 ~ i i X @ ' ( r ' ) .  (32) r: 11 
Similarly, from the continuity of the+ tangent@ compo- 

nent of the H field across S,  or ii X H, = ii X H2,  we can 
derive another integral equation as 

These two i_ntegral_equations can be numerically solved to 
determine J, and M, by using the method of moments and 
vector basis fun_ctions with triangular pgch modeling [3]. 
After J, and M, are determined, the E field inside the 
body can be easily computed by using (27). 

As a numerical example, the equivalent electric and 
magnetic surface currents, J, and M,, induced by a plane 
EM wave on the surface of a dielectric sphere have been 
computed based on (32) and (33), and the results are 
shown in Figs. 4 and 5. The electrical size of the sphere is 
&a =1,  where PI is the free-space propagation constant 
and a is the radius of the sphere. The permittivity of the 
sphere is c 2  = 4r, and the permeability is pCLz = p,,. The 
plane EM wave is incident upon the sphere from the 
direction of 8 = T .  The induced electric and magnetic 
currents along a circumferential arc on + = 0 are plotted as 
functions of 8 in Figs. 4 and 5. Along the arc, there are 
two components of the electric surface current, JSc and 
JS+, and two components of magnetic surface current, M,, 
and Mss. The values of J, are shown normalized to the 
incident magnetic field Hi" and those of M, are normal- 
ized by the incident electric field Ein. 

To verify the accuracy of the numerical results, they are 
compared with the exact solutions of Mie series. The 
numerical results are indicated by small triangles and the 
exact solutions are plotted in solid lines in Figs. 4 and 5. It 
is observed that very accurate numerical results can be 

- Mie series 
A A numerical results 

Fig. 4. Equivalent electric surface currents induced by a plane EM 
wave on the surface of a dielectric sphere with &a = 1, z = 4z,, and 
p = p o .  The plane EM wave is incident upon the sphere from the 
direction of 8 = n and the surface currents are on a circumferential arc 
of $J = 0. 

'1 

~ Mie series 
A A numerical results 

0.2 1 I I 1 

0 1 2 3 

8 ( rudiun ) 

Fig. 5.  Equivalent magnetic surface currents induced by a plane EM 
wave on the surface of a dielectric sphere with &a =1, z = 4q,, and 
p = p o .  The plane EM wave is incident upon the sphere from the 
direction of 8 = n and the surface currents are on a circumferential arc 
of $ = O .  

integral equations for the induced equivalent surface cur- 
rents. 
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