
Chapter 2

Dyadics

Dyadics are linear functions of vectors. In real vector space they can be
visualized through their operation on vectors, which for real vectors con­
sists of turning and stretching the vector arrow. In complex vector space
they correspondingly rotate and deform ellipses. Dyadic notation was in­
troduced by GIBBS in the same pamphlet as the original vector algebra, in
1884, containing 30 pages of basic operations on dyadics. Double products
of dyadics, which give the notation much of its power, were introduced by
him in scientific journals (GIBBS 1886, 1891). Gibbs's work on dyadic alge­
bra was compiled from his lectures by WILSON and printed a book Vector
analysis containing 150 pages of dyadics (GIBBS and WILSON 1909). Of
course, not all the formulas given by Gibbs were invented by Gibbs, quite
a number of properties of linear vector functions were introduced earlier
by Hamilton in his famous book on quaternions. In electromagnetics liter­
ature, dyadics and matrices are often used simultaneously. It is well rec­
ognized that the dyadic notation is best matched to the vector notation.
Nevertheless, often the vector notation is suddenly changed to matrices,
for example when inverse dyadics should be constructed, because the cor­
responding dyadic operations are unknown. The purpose of this section is
to introduce the dyadic formalism, and subsequent chapters demonstrate
some of its power. The contents of the present chapter are largely based
on work given earlier by this author in report form (LINDELL 1968, 1973a,
1981).

2.1 Notation

2.1.1 Dyads and polyads

The dyadic product of two vectors a, b (complex in general) is denoted
without any multiplication sign by ab and the result is called a dyad. The
order of dyadic multiplication is essential, ab is in general different from
bat

A polyad is a string of vectors multiplying each other by dyadic products
and denoted by ala2a3 ...an' For n = 1 we have a vector, n = 2 a dyad,
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n = 3 a triad and, in general, an n-ad. Polyads of the same rank n
generate a linear space, whose mernbers are polynomials of n-ads. Thus, all
polynomials of dyads, or dyadic polynomials, or in short dyadics, are of the
form a, b l +a2b 2 +... + ak b k . Similarly, n-adic polynomials form a linear
space of n-adics. A sum of two n-adics is an n-adic._Here we concentrate

on the case n = 2, or dyadics, which are denoted by A, B, C, etc.
Dyadics and other polyadics arise in a natural manner in expressions

of vector algebra, where a linear operator is separated from the quantity
that is being operated upon. For exarnple, projection of a vector a onto a
line which has the direction of the unit vector u can be written as u(u· a).
Here, the vectors u represent the operation on the vector a. Separating
these from each other by moving the brackets of vector notation, gives rise
to the dyad uu in the expression u(u . a) = (uu) . a.

A dyad is bilinear in its vector multiplicants:

(alaI + (}2 a 2)b = (}1(aIb) + (}2(a2b),

a(,81b l + ,82b2) == ,81(ab1 ) + ,82(ab2).

(2.1)

(2.2)

This means that the same dyad or dyadic can be written in infinitely many
different polynomial forms, just like a vector can be written as a sum of
different vectors. Whether two forms in fact represent the same dyadic
(the same element in dyadic space), can be asserted if one of them can be
obtained fro~the other through these bilinear operations.

A dyadic A can be multiplied by a vector c in many ways 0 Taking one
dyad ab of the dyadic, the following multiplications are possible:

Co (ab) == (c vajb,

c x (ab) == (c x a)b,

(ab)oc==a(boc),

(ab) x c == a(b x c).

(2.3)

(2.4)

(2.5)

(2.6)

In dot multiplication of a dyad by a vector, the result is a vector, in cross
multiplication, a dyad.

Likewise, double multiplications of a dyad ab by another dyad cd are
defined as follows:

(ab) : (cd) == (a· c)(b· d),

(ab)~(cd) == (a x c)(b x d),

(ab}" (cd) == (a x c)(b· d),

(ab); (cd) == (a· c)(b x d).

(2.7)

(2.8)

(2.9)

(2.10)
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These express~ns~a~b~g~eralized.!9corresponding double products
between dyadics, A : B, A~B, A~B and A~B, when dyads are replaced by
dyadic polynomials and multiplication is made term by term. The double
dot product produces a scalar, the double cross product, a dyadic, and
the mixed products, a vector. These products, especially the double dot
and double cross products, give more power to the dyadic notation. Their
application requires, however, a knowledge of some identities, which are
not in common use in the literature. These identities will be introduced
later and they are also listed in Appendix A of this book.

