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Combine the first and fifth terms; their absolute value
is approximately equal to

+ j [cos (-sin a) - cos (k sin -)] < 0.00007,

which we drop. The same can be done with terms six
and eight, which are less than 0.00004. Dropping term
nine introduces a maximum error of 0.0035 (in view of
the maximum value of the Bessel function after its first

minimum and in view of the maximum value of a),
and term ten is less than 0.0002 so that it also can be
dropped.
Terms two and three combine, with no error, to form
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if we note that the first derivative of sin x/x is

I sin x\
g9(X) = C(CosX- X)
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Terms four and seven combine by the recurrence for-
mula for the Bessel functions.
The maximum error is certainly not greater than the

numerical sum of all the errors listed, viz., 0.004 (3 db
at 20 db down).

A Note on Super-Gain Antenna Arrays*
NICHOLAS YARUt, STUDENT, IRE

Summary-Numerical calculations have been made for linear
broadside super-gain arrays. Using arrays having an over-all length
of a quarter wavelength as an example, it is shown that as the re-
quired directive gain is increased, tremendous currents are required
to produce only a small radiated field. For a 9-element array which
produces a power gain of 8.5, the currents must be adjusted to their
correct value to an accuracy of better than 1 part in 1011. The ef-
ficiency is less than 10-14 per cent.

7ff HE THEORETICAL POSSIBILITY of obtain-
ing arbitrarily high directivity from an array of
given over-all length appears to have been pointed

out first in 1943 by Schelkunoffl in connection with end-
fire arrays. In 1946, Bowkamp and de Bruijn,2 discuss-
ing the problem of optimum current distribution on an
antenna, concluded that there was no limit to the di-
rectivity obtainable from an antenna of given length
(or broadside array). In 1947, Laemmel3 gave source-
distribution functions for small high-gain antennas. The
extension of the results of Bowkamp and de Bruijn to a
two-dimensional current distribution was considered by
Riblet.4 In a discussion of Dolph's5 paper on an optimum
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current distribution for broadside arrays, Riblet6 showed
that if spacings less than one-half wavelength were con-
sidered, the Tchebyscheff distribution used by Dolph
could be made to yield an array having as great a di-
rectivity as might be desired.

Arrays which are capable of producing arbitrarily
sharp directive patterns for a given aperture or over-all
length have become known as super-gain arrays. That
such arrays might be possible in theory but quite im-
practical to build is almost to be expected. The papers
mentioned above do not concern themselves with this
aspect of the problem, but several other authors7'- have
indicated some of the practical limitations. Wilmotte5
pointed out the low radiation resistance and efficiency
of such arrays, and later Chu' gave a completely general
answer to the problem in terms of the maximum gain-Q
ratio obtainable from a system of given size.

It is the purpose of this paper to carry through a
typical super-gain array design in order to obtain nu-
merical answers for some actual cases. These will serve
to demonstrate the rapidity with which the design be-
comes impractical as the directivity is increased. Schel-
kunoff's method for the analysis of linear arrays is em-
ployed with the arrangement of nulls being made in ac-
cordance with the Tchebyscheff distribution as sug-
gested by Riblet. The numerical results are rather sur-

6 H. J. Riblet, Discussion on "A current distribution for broad-
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side-lobel level," PROC. I.R.E., vol. 35, pp. 489-492; May, 1947.
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systems," Jour. Appl. Phys., p. 1163; December, 1948.
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prising and point up some interesting facts concerning
such arrays.

It will be recalled that the basis of Schelkunoff's anal-
ysis is his fundamental theorem that every linear array
with commensurable separation between its elements
may be represented by a polynomial, and, conversely,
every polynomial can be interpreted as a linear array.
Furthermore, a recognition of the correspondence be-
tween the nulls of the array pattern and the roots of a
complex polynomial on a unit circle in the complex
plane leads to a combination analytical-graphical tech-
nique for determining antenna current amplitudes and
phases and for obtaining a detailed plot of the directive
field pattern.

In this analysis the relative amplitude of the electric
field intensity for a linear array of n equispaced elements
is represented by

E = aoeiao + aieii+ial + aiei2#±ia2 +
+ an-2ein- 2)#+jan-2 + ej(n-)l (1)

where '=fd cos 0+a and ,B = 2r/X.
In the above expression, d is the spacing between ele-

ments. The coefficients ao, a1, a2, and so forth are pro-
portional to the current amplitudes in the respective
elements. The factor a is the progressive phase shift
(lead) from left to right between successive elements;
a1, a2, and so forth are the deviations from this progres-
sive phase shift.

Fig. 1 A linear array.

