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We can also predict rotations of polarization upon in-
cidence at, and transmission through, the second bound-
ary A'C '(Fig. 2). In like fashion, these "exit Kerr
angles," B8 and 64, can be shown to be the negative of the
corresponding "entrance Kerr angles" 61 and 62. In
short,

61 = - 83 = 1/2(4L' - OR)
82 = 84 = 1/2(4L" - q5R )
55 = 1/2(#R - 3L) Z.

(22)
(23)
(24)

IV. CONCLUSION

Summarizing, this treatment establishes
1. A quantitative description of the Kerr magneto-

optical effect.

2. The existence of five angles of rotation of polar-
ization in the complete passage of electromagnetic radi-
ation through a magneto optically active material:

61, upon reflection from the first interface
82, upon transmission across the first interface
63, upon reflection from the second interface
84, upon transmission across the second interface
85, during propagation in the active medium
8s and 81 being, respectively, the angles of Faraday

and Kerr.

3. The dependence of 61, 62, 83, and 64 upon the mate-
rial constants of the media immediately adjacent to
the entering and exit surfaces of the active material.

A Method for Calculating the Current Distribution
of Tschebyscheff Arrays*

DOMENICK BARBIEREt

Summary-Dolph has derived an optimum current distribution for
equispaced broadside arrays based upon the properties of the
Tschebyscheff polynomials.' Design curves are given for arrays of 8,
12, 16, 20, and 24 elements. The equations to be computed are bulky,
however, so that the numerical calculations become cumbersome for
arrays of more than 24 elements. In this paper, the equations of
Dolph's method are considerably simplified by algebraic means with
no loss in exactness. The final current expressions are given in a
closed, exact form. It is also shown that the expressions for the cur-
rent elements may be easily tabulated. A table for a 24-element
array is constructed as an example which may readily be extended
to arrays of any number of elements.

DISCUSSION
A BRIEF REVIEW of Dolph's derivation will first

be given. It is shown that the "Tschebyscheff
current distribution" may be calculated after

either the side-lobe level or the position of the first null
is specified. The "Tschebyscheff pattern" resulting from
this current distribution is optimum in the sense that
(a) if the side-lobe level is specified, the beamwidth of
the resultant pattern can be proved a minimum, or
(b) if the beamwidth is specified, the side-lobe level will
be a minimum. A detailed calculation of the pattern is
unnecessary since the character of the pattern, in par-
ticular the side-lobe and null positions, is completely
specified from the well-known properties of the Tscheby-
scheff polynomials. In a later paper, Riblet2 extended
Dolph's method to remove some of its limitations.

* Decimal classification: R325.11 XR242. Original manuscript re-
ceived by the Institute, July 24, 1950; revised manuscript received,
April 30, 1951.
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It is well known that the radiation pattern of a
linear equispaced broadside symmetric array of point
sources is proportional to

E2N(0) E [2k-iC(2dS ] | (1)
N F/27rd\

E2N(0) = E Ik cos k-- sin 0j , (1')

where (1) and (1') apply to an even number (ZN) and
an odd number (2N+1) of elements, respectively. The
variable 0 denotes the angle between the direction of the
field to the distant point P and the normal to the ar-
ray, d is the element spacing, and Ik represents the cur-
rent in the kth element from the center of the array. The
above equations are valid only if all the currents are in
phase along the array. An extension of the method for
out of phase currents is given by Riblet.2
The odd and even cases were developed simultane-

ously by Dolph. However, the equations for both cases
are fundamentally similar, differing essentially in the
matter of superscripts and subscripts. In the section of
this paper reviewing Dolph's material, therefore, the
even case only will be discussed.

Introduction of the new variable
7rd sin 0

simplifies (1) to
N

F2N-1(u) = E Ik cos (2k - 1)u,
k=1

(2)

where, henceforth, only the absolute values of all pattern
expressions will be considered so that the absolute value
signs may be omitted.
A term of the form cos nu may be expanded into a

polynomial in powers of cos u whenever n is an integer.
More exactly, it can be verified that
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IC 2k-1 2q-1
cos (2k - 1)u = x A2qilX (3)

q-1

where
42k :i(lk- ±(P)(2k 1)

p .k-q(p- k + q) 2p
n) n

x = cos u and m -
\m m!(n- m)!