The linear space of dyadics contains all polynomials of dyads as its ele­
ments. The representation of a dyadic by a dyadic polynomial is, however,
not unique. Two polynomials correspond to the same dyadic if their differ­
ence can be reduced to the null dyadic by bilinear operations. Because of
Gibbs' identity (1.42), any dyadic can be written as a sum of three dyads.
In fact, taking three base vectors a, b, c with their reciprocal base vectors
a', b', c', any dyadic polynomial can be written as

n n n n

L a.b, == a L(a' . ai)b i + b L(b' . ai)bi + c L(c' .ai)bi. (2.11)
i=l i=l i=l i=l

This is of the trinomial form ae + bf + cg, which is the most general form
of dyadic in the three-dimensional vector space. If we can prove a theorem
for the general dyadic trinomial, the theorem is valid for any dyadic. A
sum sign L without index limit values in this text denotes a sum from 1
to 3.

2.1.2 Symmetric and antisymmetric dyadics

The transpose operation for dyadics changes the order in all dyadic prod­
ucts:

(2.12)

Because (AT)T == A, the eigenvalue pr~lem AT == ,\A has the~igenvalues

,\ == ±1 corresponding to symmetric As and antisymmetric Aa dyadics,
which satisfy

A; == As, AaT == -Aa. (2.13)

Any dyadic can be uniquely decomposed into a symmetric and an antisym­
metric part:

= 1= =T 1= =T
A == 2(A + A ) + 2(A - A ). (2.14)

Every symmetric dyadic can be written as a polynomial of symmetric
dyads:
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= 1
As = Laibi = "2 L(aibi + b.a.) =

1
"2 L ((ai + bi)(ai'+ b.) - a.a, - b.b.}, (2.15)

The number of terms in this polynomial is, however, in general higher than
3.

A single dyad cannot be antisymmetric, because from the condition
ab == -ba, by multiplying by a*· and dividing by a· a" we see that b
must be of the form oa, whence ab = oaa == -aaa == O. Instead, any
antisymmetric dyadic can be expressed in terms of two dyads in the form
ab - ba. The vectors a, b are not unique. This is seen from the following
expansion with orthonormal unit vectors Uj:

(2.16)

with

(2.17)

(2.18)

Thus, the general antisymmetric dyadic can be expressed in terms of a
single vector c. If we write c == -a x b, going (2.16) backwards we see
that any antisymmetric dyadic can be expressed as ab - ba. The choice of
orthonormal basis vectors does not affect this conclusion.

The linear space of dyadics is nine dimensional, in which the antisym­
metric dyadics form a three-dimensional and the symmetric dyadics a six­
dimensional subspace.

2.2 Dyadics as linear mappings

A dyadic serves as a linear mapping from a vector to another: a -+ b ==
D . a. Conversely, any such linear mapping can be expressed in terms of
a dyadic. This can be seen by expanding in terms of orthonormal basis
vectors u, and applying the property of linearity of the vector function
rea):

rea) = I: u.u, . f(I: UjUj . a) = (I: I: u, . f(Uj)UiUj) . a.
j i
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The quantity in brackets is of the dyadic form and it corresponds to the
linear function f(a). _ _

The unit dyadic 7 corresponds to the identity mapping 7· a = a for
any vector a. From Gibbs' identity (1.42) we see that for any base of three
vectors a, b, c with the reciprocal base a', b', e', the unit dyadic can be
written as

1 = aa' + bb' + ee'. (2.19)

Taking an orthonormal base u, with u~ = u., the unit dyadic takes the
form

(2.20)

The unit dyadic is symmetric and satisfies 1· D = D·l = D for any dyadic
D. This and (2.19) can be applied to demonstrate the relation between
matrix and dyadic notations by writing

(2.21)

or any dyadic can be written in terms of nine scalars D i j . These scalars
can be conceived as matrix components of the dyadic w~h respect to the
base {ail. The matrix components of the unit dyadic 1 are {6i j } in all
bases.

From (2.16) it can be seen that the most general antisymmetric dyadic
can be written as

Aa ~ ab - ba = (b x a) x I = I x (b x a), (2.22)

as is_seen_if (2.20) is substituted in (2.22). Thus, dyadics of the form

e x 1 = 1 x e are antisymmetric. Th~vector e corresponding to the
antisymmetric part of a general dyadic D can be obtained through the
following operation:

- 1-­
c(D) = 2.1~ D. (2.23)

For an antisymmetric dyadic, (2.23) can be easily verified from (2.22). For

a symmetric dyadic, e(D) = 0 is also easily shown to be valid.
All dyadics can be classified in terms of their mapping properties.

