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Appendix 4

Dyadic Analysis∗

DEFINITIONS

Vector d′ is a linear vector function of vector d when the following relationships hold:

d′
x = axxdx + axydy + axzdz

d′
y = ayxdx + ayydy + ayzdz

d′
z = azxdx + azydy + azzdz. (A4.1)

These relationships can be represented in more compact form by means of the matrix
notation

d′ = a • d. (A4.2)

The matrix operator itself can be expressed in terms of dyads as

a = axxuxux + axyuxuy + axzuxuz + ayxuyux + ayyuyuy

+ ayzuyuz + azxuzux + azyuzuy + azzuzuz (A4.3)

provided, by convention, ab • c stands for a(b • c). The symbol ab is called a dyad, and a
sum of dyads such as a is a dyadic. Also by convention, c • ab stands for (c • a)b, so that the
dot product of a dyad and a vector is now defined for ab acting as both a prefactor and a
postfactor. The writing of a in “nonion” form, as shown above, is rather cumbersome, and
one often prefers to use the form

a = (axxux + ayxuy + azxuz)ux + (axyux + ayyuy + azyuz)uy

+ (axzux + ayzuy + azzuz)uz = a′
xux + a′

yuy + a′
zuz (A4.4)

where the a′ are the column vectors of the matrix of a. Alternatively,

a = ux(axxux + axyuy + axzuz) + uy(ayxux + ayyuy + ayzuz)

+ uz(azxux + azyuy + azzuz) = uxax + uyay + uzaz, (A4.5)

∗Professor Lindell has been kind enough to check this appendix, make corrections, and suggest additional
formulas.
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where the a are the row vectors of the matrix of a. It is obvious that a • d is, in general,
different from d • a. In other words, the order in which a and d appear should be carefully
respected. a • d is equal to d • a only when the dyadic is symmetric (i.e., when aik = aki).
The transpose of a is a dyadic at such that a • d is equal to d • at . One may easily check that
the transpose is obtained by an interchange of rows and columns. More precisely,

at = axux + ayuy + azuz = uxa′
x + uya′

y + uza′
z. (A4.6)

The trace of the dyadic is the sum of its diagonal terms. Thus,

tr a = axx + ayy + azz. (A4.7)

The trace is a scalar (i.e., it is invariant with respect to orthogonal transformations of the
base vectors). The trace of ab is a • b. Among dyadics endowed with special properties we
note

1. The unitary dyadic, which represents a pure rotation. The determinant of its elements
is equal to 1.

2. The identity dyadic

I = uxux + uyuy + uzuz. (A4.8)

Clearly,

I • d = d • I = d. (A4.9)

3. The symmetric dyadic, characterized by aik = aki, for which at = a. The dyadic ab
is symmetric when a × b = 0. Further,

a • d = d • a. (A4.10)

4. The antisymmetric dyadic, characterized by aik = −aki. For such a dyadic at = −a,
and

a • d = −d • a. (A4.11)

The diagonal elements are zero, and there are only three distinct components. The

dyadic can always be written in terms of I and a suitable vector b as

a = −bzuxuy + byuxuz + bzuyux

− bxuyuz − byuzux + bxuzuy,

= I × b, (A4.12)

where the skew product is the dyad

(bc) × d = b(c × d). (A4.13)

The antisymmetric a can also be expressed as

a = cb − bc. (A4.14)
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5. The reflection dyadic

rf (u) = I − 2uu, (A4.15)

where u is a (real) unit vector.Applied to the position vector r, it performs a reflection
with respect to a plane perpendicular to u.

6. The rotation dyadic

rr(u) = uu + sin θ(u × I ) + cos θ(I − uu). (A4.16)

Applied to a vector, it performs a rotation by an angle θ in the right-hand direction
around the direction of u.

The elements of a dyadic may be complex (a case in point is the free-space dyadic discussed
in Chapter 7). It then becomes useful to introduce concepts such as the Hermitian dyadic
(aik = a∗

ki), or the anti-Hermitian dyadic (aik = −a∗
ki). Useful products of dyads are defined

as follows:

(ab) • (cd) = a(b • c)d (the direct product, a dyad). (A4.17)

(ab) : (cd) = (a • c)(b • d) (the double product, a scalar). (A4.18)

(ab) ×× (cd) = (a × c)(b × d) (the double cross-product, a dyad). (A4.19)

(ab) •
×

(cd) = (a × c)(b • d) (a vector). (A4.20)

(ab) ×•
(cd) = (a • c)(b × d) (a vector). (A4.21)

General Multiplicative Relationships

(b • a) • c = b • (a • c) = b • a • c (A4.22)

(b × c) • a = b • (c × a) = −c • (b × a) (A4.23)

(a × b) • c = a • (b × c) = −(a × c) • b (but not (a • b) × c) (A4.24)