When (3) is substituted into (2) and the summation
signs rearranged, the pattern equation, F2N1(U), takes
the polynomial form

N N 2k-i 2q-1
G2N-1(X) = kA2q-JX ,(4)

q-1 k=q

where x is restricted to xI = cos u <1.
It will now be shown that with suitable values of the

currents (Ik) the antenna pattern described by the poly-
nomial (4) may be made to coincide with the pattern of
an appropriate Tschebyscheff polynomial, which in turn
possesses all of the previously mentioned optimum
properties. The nonnormalized Tschebyscheff polyno-
mials are defined by

T,(z) = cos (n arccos z); z | 1, (5)

where n is an integer. Clearly, the maxima and nulls of
(5) are given by

kir
|Tn(z)= 1 for z=cos k=O, 1, 2, ***,n (6)

n

Tn(z) =0 for z-cos (2k-1)-;
2n

k= 1,2,* ,n.

Tn(z) is also of the form cos nq5, where -=arc-
cos z and n is an integer. Therefore, it may be converted
into a polynomial in powers of cos 4) = cos (arccos z) = z.
Expansion of T2N1(z) using (3) yields

T2N-1(-Z) cos [(2N - 1) arccos z]
- 2N-1 2q-1.

q=1

Forms (5) and (7) of the Tschebyscheff polynomial
are equivalent. Whenever Tn(z) is expressed in the
finite polynomial form (7), the limits of z may be ex-
tended to + Xo. In the region zj . 1 forms (5) and (7)
yield the same results, with (5) simpler for computa-
tional purposes. However, for lzl >!1, the polynomial
form only is valid. Equations (7) and (4) are similar in
form, except that while IxI =Icos u| .1 in (4), the
limits of z above are + t. Nevertheless, the two poly-
nomials may be made to correspond exactly by restrict-
ing the variable in (7) to z<zo, where zo is an arbitrary
parameter, and setting x = cos u = z/zo.

Equation (7) may now be written

T2Nl(zox)=E A2q-1ZO x '(8)
ql1

where XI .1. Equations (8), representing the Tscheby-
scheff polynomial Ilmited to the region within + zo, and
(4), representing the antenna pattern, are now in the
same form. Corresponding coefficients may be equated
and solved for the currents. Thus

N 2k-1 2N-1 2q-1
Z I1A2qi A2q-1ZO ; q 1 ,...,N

k=q

whence
1 2N-l 2q-1

Iq.= ~ A2q-1ZO2q-1
A2q-1

2k-!- E IkA2q-l
k-q+l J

(9)

(10)

If the I's are computed from (10), the resultant field
pattern given by (4) will agree with the Tschebyscheff
pattern shown in (8). The side-lobes and nulls of the
antenna pattern will coincide with the maxima and
minima of the Tschebyscheff pattern given by (6) and
will occur in the region zox .< 1. In the region 1 . zox
<zo, the Tschebyscheff polynomial rises very steeply.
This portion will represent the main lobes whose shape
may be deduced from the polynomial form of Tn(zox).
It was proven rigorously by Dolph that the Tscheby-
scheff pattern yields a minimum beamwidth when the
side-lobe levels are known and a minimum side-lobe
level when the beamwidth is specified.
The adjustable parameter z0 may be calculated when

either the side-lobe level or the beamwidth (position of
the first null) is given. In the first case, zo must satisfy
the equation T2N-1(Zo)=r, where r/1 is the specified
main-beam to side-lobe ratio. Since r> 1, zo must be
evaluated from the polynomial form of T2N-1(Zo). How-
ever, Dolph2 derived a simpler formula for computing
zo from still another form of the Tschebyscheff poly-
nomial. The final result is

Zo = tI (r+ /r2- 1)1/ (2N-1)+ (r- V\r2 - 1) I/ (2N-1) }

From (6), the nulls of T2N-1(zox) are at

=2k-) 7r

KOX=O
2 2N - 1J'

(11)

whence
7r

ZOX10 = Cos
2(2N -- 1)

defines the position of the first null. When Oo is specified
as the angular position of the first null, zo may be de-
duced from the relations

1 7r
zo = cos -x10 2(2N -1

Ird
x=° cos u10 = cos sin 001.