• Complete dyadics D define a linear mapping with an inverse, which
is represented by an inverse dyadic D-l. Thus, any vector b can be
reached by mapping a suitable vector a by D · a = b.
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• Planar dyadics map all vectors in a two-dimensional subspace. If we

take a base [a.}, the vectors {D . a.] do not form a base, because

they are linearly dependent and satisfy (D·al)·(D·a2) x (D·a3) == o.
Writing the general D in the trinomial form ab + cd + ef, we can
show that the vector triple a, c, e is linearly dependent and one of
these vectors can be expressed in terms of other two. Thus, the most
general planar dyadic can be written as a dyadic binomial ab + cd.

• Strictly planar dyadics are planar dyadics which cannot be written as
a single dyad.

• Linear dyadics map a!!- vectors in a one-dimensional subspace, l.e.

parallel to a vector c: D· a == oc. Thus, D must obviously be of the
form cb. Linear dyadics can be written as a single dyad. Finally, we
can distinguish between strictly linear dyadics and the null dyadic.

As examples, we note that the unit dyadic I is complete, whereas an
antisymmetric dyadic is either strictly planar or the null dyadic. The in-

verse dyadic of a given complete dyadic D == E a.b, can be written quite
straightforwardly in trinomial form. First, to be complete, the vector triples
[a.}, {bi} must be bases because from linear dependence of either base, a
planar dyadic would result. Hence, there exist reciprocal bases {a~}, {b~},

with which we can write

(2.24)

That (2.24) satisfies D . n-1 == D- 1 . D == I, can be easily verified.

2.3 Products of dyadics

Different products of dyadics playa role similar to dot and cross products
of vectors, which introduce the operational power to the vector notation.
The products of dyadics obey certain rules which are governed by certain
identities summarized in Appendix A.

2.3.1 Dot-product algebra

The dot product between two dyadics has already been mentioned above
and is defined in an obvious manner:

(2.25)
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With this dot product, the dyadics form an algebra, where the unit dyadic,
null dyadic and inverse dyadics are defined as above. This algebra corre­
sponds to the matrix algebra, because the matrix (with respect to a given

base) of A . B can be shown to equal the matrix product of the matrices
of each dyadic. Thus properties known from matrix algebra are valid to
dot-product algebra: associativity

A. (B· C) = (A. B)· C, (2.26)

and (in general) non-commutativity, A· B =1= B . A. Further, we have

(A . B)T = BT .AT,

(A. B)-1 = B-1. A-I.

(2.27)

(2.28)

Powers of dyadics, both positive and negative, are defined through the dot
product (negative powers only for comp~te dyad~cs) in an obvious manner.

For example, the antisymmetric dyadic A = u x 7 with an NCP unit vector
u, satisfies for all n > o.

A4n =1- uu,

=A4n +l - A- ,

A4n +2
- -1+ uu- ,

(2.29)

(2.30)

(2.31)

(2.32)

Because for re~l u,. A can be interpreted as a rotation by 1r/2 around u,
the powers of A can be easily understood as multiples of that rotation.

Two dyadics do not commute in general in the dot product. It is easy to
see that two antisymmetric dyadics only commute when one can be written
as a multiple of the other. This is evident if we expand the dot product of
two general antisymmetric dyadics:

(a x 1) . (b x 1) = ba - (a· b)1. (2.33)

If this is r~quired to be symmetric in a and b, we should have ab = ba or

(a x b) x I = 0, which implies a x b = 0 or a and b are parallel vectors.
A dyadic commutes with an antisymmetric dyadic only if its symmetric

and ~ntisymmetricparts commute separately. In fact, writing D = Ds +
d x I in terms of its symmetric and antisymmetric parts, we can write

D . (a x I) - (a x I) .D = (D s x a) + (Ds x a)T - (a x d) x I. (2.34)
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Equating the antisymmetric and symmetric parts <>!.(2.34) to zero, shows

us t~at the symmetric and antisymmetric parts of D must commute with

a x J. separately. Thus, the antisymmetric part of D must be a multiple of

a x 1. The symmetr~part of D must be such that D 8 X a is antisymmetric,
i.e. of the form b x 1. Multiplying this by -a gives zero, whence b must be
a multiple ~f 8. It is easy to show that the symmetric dyadic must be of
the form 0./+ {3aa. Thus, the_most general dyadic, which commutes with

the antisymmetric dyadic 8 x I is necessarily of the form

D = QJ + {3aa+ ,a x I. (2.35)

A dyadic of this special form is called gyrotropic with axis 8, which may
also be a complex vector. From this, it is easy to show that if a dyadic
commutes with its transpose, it must be either symmetric or gyrotropic.