(b × a) • c = b × (a • b) (A4.25)

(b • a) × c = b • (a × c) (A4.26)

(b × a) × c = b × (a × c) = b × a × c (A4.27)

b × (c × a) = c(b • a) − a(b • c) (A4.28)

(bc − cb) • d = (c × b) × d (A4.29)

(c • a) • b = c • (a • b) = c • a • b (A4.30)

(a • b) • c = a • (b • c) = a • b • c (A4.31)

(c × a) • b = c × (a • b) = c × a • b (A4.32)

(a • b) × c = a • (b × c) = a • b × c (A4.33)

(a × c) • b = a • (c × b) (A4.34)
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b • a • c = c • at • b (A4.35)

a • (b • c) = (a • b) • c. (A4.36)

The identity dyadic satisfies the following relationships:

(I × b) • c = b • (I × c) = b × c (A4.37)

(I × b) • a = b × a = (b × I) • a (A4.38)

I × (b × c) = cb − bc. (A4.39)

DIFFERENTIAL RELATIONSHIPS

Differentiation with Respect to a Parameter

d

dt
(f a) = df

dt
a + f

d a

dt
(A4.40)

d

dt
(a • b) = d a

dt
• b + a •

db
dt

(A4.41)

d

dt
(a × b) = d a

dt
× b + a × db

dt
(A4.42)

d

dt
(a • b) = d a

dt
• b + a •

db

dt
. (A4.43)

Basic Differential Operators

The action of a linear operator L on a dyadic is defined by the formula

La = (La′
x)ux + (La′

y)uy + (La′
z)uz. (A4.44)

In particular,

div a = ∇ • a = (div a′
x)ux + (div a′

y)uy + (div a′
z)uz

= ∂ax

∂x
+ ∂ay

∂y
+ ∂az

∂z
(A4.45)

curl a = ∇ × a = (curl a′
x)ux + (curl a′

y)uy + (curl a′
z)uz

= ux

(
∂az

∂y
− ∂ay

∂z

)
+ uy

(
∂ax

∂z
− ∂az

∂x

)
+ uz

(
∂ay

∂x
− ∂ax

∂y

)
(A4.46)

∇2a = ∂2a

∂x2 + ∂2a

∂y2 + ∂2a

∂z2 = grad div a − curl curl a. (A4.47)
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Also

grad a = ∇a = ux
∂a
∂x

+ uy
∂a
∂y

+ uz
∂a
∂z

= grad axux + grad ayuy + grad azuz (A4.48)

a grad = a∇ = aux
∂

∂x
+ auy

∂

∂y
+ auz

∂

∂z
. (A4.49)

Derived Relationships

grad(b × c) = (grad b) × c − (grad c) × b (A4.50)

grad( f b) = (grad f )b + f grad b ( f is any scalar function) (A4.51)

(b • grad)a = bx
∂ a

∂x
+ by

∂ a

∂y
+ bz

∂ a

∂z
(A4.52)

dr • grad a = da (A4.53)

div(bc) = (div b)c + b • grad c (A4.54)

div curl a = 0 (A4.55)

div(f a) = grad f • a + f div a (A4.56)

div(a • b) = (div a) • b + tr(at • grad b) (A4.57)

div(b × a) = (curl b) • a − b • curl a (A4.58)

div(bc − cb) = curl (c × b) (A4.59)

div( f I) = grad f (A4.60)

div(I × a) = curl a (A4.61)

curl(bc) = (curl b)c − b × grad c (A4.62)

curl grad a = 0 (A4.63)

curl( f a) = grad f × a + f curl a (A4.64)

curl( f I) = grad f × I (A4.65)

curl(a × b) = curl a × b − grad b ×× a (A4.66)

curl curl( f I) = curl(grad f × I) = grad grad f − I∇2f . (A4.67)

INTEGRAL RELATIONSHIPS

The integral relationships of vector analysis have their equivalent in dyadic analysis. The
most important examples are∫ N

M
dc • grad a = a(N) − a(M) (A4.68)
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dc a =
∫

S
un × grad a dS, (A4.69)

where the contour is described in the positive sense with respect to un.

∫
c

dc • a =
∫

S
un • curl a dS (A4.70)∫

V
grad a dV =

∫
S

una dS (A4.71)∫
V

div a dV =
∫

S
un • a dS (A4.72)∫

V
curl a dV =

∫
S

un × a dS (A4.73)∫
V

[
b • grad div a − (grad div b) • a

]
dV =

∫
S

[
(un • b) div a − div b(un • a)

]
dS (A4.74)

∫
V

[
(curl curl b) • a − b • curl curl a

]
dV =

∫
S

[
(un × b) • curl a + (un × curl b) • a

]
dS

=
∫

S

[
un • (b × curl a) + un • (curl b × a)

]
dS

(A4.75)∫
V

[
b • ∇2a − (∇2b) • a

]
dV =

∫
S

[
(un • b) div a − div b(un • a)

+ un • (b × curl a) + un • (curl b × a)
]

dS
(A4.76)∫

V
(a∇2f − f ∇2a) dV =

∫
S

un • (grad f a − f grad a) dS. (A4.77)

RELATIONSHIPS IN CYLINDRICAL COORDINATES

Dyadic a can be written as

a = a′
rur + a′

ϕuϕ + a′
zuz = urar + uϕaϕ + uzaz.