By substituting Z = ei and Am = amelem, (1) becomes

E = Ao + A1Z + A2Z2 + + An_2Zn-2 + Zn-1 (2)

The transform Z = ei is a complex quantity whose
modulus is one and whose argument 4' is real and a func-
tion of q5 (the angle between the line of arrival of the sig-
nal and the line of the array). Hence, the plot of Z in the
complex plane is always on the circumference of a unit
circle. Each multiplication by z =ei represents a dis-
placement through an arc of 4' radians.
The polynomial (2) may be written also in the form

of the product of (n-1) binomials; thus,

(3)
where t1, t2, , tn_1 are the zeros of the polynomial and
correspond to the null points of the array. Accordingly,
by (3), the relative amplitude of the radiated field in-
tensity in any direction is given by the product of the

distances from the null points on the unit circle to the
point Z which corresponds to the chosen direction.
As a consequence of this correspondence between the

nulls of an array and the roots of a complex polynomial,
it is possible to obtain a relative field-strength plot andl
antenna-current ratios for a specified radiator spacing,
and an arbitrary location of the nulls oIn the unit circle.
The graphical-mathematical methodl inivolves the ex-
pansion of (n- 1) binomials.

In the expression q -=d cos k+a, 41 varies from
(fd+±a) to (-3d+±a) as 0 ranges from 0 to 180 degrees,
and the range described by 4 is (fd+a)-(-d+a) = 23d.
It is apparent that the current ratios and array pattern
will vary with different location of the nulls in the range
of 41. For spacings less than a half wTavelength, Schel-
kunoff has shown that an end-fire array with its null
points equispaced in the range of 4 on the unit circle,
has a narrower principle lobe and smaller secondary
lobes than a uniform array (one whose null points are
equispaced over the entire unit circle). If the current
distribution of the array is always nmade to be that whiclh
corresponds to equispaced nulls in the range of 4', it ap-
pears possible to increase indefinitely the directivity of
an end-fire array of given length by inicreasing the num-
ber of elements and decreasing the spacing between
them.
When this same technique of equispacing the nulls in

the range of 4' is applied to a broadside array of given
length, the pattern does not improve as the number of
elements is increased, but, instead, deteriorates for spac-
ings less than X/2. However, if the nulls on the unit
circle are spaced in the range of 4' according to a
"Tchebyscheff distribution," a super-gain pattern re-
sults when a large number of elements at small spacings
is used.
The properties of the Tchebyscheff polynomials"0 were

used by Dolph5 to obtain the optimum patterni of a
broadside array for which the spacing between elements
is equal to or greater than X/2. The Tchebyscheff poly-
nomials are defined by

Tn(Z) = cos In cos-i Z] for - 1 < Z < + 1
Tn(Z) = cosh [n cosh- Z] for Z > 1.

Graphically all the roots of Tn (Z) occur between
Z = + 1 and the maximum and minimum values of
Tn(Z) lying between Z= +1 are alternately T,(Z)
= + 1 (see Fig. 2). For ZI >1, it can be shown that
Tn(Z) increases as Zzn. Derivations from the defini-

tion of the Tchebvscheff polynomials show that
To(x) = 1; Tl(x) =x; T2(x)=2x2-1, and so fortlh.
Higher-order polynomials may be derived from the fol-
lowing equation:

Tm+i(x) = 2Tmn(x)Tl(x) - Tw,,4(X).

It is evident from an inspection of Fig. 2 that a pat-

10 Courant and Hilbert, "Metloden der Mathe matischen
Physik," Julius Springer, Berlin, Germany, vol. 1, p. 75; 1931.
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tern may be obtained whose side lobes are all down an
equal amount from the main lobe and that the ratio of
the main lobe to the subordinate lobes may be deter-
mined by using the proper portion of the Tchebyscheff
function.

T4(Z)

_v20

_ _ _ __ _ _ ~16

~12

8

4

-2 0Z 2 Z

_-4

Fig. 2-Fourth-degree Tchebyscheff polynomial.

For 2n +1 elements, symmetrical in spacing and cur-
rent about the center element, the expression for the

0- O O-O -O-O
A2 Al 2AO Al A2

Fig. 3-Symmetrical linear array.

relative field strength can be found directly from (2). It
is

E =Ao+Al cos t+A2 cos 2A+ +A,,+A cos n, (4)

with /=3d cos 4 since a= 0 for broadside arrays. Sub-
stituting x=cos 4A in the above expression yields the
polynomial

E =Ao+Aix+A2(2x2-1)+ * * +AnTn(x). (5)