2.3.2 Double-dot product

The double-dot product of two dyadics A =L a.b., B =L cjdj gives the
scalar

(2.36)

This is symmetric in both dyadics and satisfies

(a x I) : (b x I) = 2a . b,

A :I = 2)ai ·hi) = trA.

(2.37)

(2.38)

(2.39)

The last operation gives a scalar which can be called the trace of A because

it gives the trace of the matrix of A in any base [c.]. In fact, writing
= , .
A = L AijCiCj gives us

As special cases we have I :I = 3 and A : B = (If . BT) : I = (B . AT) : I.
A dyadic whose trace is ze.!o is called trace free. Any dyadic can be written

as a sum of a multiple of I and a trace-free dyadic:

- 1- -- - 1--­
D = -(D : 1)1+ (D - -(D : /)/).

3 3
(2.41)
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Antisymmetric dyadics are trace free. In fact, more generally, if S is
symmetric and A antisymmetric, ~e have from (2.37)

(2.42)

The scalar D : D* is a non-negative real number for any complex dyadic

D. It is zero only for D = 0, which can be shown from the following:

= =* =T =* = ~ =r =* ~ = 2D : D = (D . D ): I == L...J u, . D . D . u, == L...J ID . u.] . (2.43)

Here, {Ui} is a real orthonormal base. (2.43) is seen t~give a non-negative

number and vanish only if all D . u, vanish, whence D == L D . u.u, == O.

We can define the norm of D as

IIDII = JD:D*. (2.44)

2.3.3 Double-cross product

The double-cross product of two dyadics produces a third dyadic. Thus, it
defines a double-cross algebra. Unlike the dot-product algebra, the double­
cross algebra is commutative:

=x= =x=AxB = BxA, (2.45)

and non-associative, because A~(B~C) =/; (A~B)~C in general. The com­
mutative property follows directly from the anticommutativity of the cross
product: a x b == -b x a, as is easy to see. It is also easy to show that
there does not exist a unit element in this algebra.

A most useful formula for the expansion of dyadic expressions can be
obtained from the following evaluation with dyads:

(ab)~[(cd)~(ef)] = [a x (c x e)][b x (d x f)] ==

[ca e - a · ce][db . f - b · df] =

(ab : cd)ef + (ab : ef)cd - ef· (ab)T . cd - cd· (ab)T . ef. (2.46)

This expression is a trilinear identity for dyads. Thus, every dyad can be
replaced by any dyadic polynomial because of linearity, whence (2.46) may
be written for general dyadics:

(2.47)
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Use of this dyadic identity adds more power to the dyadic calculus. Its
memorizing is aided by the fact that, because of the commutative property
(2.45), Band C are symmetrical in (2.47).

The method used above to obtain a dyadic identity from vector identi­
ties can be generalized by the following procedure.

1. A multilinear dyadic expression (linear in every dyadic) is written in
terms of dyads, i.e. every dyadic is replaced by a dyad.

2. Vector identities are applied to change the expression into another
form.

3. The result is grouped in such a way that the original dyads are formed.

4. The dyads are replaced by the original dyadics.

_ To demonstrate this procedure,~t us expand the dyadic expression

(A~B) : I, which is linear in A and B. Hence, we start by replacing them
by ab andcd, respectively, and applying the well-known vector identity

(ab~cd) : I = (a x c) · (b x d) = (a· b)(c · d) - [a- d)(b· c). This can be

grouped as (ab : I)(cd : I) - (ab) : (cd)?'. Finally, going back to A and B
leaves us with the dyadic identity

== = ==== =nr
(A~B) : I = (A : I)(B : I) - A : B , (2.48)

or trace of A~B equals trA trB - tr(A · B).
New dyadic identities can also be obtained from old identities. As an

example, let us write (2.48) in the form

(2.49)

To obtain this, we have applied the invariance in any permutation of the
= = = = = = =x= =triple scalar product of dyadics, A~B : C = A~C : B = BxA : C =

· ... (Of course, the double-cross product must always be performed first.)