It is hoped the short synopsis of Dolph's material
presented above is sufficient so the remainder of this
paper may be understood. For a more detailed account
of the method, the reader is referred to the original
sources.
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It is evident that the numerical work involved in cal-
culating the current distribution from (10) and zo from
(11) can become extremely tedious as the number of
elements increases. In the discussion that follows, a sim-
ple method of computing the I's is derived whereby the
currents will be given immediately in simple terms of
zo. Also, a very rapid method for computing z0 will be
given.
We may equate (2) to (8) so that

N N

E Ik cos (2k - 1)u = EA2_1 zo (cos u) (12)
kc=1 N Ni

Z Ik cos (2ku) =E A
2

2q(cos u)2, (12')
h=O q=O

where the odd case has been reintroduced. The left sides
of the above equations may be treated as parts of a
Fourier series. Thus, if both sides of (12) and (12') are
multiplied by cos (2k - 1)u and cos (2k)u, respectively,
and integrated from 0 to 27r, there remains only

N s2w
2N-1 2q-1

71k =EA2N-12A-1 CoSiu cos (2k - 1)udu (13)
q=l1

N 2N ,,2w
Ilk =- A2qZo cos2q u cos (2ku)du. (13')

The integrals above are of the form
2 x

cos14 x cos nxdx,
where m and n are arbitrary integers. Using forr
360 and 267 of Pierce's tables, it can be seen that

2r2
T costm x cos nxdx

27r{(
m + n m+nn 2

/mn+ 1\12n 1

\m-n + 2/ m-J

with the restriction that m . n and m- n be even. V
n>rm or mr-n is odd, the integral is equal to zero.
ting mr=2q-1, n=2k-1 for (12) and mr=2q, n=2
(12') yields for the currents

N 2121f(2q-1I 2q-2
Ik= E A 2q-1 ZO {2(...)( q--kjAg \2q+2k-2,/ 2q+2k-4/

,2q- 2k+ 1\ (2q-2k-1\ (12
\2q-2k+2/ 2q-2k /

N 2 {2q 2q 2q-21
q=k 2q+2k 2q+2k-2J
/2q-2k+ 1 (2q-2k-1\1 1~~~~~. . (12
\2q-2k+2/ 2q-2k/

where mrnn(q.k).
If the numerator of the bracketed expressio

(15) is multiplied by (2q-2k) (2q-2k-2)

-= (q - k) !2 q, it then becomes equal to 2 (2q - 1)! Thus,
the nurnerator in question may be written as (2q- 1)!
/('q-- k) !2q-k-1. The denominator of this expression may
be written as 1/(q+k- 1) !2q+k-1. The substitution of the
above into (15) and the application of a similar ma-
nipulation to the bracketed expression of (15') yields

N2N-1 2q-1 (2q - 1)!Ik = A2q-1 ZO
q=k (q - k)!(q + k - 1)!22q-2

2N 2q (2q)!
Ik= EA2fl ZO

q-k (q - k) !(q + k) !22q-1

(16)

(16')

where (16) is for an even number (2N) elements and
(16') for an odd number (2N+1) elements.
Further simplification is still possible by incorporat-

ing the A's, or Tschebyscheff coefficients (see (7)), into
the factorial expression. The Tschebyscheff polynomial
is actually a particular form of Gauss's hypergeometric
series and may be written3

T x=221
n (n)(n -3)

1!22 2!24
(n)(n - 4)(n-5)J 6+(17)

3!21

With some manipulation, it can be seen that Tn(x) ma)
also be written in the alternate form

n

T (x) = Z (-1)(n-m)I222n-1
m=O,1

n( n- \1m
t

/n-m\
Im!2n-,n

\2

(18)

where mr=n, n-2, n-4 * * - 0, or 1. By comparing (18)
with (7), the Tschebyscheff coefficients become

A2N-1 (1N-22N-2 (2N - 1)(q + N - 2)!
19A2q:1l

(N - q) !(2q - 1) !22N-2q
2N (- N-q22N-1 (2N)(q + N - 1)!

(N - q)!(2q)l! 2N-22zq
Introducing the results (19) and (19') into (16) and
(16') yields finally

N (2N-1)(q+N-2)!

(15) q=ck (q-k)!(q+ k-1)!(N-q)!
N (2N)(q+N-1)!

q=k: (q-k)!(q+k)!(N-q)l

(20)

(20')

where (20) and (20') apply to 2N and 2N+1 element
( arrays, respectively.