Expression (5) is a summation of polynomials, and it
appears feasible, therefore, to design an array pattern
exhibiting the useful properties of a Tchebyscheff plot.
A linear shifting of the desired portion of the Tcheby-
scheff polynomial of correct degree into the range de-
fined by x = cos 41 for the given array, and the equating
of coefficients of (5) to those of the transformed Tche-

byscheff function, permits the determination of the rela-
tive current distribution (A1, A2, A3, An). Knowing the
positions of the nulls, the Tchebyscheff pattern is ob-
tained from (3) by the method previously indicated.
As an example, consider a nine-element broadside

array whose total length is X/4 (spacing between ele-
ments d =X/32). The side-lobe level is to be 1/19.5 of the
main lobe. Since there are nine elements, the array
should have 8 nulls on the unit circle within the range of
A', and 8 nulls in the range of the Tchebyscheff pattern
which is used. It is possible to select the polynomial
T4(x) (see Fig. 2) and use the whole range from x = -1
to xo (point at which T4(x)=19.5) and back to -1.
With d=X.32, ik=,3d cos q$=r/16 cos 4; x=cos ,6=cos
(r/16 cos4).
When

4)= 0°', x=cos 7r/16
4)= 900, x=1

4= 180°, x = cos r/16.

Hence, the desired portion (x = -1 to xo) of T4(x)
must be shifted into the array range of cos ir/16 to 1.
The point xo may be calculated from

T4(xo) = 8x4- 8xo + 1 = 19.5

XO 1.449.

The shift of T4(x) is accomplished by the linear trans-
formn x' = ax+b.

Therefore, (5) for a nine-element array becomes

ER = Ao + A1x + A2(2X2 - 1) + A3(4x3- 3x)
+ A4(8x4 - 8x2 + 1)

= 8(x')4 - 8(x')2 + 1
= 8(ax + b)4 - 8(ax + b)2 + 1. (6)

At this point the question arises as to what accuracy is
required in the computations in order to achieve a rea-
sonably accurate result. By using the general error for-
mula,"1 it is shown below that the error in coefficients a
and b must be less than 10-9 in order that current dis-
tribution A1, A2, A3, A4 be accurate to one decimal place.

In (6), 8(x1)4 = 8a4x4+ 32a3x3b+48a2x2b2 +32axb3+8b4
and 8(x')2=8a2x2+16axb+8b2. An error ba in a would
have its greatest effect in the 8a4x4 term (a> 1). Neg-
lecting high-order infinitesimals

aN dN aN
6N= -AUl + -- 6U2 + +-3UnlIg1au, C2 d'au"

where N denotes a function of several independent vari-
ables (ui, U2, un). Using the above expression, where
N=8a4, for a variation in a, AN is 32a36 a. For the ex-
ample chosen, the approximate values of a and b de-
termined from substitution in x'=ax+b are 126.9 and
125.5, respectively. Hence, if the figures A1, A2, A3, and

11J. B. Scarborough, "Numerical Mathematical Analysis," Johns
Hopkins Press, Baltimore, Md., p. 7; 1946.
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A4 are to be accurate to 1 decimal place, 32a3 3a <0.1
and

0.1
ba < 10-9.

(32)(126. 9)3

Consequently, the first requirement is to determine (a
anid b to this accuracy; x =cos 7r/16 must therefore be
found to this same degree of exactness. After carrying
out the computation of (6) to this degree of accuracy,
the current distribution (Al, A2, A3, and A4) may be
considered to be accurate to one decimal place. Any
numerical calculations not maintaining this degree of
accuracy are worthless, as may be seen from the follow-
ing calculations for the example. For this particular ar-
ray of nine elements, the current ratios are as follows:

Ao= 8,893,659,368.7,
A I - 14,253,059,703.2,

A2= 7,161,483,126.6,
A3 - 2,062,922,999.4,

A4 260,840,226.8,

and (4) becomes

ER = 8,893,659,368.7

-14,253,059,703.2 cos coscs(16

+ 7,161,483,126.6 cos (-cos q)
8

37r \
-2,062,922,999.4 cos

1
jCos

+ 260,840,226.8 cos (- cos ) . (7)

The antenna pattern (portion of T4(x)) is available
from direct substitution of q in the above expression.
The accuracy requirements in the computations can now
be demonstrated. Broadside to the array (direction of
maximum radiation) where ¢ =90 degrees, (7) is evalu-
ated as

ER = 8, 893, 659,368.7 - 14,253,059,703.2
+ 7,161,483,126.6 - 2,062,922,999.4

+ 260,840,226.8.