Because (2.49) is valid for any dyadic B, the bracketed dyadic must be the
null dyadic, and the following identity is obtained:

=x= = == 7TAxI=(A:I)I-A. (2.50)

That D : B = 0 for all B implies D =0, is easily seen by taking B = UiUj

from an orthonormal base [u.}, whence all matrix coefficients Dij of D
can be shown to vanish. The identity (2.48) is obtained from (2.50) as a

special case by operating it by : B.
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An important identity f~ the double-cross product can be obtained by

expanding the expression (A~B)~(C~D) twice through (2.47) by consid­
ering one of the bracketed dy~dics as a single dyadic, and equating the

expressions. Setting C = D = / we obtain

=x=AxB=

This identity could be also conceived as the definition of the double-cross
product in terms of single-dot and double-dot products and the transpose
~p~atio~ It is easily seen that (2.50) is a special case of (2.5~. _ Also,

/~1 = 2/ is obtained as a further special case. The operation A~/ is in
fact a mapping from dyadic to dyadic. Its properties can be examined
through the following dyadic eigenproblem:

=x= =
Ax! = ..\A. (2.52)

Taking t~ trace of (2.52) leaves us with (2 - "\)A : / = 0, whence either

,.\ = 2 or A is trace free. Substituting (2.50) in (2.52) gives us the following
different solutions:

• ,.\ = 2 and A = a/ where a is any scalar;

• ,.\ = 1 and A is antisymmetric;

• ,.\ = -1 and it is symmetric and trace free.

Any dyajic can be written uniquely as a sum of three components: a

multiple of 1, an antisymmetric dyadic and a trace-free symmetric dyadic,

(2.53)

respectively. It is a simple matter to check that the right-hand side of
(2.53), each term multiplied by the corresponding eigen~alue ,.\, gives the

sam~ ~sult as (2.50). T~r~e~sts a~ inverse maR.ping to 1~ which, denoted

by I(A) and satisfying I(A~/) = A for every A, can be written in terms
of inverse eigenvalues, or in the simple form

(2.54)
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Note that this defini!ion d~ffers from that adopted by Gibbs, who calls

dyadics of the form A + Ctl shearers. From the Cayley-Hamilton iden­
tity (2.65) we can write another condition equivalent to (2.102), for the
definition of the shearer:

(2.103)

It is easily seen that, in the trace-free case, (2.103) corresponds to (2.100).
The most general shearer can be written in the forms

A = a x (be +da), or A = (ad + eb) x a. (2.104)

It is not difficult to check that (2.102) and (2.103) are satisfied for any
vectors a, b, c, d. As was seen just before, a strictly planar shearer does
not have a square root.

2.6 The eigenvalue problem

Right and left eigenvalue problems with eigenvalues and eigenvectors cq, a,
and, respectively, {3i, hi, are of the form

(2.105)

(2.106)

Because the dyadic A-,1 is planar when, equals ai or (3i, the eigenvalues
satisfy the equation

- det(A - ,1) = ,3 - ,2trA +, spmA - detA = o. (2.107)

Because both right and left eigenvalues satisfy the same problem, they have
the same values which are denoted by~i. There are either one, two or three

different values for Cti. Because b i · A· aj = (aihi)· aj = hi· (ajaj), we
see that if Cti f; Ctj, the left and right eigenvectors are orthogonal, i.e. they
satisfy b, . aj = o.

Eigenvectors hi and ai corresponding to a solution Cti of (2.107) can be
constructed using dyadic methods. The construction depends on the mul­
~tude~f the particular eigenvalue, which depends on whether the dyadic
A - ail is strictly planar, strictly linear or null. Let us consider these cases
separately. For this we need the following identities:

a x (A~B) = B x (a· A) +A x (a· B),

(A~B) x a = (:4.a) x B + (B· a) x :4,

(2.108)

(2.109)
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with the special cases

a x (A~A) = 2A x (a A),

(A~A) x a = 2(A· a) x A.

37

(2.110)

(2.111)

These can be derived with the general method described in Section 2.3, for
creating dyadic identities.

• Strictly planar A - aJ Defining B, =JA - aJ)~(A - aJ) i= 0,

from (2.110), (2.111) we see that hi x B; = B i x a, = 0, whence

there exists a scalar ei i= 0~uch that B; = eibiai. Thus, from the
knowledge of Oi the dyadic B i is known and the eigenvectors can be
written in the form a, = C • B, and hi = B i . c with suitable vector
c. In this case Oi is a single root of (2.107).

• Strictly linear -'!- oil. There exist non-null vectors c, d such that A
is of the form 0.1+cd. This is a special type of dyadic, which is called
uniaxial. (2.107) leaves us with the equation (;'-0)2(,-0-c·d) = 0,
which shows us that the eigenvalue Qi = Q is a double root of (2.107).
Assuming c . d -# 0, the third root is a simple one, Qj = Q + c . d,
for which the eigenvectors can be obtained through the expression
above. The left and right eigenvectors corresponding to the double
root are any vectors satisfying the conditions b . c = 0 and d . a =
0, respectively. For c . d = 0, all three eigenvalues are the same,
but there only exist two linearly independent eigenvectors, those just
mentioned.