(15') Equations (20) and (20') are most readily solved by

3H. Margenau and G. Murphy, "Mathematics of Physics and
n in Chemistry," Van Nostrand and Co., Inc., New York, N. Y., p. 74;1943. This equation is given incorrectly in the earlier editions of the

2 book.
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constructing a table of coefficients wherein the Ik's form
the rows and the zo's the columns. See Table I for 24
elements. The 24-element case was solved by Dolph,
and is introduced here as a check on the new method
of attack. The results agree perfectly with those of
Dolph, and yet were obtained with only a few hours
of computation. The table shows that once the upper

left-hand corner is constructed by substituting for q, N,
and k the remainder of the table may be readily ex-

tended from sequence considerations.
The tables also lend themselves to quick checks for

errors. The sums across the rows, which are actually

the current values for zo= 1, should equal zero for all
the currents except the final one, IN. Thus, for the even

case,
N

E Ik(zo) cos (2k - 1)u = T2N 1(zOX)J.
k=1

But, when zo=1, T2N1(zox) =cos [(2N- 1) arccos x]

=cos (2N-l)u. Thus, Ik=O, except for k=N where
IN= 1. Also, the sum down each column should equal
the coefficient of the corresponding term of the Tscheby-
scheff polynomial. When x=cos u=1, cos (2k-l)u=1
for all k so that ZIk(zo) = T2N-1(zo) from the above.

TABLE I
CURRENT DISTRIBUTION FOR A 24-ELEMENT ARRAY YIELDING A TSCIHEBYSHEFF PATTERN

q=12(+zo) q=l1(-zo2l) q=10(+zol9) q=9(-zol') q=8(+zo'5) q=7(-zo'3) q=6(+zoll) q=5(-zo9) q=4(+zo7) q=3(-zo6) q=2(+zo3) q=l(-zo)
(23)22! (23)211 (23)20! (23)19! (23)18! (23)17! (23)16! (23)15! (23)14! (23)13! (23)12!| (23)11!
12!11!O! 11!10!1! 10!9!2! 9!8!3! 8!7!4! 7!6!5! 6!5!6! 5!4!7! 4!3!8! 3!2!9! 2!1!10! 1!O!11!
1352078 8112468 21246940 31870410 30193020 18786768 7735728 2072070 345345 32890 1518 23

(23)22! (23)21! (23)20! (23)19! (23)18! (23)171 (23)16! (23)15! (23)14! (23)13! (23)12!
13!10!0! 12!9!1! 11!812! 1O!7!3! 9!6!4! 8!5!5! 7!4!61 613!7! 5!218! 4!1!9! 3!0!10!
1144066 6760390 17383860 25496328 23483460 14090076 5525520 1381380 207207 16445 506

(23)22! (23)21! (23)20! (23)19! (23)18! (23)17! (23)16! (23)15! (23)14! (23)13!
14!9!0! 13!8!1! 12!7!2! 11!6!3! 10!5!4! 9!4!5! 8!3!6! 7!2!7! 6!1!8! 5!0!9!
817190 4680270 11589240 16224936 14090076 7827820 2762760 592020 69069 3289

(23)22! (23)21! (23)20! (23)19! (23)18! (23)17! (23)16! (23)151 (23)14!
1, 15!8!0! 14!71I! 1316!2! 12!5!3! 11!4!4 10!3!5! 9!!6!| 8!1!71 7!0!8!

490314 2674440 6240360 8112468 6404580 3131128 920920 148005 9867

(23)22! (23)21! (23)20! (23)19! (23)18! (23)171 (23)16! (23)15!
16!7!0! 15!6!1! 14!5!2! 13!4!3! 12!3!4! 11!2!5! 10!1!61 9!0!7!
245157 1248072 2674440 3120180 2134860 853944 184184 16445

16 (23)22! (23)21! (23)20! (23)19! (23)18! (23)17! (23)16!
17!6!0! 16!5!1! 15!4!2! 14!3!3! 13!2!41 12!1!5! 1110!6!
100947 468027 891480 891480 492660 142324 16744

(23)22! (23)21! (23)20! (23)19! (23)18! (23)17!
18!5!0! 1714M1! 16!3!2! 15!2!3! 14!1!4! 13!0!51
33649 137655 222870 178296 70380 10948

8 (23)22! (23)21! (23)20! (23)19! (23)181 N (2N-1)(q+N-2)!
19l14!0! 18!3!1! |17!2!2! |16!1!3! 151!0!41 Ik= (- ) s (qk-l(q- !N-qlq-kc (q+k 1)!(q-k)!(N-q)!
8855 30590 39330 22287 4692 N=12

I9 (23)22! (23)21! (23)201 (23)19! Sum across a row=0 except for Il2
20!3!0! 19!2!1! 18!1 !2! 17 !0!3! Sum down a column= corresponding Tschebysheff coefficient

1771 4830 4370 1311 Note: When q is odd, the column is negative.