The sum of the positive terms is 16,315,982,722.1 and
the sum of the negative terms is - 16,315,982,702.6. The
resultant |ERI is 19.5, the value specified for the ratio
of the major lobe to the side lobes. End-fire to the array
4=0 or 180 degrees, and (7) takes the form

7r~~~~~~~7
ER = 893,659,368.7 - 14,253,059703.2 cos

16

+ 7,~161,~483,5126.6 cos-

- 2,062,922,999.4 cos
31

16
7r-

+ 260,840,226.8 cos
4

T he numerical values for the trigonometric functionis
must be accurate to the same number of significant
figures as are the coefficients. The resultant |ERJ for
the end-fire direction is 1.0. Calculations having an ac-
curacy that would normally be considered adequate-
four or five significant figures-cannot be used to obtain
the correct current distribution and array pattern from
(7). The resultant ER in (7) is the difference between
large numbers, nearly equal, such that significant figures
(to the left) are lost. In this example, 12-figure accuracy
was necessary at the start in order to end up with only
2 or 3 figures.

It is interesting to note that the pattern obtained by
the graphical method from the location of the nulls on
the unit circle does not require this high degree of ac-
curacy. Solution of (6) maintaining accuracy to 4 signifi-
cant figures, and the determination of the nulls from the
roots of (6) affords sufficient information to plot a fairly
accurate pattern. This is because this method involves
the product of the lengths from the (n - 1) null points
on the unit circle to the point Z corresponding to a
chosen direction. TIhe final result is as exact in significant
figures as are contained in the least accurate factor. In
Fig. 4 there is shown the pattern for the nine-element
arrav of this example as calculated (graphically) from
(3), using 4 figures, or alternatively from (7) using 12
figures.

$ - ANGLE BETWEEN LINE OF ARRIVAL OF SIGNAL AND LINE OF ARRAY

Fig. 4-Broadside "super-gain" patternis for three-, five-, seven-, ain(1
niine-element arrays with anl over-all array length of quarter
wavelength.
-__-_- - Three elements, d=X/8

- - -- Five elements, d=X/16
- - - - - - - - - - - - - -Seven elements, d=X/24

Ninie elements, d=X/32

Examination of the numerical results for the 9-ele-
ment example indicates some of the practical shortcom-
ings of super-gain arrays. In this example, currents of
the order of 14 million amperes are required in the indi-
vidual elements in order to produce in the direction of
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maximum radiation a field intensity equivalent to that
which would be produced by 19.5 milliamperes flowing
in a single element. Moreover, it would be necessary to
maintain these currents, as well as the spacing between
antenna elements, to an accuracy of about 1 part in 1011
if the super-gain pattern is to be obtained.

In order to illustrate the rapidity with which the de-
sign becomes impractical, the curves of Figures 4, 5, 6,
and 7 have been drawn. Fig. 4 shows the directivities
obtainable from an array that has an over-all length of
one-quarter wavelength when the number of elements
used is 3, 5, 7, and 9, respectively. In Fig. 5 these di-
rectivities are expressed in terms of directive gain over a
single element. As the number of elements is increased

10

7 - - _ _

2
Ir = _./

04

a.

0 1 2 3 4 5 6 7 8 9 10
NUMBER OF ELEMENTS

Fig. 5-Power gain of Tchebyscheff arrays over a single element.
The array length is X/4 in each case.

and the spacing between elements is correspondingly
decreased, the required currents become very large for
any appreciable radiation. The accuracy with which
these currents must be adjusted in order to obtain the
calculated super-gain patterns within 0.5 per cent is
shown in Fig. 6.
The exceedingly large currents required cause large

ohmic losses with resultant low efficiencies. In general,
most of these losses will occur in the coupling and
matching networks (and in the ground system if mono-
pole antennas erected on a finitely conducting earth are
being considered). However, for the efficiency calcula-
tions, the results of which are shown in Fig. 7, only the
ohmic losses in the antenna elements themselves have
been considered. For the purpose of illustration, the an-
tennas have been assumed to be half-wave dipoles at
10 mc, constructed of copper with a diameter of 1 cm.
The resultant efficiencies under the assumptions are
shown in Fig. 7. When matching network losses are con-
sidered, the actual efficiencies would be much lower.
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Fig. 6-Current accuracy required to obtain Tchebyscheff super-gain
patterns correct to 0.5 per cent.
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Fig. 7 Per cent efficiency of Tchebyscheff arrays versus number of
elements in a quarter-wavelength array.

ACKNOWLEDGMENTS

Acknowledgments are due H. A. Elliott of McGill
University for his observance of the accuracy require-
ments in the computations, and G. A. Miller of National
Research Council, Ottawa, Ont., Canada, for comments
and suggestions. The writer is indebted to E. C. Jordan
of the University of Illinois for his guidance on this
problem which arose in connection with an investigation
of antenna systems suitable for radio direction finding.
The radio direction-finding research program at the
University of Illinois is sponsored by the Office of Naval
Research under Contract No. N6ori-71-Task XV.

*I I.L

1951 1 085

-

SW