• Null dyadic A - Oil. In this case A = aI, there is a triple eigenvalue

° and any vector i~ an eigenvector. This happens if A is a multiple
of the unit dyadic 1.

The previous classification was made in terms of the dyadic A - ail, or
multitude of a particular eigenvalue ai. Let us now consider the number

of different eigenvalues of a dyadic iI, which can b~ 1, 2 or 3. Because

detA = a10203, spmA = {}102+02Q3+a301 and trA = a1 +a2+a3, the
Cayley-Hamilton equation (2.65) can be written as

(2.112)

The order of terms is immaterial here.
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• One eigenvalue 01 = 02 == 03. Because (A -=-01/)3_= 0, from the

solution of equation (2.100) we conclude th~t 11 - ~II is a trace-free

shearer, whence the most general form for A is 01I.+ (ab + cc) x a.

Taking the trace operation it is seen that 01 = trA/3. The number
of eigenvectors is obviously that of the shearer term. Here we can
separate the cases.

- Strictly planar trace-free shearer with a . b x c :f:. o. It is easy
to show that there exists only one eigenvector i!eft a~ ri~t),

which can be obtained from the expression (11 - 011) ~ (A ­

oIl) = 2(a . b x c)(a x c)a. Thus, the left eigenvector is a x c
and the right eigenvector a. Only this type of dyadic has just
one eigenvector.

- Linear shearer, w..Eich c~n be written with c = 0 in the above

expression. Now 11 - all satisfies (2.99). There exist two eigen­
vectors, which are orthogonal to vectors a from the left and b x a
from the right.

• Two eigenvalues a1 =F a2 = a3. The dyadic A satisfies an equation

of the form (2.103): B2(B - trB I) = 0 with B = A- 02/, as is

~asily verified. Thus..!. the dyadic B must be a general shearer and

A is of the form 021 + a x (be + da). The eigenvalue 01 equals
a2 + a x b . c, whence the shearer here cannot be trace free in order
that the two eigenvalues do not coincide. In this case there exist two
linearly independent eigenvectors.

• Three eigenvalues 01 :f:. 02 :f:. a3. In this case there exist three linearly
independent eigenvectors. In fact, assuming the eigenvector a3 to be
a linear combination of a1 and a2, which are linearly independent,
(2.105) will lead to the contradictory conditions a3 =aI, a3 = a2.

As a summary, the following table presents the different cases of dyadics
with different numbers of eigenvalues (N in horizontal lines) and eigenvec­
tors (M in vertical columns).

MIN 1 2 3

1 01 + (ab + cc) x a none none

2 0/ + aa x b 0/ + (ab + cd) x a none

3 0/ 0/ +ab ab + cd + ef
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Because the left or right eigenvectors of a dyadic with three linearly
independent eigenvectors form two bases {hi}, {ail, the dyadic can be
written in either base as

(2.113)

From this we conclude that the left and right eigenvectors are in fact re­
ciprocals of each other: ai = hi, hi = ai. If two dyadics commute, they
have the same eigenvectors.

2.7 Hermitian and positive definite dyadics

Hermitian and positive definite dyadics are often encountered in electro­
magnetics. In fact, lossless medium parameter dyadics are hermitian or
antihermitian depending on the definition. Also, from power considera­
tions in a medium, positive definiteness of dyadics often follows.

2.7.1 Hermitian dyadics

By definition, the hermitian dyadic satisfies

fIT=A*,

whereas the antihermitian dyadic is defined by

AT = -A*.

(2.114)

(2.115)

Any dyadic can be written as a sum of a hermitian and an antihermitian
dyadic in the form

(2.116)

Any hermitian dyadic can be written in the form E ±cc* and antihermi­
tian, in the form L: ±jcc*. Conversely, these kinds of dyadics are always
hermitian and antihermitian, respectively.

From (2.114), (2.115) it follows that the symmetric part of a hermitian
dyadic is real and the antisymmetric part imaginary, whence the most
general hermitian dyadic H can be written in the form

(2.117)

with real and symmetric S and real h. Any antihermitian dyadic can be
written as jH, where H is a hermitian dyadic.
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Hermitian dyadics form a subspace in the linear space of dyadics. The
dot product of two hermitian dyadics is not necessarily hermitian, but the
double-cross product is, as is seen from

(2.118)

where A and B are hermitian. Also, the double-dot product of two hermi­
tian dyadics is a re~ num~r, asJ.s easy to s~ from the sum expression.