(23)221 (23)21! (23)20!
21!2!0! 20!1 !1! 19!0!2!

253 483 230

Inl (23)22! (23)21!
22!1!0! 21!0!11
23 23

(23)22!
'12 47423!0!02

T23(zo) 4194304 24117248 60293120 85917696~ 76873728 44843008 17145856 4209920 631488[ 52624 2024 23

1.952 81
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The currents are now given as a function of the
parameter, zo. zo may be calculated from T2N-1(zO)=r
using (11). However, it will now be shown that zo may
be computed from a much simpler formula. Heretofore,
Tn2(z) was given by cos (n arccos z) in the region
zj :<l, and it was noted that Tn(z) could not exceed

1 there. When the limits of z were extended to ± oo, the
polynomial form or the closed form (11) had to be em-
ployed, particularly when solving the equation
T2N-1(ZO) =r for r > 1. However, it is possible to modify
the simple cosine form of Tn(z) so that it will apply to
the region I zI > 1.
From (5), T,n(z) =cos (n arccos z) =r, but here r> 1.

For the cosine of an argument to exceed one, the argu-
ment must be imaginary. Therefore, let cos nu = r and
iu=arccos z. The above is equivalent to setting cosh
nu=r and u=arccosh z. Thus, for values of z .!:1,
Tn(z) may be written Tn(z) = cosh (n arccosh z). The
equation cosh [(2N- 1) arccosh zo]=r is simply solved
for zo to give

/arccosh r\
Zo = cosh (21

2N-1 / (21)

whence zo may readily be obtained from the mathe-
matical tables.
As further proof of the above, it will be shown that

the form cosh (n arccosh z) leads to the same polynomial
in z as does cos (n arccos z). Whence it can be concluded
that the cosh formula represents the Tschebyscheff poly-
nomial, but in a different region. It was noted above that
cos nO may be expanded into a polynomial in x = cos 0.
This fact may be derived from (cos n6+i sin nO)
= (cos O+i sin f)n. Expanding the terms on the right
and equating real and imaginary terms yields

/n\
cos nO = cos" 6 - l cosn-2 0 sin2 6

\2,

/n
+ cosn-4 0 sin4 0 * * (22)

where

kn k!(n-ck)

If sin2O is replaced by (1-COS20), it is apparent that

cos nO ux-ill emerge as a polynomial in powers of cos 6.
The expansion of cosh nO may be effected in a some-

what similar manner. Since cosh n6+sinh nO=en'
=(el) n= (cosh 0+sinh 0) n and cosh nO-sinh nO=e-nl
=(e-)n= (cosh 0-sinh 6)n, we may solve for cosh nO
and expand so that

cosh nO = cosh 0 + ( ) coshn-2 0 sinh2 0

n±
+

4
cosn-4 0 sinh4 0 ... (23)

If sinh2 0 is replaced by -(1 -cosh2 0), (23) will have
exactly the same coefficients as (22).
As an afterthought, it may be of interest to note that

the above might be more simply established by reason-
ing that if cos nO = P(cos 0) where P denotes some
polynomial one may also write cos in = P(cos iG)
whence cosh nO = P(cosh 0).

It is now established that cosh nO leads to exactly the
same polynomial in powers of cosh 0 as does cos nO in
powers of cos 0. From this it follows that cosh(n arccosh z)
may be expanded into a polynomial in cosh (arccosh z)
=z and will yield the same Tschebyscheff polynomial
as the expansion of cos (n arccos z). Thus, the two
formulas represent the same polynomial, except that the
cosine form is appjicable in the region z.1 and the
cosh formula is applicable in the region z_ 1. The com-
plete Tschebyscheff polynomial may now be written

Tn(z) = cos (n arccos z); z . 1

Tn(z) = cosh (n arccosh z); z . 1.
(24)

As a check, the equation T23(zo) = r for the 24-element
case was solved for several values of r by formulas (11)
and (21). The z0's resulting from the two methods were
exactly the same.
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CORRECTION
N. W. Mather, author of the paper, 'An Analysis of

Triple-Tuned Coupled Circuits," which appeared on
pages 813-822 of the July, 1950 issue of the PROCEED-
INGS OF THE I.R.E., has brought the following error to
the attention of the editors:
The contour values given in Fig. 8 are incorrect. The

values indicated should all be halved and should agree
with the tabulation in Table I.
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