The basic differential operators are then:

grad a =
(

grad ar − aϕuϕ

r

)
ur +

(
grad aϕ + aruϕ

r

)
uϕ + grad azuz

= ur
∂a
∂r

+ uϕ

1

r

∂a
∂ϕ

+ uz
∂a
∂z

(A4.78)

div a =
(

div a′
r − aϕϕ

r

)
ur +

(
div a′

ϕ + aϕr

r

)
uϕ + (div a′

z)uz

= 1

r
ar + ∂a

∂r
+ 1

r

∂aϕ

∂ϕ
+ ∂az

∂z
(A4.79)
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curl a =
(

curl a′
r + a′

ϕ × uϕ

r

)
ur +

(
curl a′

ϕ − a′
r × uϕ

r

)
uϕ + curl a′

zuz

= ur

(
1

r

∂az

∂ϕ
− ∂aϕ

∂z

)
+ uϕ

(
∂ar

∂z
− ∂az

∂r

)
+ uz

(
aϕ

r
+ ∂aϕ

∂r
− 1

r

∂ar

∂ϕ

)
. (A4.80)

In particular:

grad ur = uϕuϕ

r
(A4.81)

grad uϕ = −uϕur

r
(A4.82)

grad uz = 0 (A4.83)

grad(rur) = urur + uϕuϕ = I − uzuz. (A4.84)

Note that the dyadic operators expressed in terms of the row vectors a are identical with
their vector counterparts provided bars are put above scalar projections to transform them
into row vectors, and provided the unit vectors are used as prefactors. This simple rule,
which is also valid in spherical coordinates, allows one to write composite operators such
as grad div simply by referring to the vector formula. For example:

∇2 a = ur

(
∇2ar − ar

r2 − 2

r2

∂aϕ

∂ϕ

)
+ uϕ

(
∇2aϕ − aϕ

r2 + 2

r2

∂ar

∂ϕ

)
+ uz∇2az. (A4.85)

RELATIONSHIPS IN SPHERICAL COORDINATES

Dyadic a can be written as

a = a′
RuR + a′

θ uθ + a′
ϕuϕ = uRaR + uθ aθ + uϕaϕ .

The basic differential operators are

grad a =
(

grad aR − aϕuϕ

R
− aθ uθ

R

)
uR +

(
grad aθ + aRuθ

R
− aϕuϕ

R tan θ

)
uθ

+
[
grad aϕ +

(aR

R
+ aθ

R tan θ

)
uϕ

]
uϕ

= uR
∂a
∂R

+ uθ

1

R

∂a
∂θ

+ uϕ

1

R sin θ

∂a
∂ϕ

(A4.86)

div a =
(

div a′
R − aθθ + aϕϕ

R

)
uR +

(
div a′

θ + aθR

R
− aϕϕ

R tan θ

)
uθ

+
(

div a′
ϕ + aϕR

R
+ aϕθ

R tan θ

)
uϕ

= ∂aR

∂R
+ 2aR

R
+ 1

R

∂aθ

∂θ
+ aθ

R tan θ
+ 1

R sin θ

∂aϕ

∂ϕ
(A4.87)
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curl a =
(

curl a′
R + a′

θ × uθ

R
+ a′

ϕ × uϕ

R

)
uR +

(
curl a′

θ − a′
R × uθ

R
+ a′

ϕ × uθ

R tan θ

)
uθ

+
(

curl a′
ϕ − a′

R × uϕ

R
− a′

θ × uϕ

R tan θ

)
uϕ

= uR

(
1

R

∂aϕ

∂θ
+ aϕ

R tan θ
− 1

R sin θ

∂aθ

∂ϕ

)

+ uθ

(
1

R sin θ

∂aR

∂ϕ
− ∂aϕ

∂R
− aϕ

R

)
+ uϕ

(
∂aθ

∂R
+ aθ

R
− 1

R

∂aR

∂θ

)
. (A4.88)

In particular:

grad uR = uθ uθ

R
+ uϕuϕ

R
(A4.89)

grad uθ = −uθ uR

R
+ uϕuϕ

R tan θ
(A4.90)

grad uϕ = −uϕuR

R
− uϕuθ

R tan θ
(A4.91)

grad(RuR) = I . (A4.92)
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