Thus, the scalars trA, spmA, detA are real if A is hermitian. This implies
that the inverse of a hermitian dyadic is hermitian.

The following theorem is very useful when deriving identities for her­
mitian dyadics:

= * =A : aa = 0 for all a, =} A = o. (2.119)

This can be pr~ed by setting first a = b + e and then a = b + je, whence

the condition if : be = 0 for all ~ectors b, c will result fro~ (2.119),

making the matr~ components of if vanish. For comparison, A : aa = 0

for all a implies A antisymmetric, as is easy to prove. From (2.119) we

can show that if A; aa" is real for all vectors a, A is hermitian. In fact,

this implies A: aa" - A* : a*a = 0 or (A - A*T) : aa" = 0, whence A is
hermitian.

A hermitian dyadic always has three eigenvectors no matter how many
eigenvalues it has, as can be shown. The right and left eigenvectors cor­
responding to the same eigenvalues are complex conjugates of each other,

because from A· a == oa we have A* .a" = a" .it == a*a*. But eigenvalues
are real and eigenvectors conjugate orthogonal, because (ai -aj)ai .aj = 0,

whence ai -a1 = 0 and a, .a; = 0 for ai =f. aj. Thus, the general hermitian
dyadic can be written in terms of its eigenvalues and eigenvectors as

(2.120)

2.7.2 Positive definite dyadics

By definition, a dyadic D is positive definite (PD), if it satisfies

D : aa" > 0, for all a f:. o. (2.121 )

A PD dyadic is always hermitian, as is evident. Other properties, whose
proofs are partly omitted, follow.
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• PD dyadics are complete. If D were planar, there would exist a vector

a such that Ir-e. = 0, in.contradiction with (2.121). Thus, the inverse
of a PD dyadic always exists.

• PD dyadics possess positive eigenvalues. This is seen by dot multi­
plying the expansion (2.120) by ajaj/aj . aj, and the result is aj,

which must be greater than 0 because of (2.121).

• if A is PD, its symmetric part is PD.

• A is PD exactly when its invariants trA, spmA, detA are real and
positive.

• Aand B PD implies A~B PD.

• A dyadic of the form A.A*T is positive semidefinite and PD if A is
complete.

2.8 Special dyadics

In this section we consider some special classes of dyadics appearing in prac­
tical electromagnetic problems. Rotation and reflection dyadics emerge in
symmetries of various structures whereas uniaxial and gyrotropic dyadics
are encountered when electromagnetic fields in special materials are anal­
ysed. Parameters of some media like the sea ice can be approximated in
terms of a uniaxial dyadic, while others like magnetized ferrite or magne­
toplasma may exhibit properties which can be analysed using gyrotropic
dyadics.

2.8.1 Rotation dyadics

In real vector space, the rotation of a vector by an angle () in the right-hand
direction around the axis defined by the unit vector u can be written in
terms of the following dyadic:

R(u, 0) = uu + sin O(u x I) + cos (}(I - uu), (2.122)

It can also be written in the form eu xIB, as is seen if the dyadic exponen­
tial function is written as a Taylor series. The rotation dyadic obeys the
properties

R(-u,O) = R(u, -B) = RT(u, 0) = :R-1 (u , 0), (2.123)
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R(U, ( 1) . R(u, ( 2 ) == R(u, 81 + (2 ) ,

R(U, 8)~ R(u, (J) == 2R(u, 8),
- 1- -

detR(u, (J) == "3 R(u, 8) : R(u, (J) == 1.

(2.124)

(2.125)

(2.126)

It is not difficult to show that the propertie~detR == 1 and RT == R,-l
uniquely define the form (2.122) of the dyad~ R(u, (J), so that they could

be given as the definition. Also, (2.125) with R 1= 0 would do. In general, (J

and/or u may be complex, which means that the geometrical interpretation
is lost. The resulting dyadic is also called the rotation dyadic in the complex
case.

The dot product of two rotation dyadics with arbitrary axes and angles
is another rotation dyadic. This is seen from

- - - - 1- - - - --
(R1 • R2)~(Rl . R2) = 2(Rl~Rd· (R2~R2) = 2(R1 • R2), (2.127)

where use has been made of the identity (2.67). It is not very easy to find
the axis and angle of the resulting rotation dyadic. This can be done per­
haps most easily by using a representation in terms of a special gyrotropic
dyadic. The gyro tropic dyadic was defined in (2.35) and it is the most gen­
eral non-symmetric dyadic which commutes with its own transpose. The
special gyrotropic dyadic of interest here is of the type

- -
G(q) = I + q x I,

and the rotation dyadic can be written as

In fact, because

(2.128)

(2.129)

(2.130)
- - 1 - -
(1- q x 1)-1 = --2 (1+ qq + q x 1),

l+q

(2.129) can be seen to be of the form (2.122) if we write q == u tan(B/2),
or u == q/.;q:q and (J = 2 tan-l.;q:q. Thus, q is not a CP vector. For
real q, its length q determines the angle of rotation. q = 0 corresponds to
B == 0, q == 00 to (J == 1r and q == 1 to () == 1r/2.

It is straightforward, although a bit tedious, to prov~ th!. following

identity between the dot product of two rotation dyadics HI, R2 and the
corresponding q vectors:

(R R)
ql + q2 + q2 X ql

q 1· 2 == .
1 - qt . q2

(2.131 )
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This~quation shows us that two rotations do not commute in general, since
R 1 . R 2 and R2 . R 1 lead to the same q vector only if q1 and q2 are parallel
vectors, i.e. the two rotation dyadics have the same axes.

2.8.2 Reflection dyadics

The symmetric dyadic of the form

C{u) = I - 2uu (2.132)

with a unit vector u is called the reflectio~dyadic because, when u is real,
mapping the position vector r through C . r = r - 2u(u . r) obviously
performs a reflection in the plane u . r == O. The reflection dyadic can be
also presented as a negative rotation by an angle 1r around u as the axis

C(u) = -R(u,1r), (2.133)

as is seen from the definition of the rotation dyadic (2.122). In fact, the

unit dyadic 1 and the negative of the reflection dyadic are the only rotation
dyadics that are symmetric.

The reflection dyadic satisfies

C 2(u) = I, or C -1 = C, (2.134)

C(u)~C(u) == -2C(u), (2.135)
- - -

trC = 1, spmC = -1, detC = -1, (2.136)

The most general square roo!. of the unit dyadic is not the reflection dyadic,

but a dyadic of the form ±(1 - 2ab) with either a · b = 1 or ab = o.
It is easy to see that both rotation and reflection dyadics preserve the

inner product of two vectors. In fact, because they both satisfy AT .A == I,
we have

(A . a) . (A. b) = a- (AT. A) .b = a· b, (2.137)

for any vectors a, b. The cross product is transformed differently through
rotation

- - 1-- -
(R. a) x (R· b) = -(R~R) . (a x b) == R· (a x b),

2

than through reflection

(C· a) x (C· b) = -C· (a x b).

(2.138)

(2.139)

This equation shows us that a reflection transformed electromagnetic field is
not an electromagnetic field, because if the electric and magnetic fields are
transformed through reflection, the Poynting vector is not. The converse
is, however, true for the rotation transformation.


	Methods for Electromagnetic Fild Analysis 2ed (Lindell-1996) 29
	Methods for Electromagnetic Fild Analysis 2ed (Lindell-1996) 30
	Methods for Electromagnetic Fild Analysis 2ed (Lindell-1996) 31
	Methods for Electromagnetic Fild Analysis 2ed (Lindell-1996) 32
	Methods for Electromagnetic Fild Analysis 2ed (Lindell-1996) 33
	Methods for Electromagnetic Fild Analysis 2ed (Lindell-1996) 34
	Methods for Electromagnetic Fild Analysis 2ed (Lindell-1996) 35
	Methods for Electromagnetic Fild Analysis 2ed (Lindell-1996) 36
	Methods for Electromagnetic Fild Analysis 2ed (Lindell-1996) 37
	Methods for Electromagnetic Fild Analysis 2ed (Lindell-1996) 38
	Methods for Electromagnetic Fild Analysis 2ed (Lindell-1996) 39
	Methods for Electromagnetic Fild Analysis 2ed (Lindell-1996) 48
	Methods for Electromagnetic Fild Analysis 2ed (Lindell-1996) 49
	Methods for Electromagnetic Fild Analysis 2ed (Lindell-1996) 50
	Methods for Electromagnetic Fild Analysis 2ed (Lindell-1996) 51
	Methods for Electromagnetic Fild Analysis 2ed (Lindell-1996) 52
	Methods for Electromagnetic Fild Analysis 2ed (Lindell-1996) 53
	Methods for Electromagnetic Fild Analysis 2ed (Lindell-1996) 54
	Methods for Electromagnetic Fild Analysis 2ed (Lindell-1996) 55

