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Improved Recovery of Analysis Sparse Vectors in
Presence of Prior Information

Sajad Daei, Farzan Haddadi, Arash Amini

Abstract—In this work, we consider the problem of recovering
analysis-sparse signals from under-sampled measurements when
some prior information about the support is available. We incor-
porate such information in the recovery stage by suitably tuning
the weights in a weighted `1 analysis optimization problem. In-
deed, we try to set the weights such that the method succeeds with
minimum number of measurements. For this purpose, we exploit
the upper-bound on the statistical dimension of a certain cone
to determine the weights. Our numerical simulations confirm
that the introduced method with tuned weights outperforms the
standard `1 analysis technique.

Index Terms—`1 analysis, prior information, conic integral
geometry.

I. INTRODUCTION

COMPRESSED sensing (CS), initiated by [1], [2], has
been the focus of many research works for more than

a decade. Briefly, CS, in its general form, investigates the
reconstruction of a sparse vector x P Rn from m ! n noisy
linear measurements

y “ Ax` ε P Rm (1)

where A P Rmˆn is a known matrix and ε is an `2 bounded
noise term, i.e. }ε}2 ď η for some η ě 0. In many scenarios,
x is sparse after the application of some analysis operator Ω.
Specifically, we say x is s-analysis-sparse with support S in
the analysis domain Ω P Rpˆn if Ωx is s-sparse with support
S. Then, the following optimization problem called `1 analysis
is often used (See [3], [4], and [5]) to recover x:

Pη : min
zPRn

}Ωz}1 s.t. }y ´Az}2 ď η (2)

In many applications, there is some additional information in
the analysis domain. For instance, consider the line spectral
estimation where the signal of interest is sparse after applying
the Discrete Fourier Transform. In some applications, one
might a priori know the probability with which a set in
the spectral domain contributes to the true line spectra. The
extra information about the probability of contribution of
certain subsets could be beneficial in the recovery of x. For
example, for channel estimation in communication systems or
in remote sensing, the availability of previous estimates builds
a history that can specify the intersection probability of any
given set with the true support. Also, natural images often
tend to have larger values in lower frequencies after applying
Fourier or wavelet transforms; therefore, subsets composed of
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low-frequencies have higher probabilities of appearing in the
support. In these cases, we intend to exploit these additional
information. This work analyses possible benefits of this extra
information to reduce the required number of measurements of
P0 for successful recovery and to improve the reconstruction
error in Pη for robust and stable recovery. For this purpose, a
common way is to use weighted `1 analysis as follows:

Pwη :

min
zPRn

}Ωz}1,w :“
p
ÿ

i“1

wi|Ωz|i s.t. }y ´Az}2 ď η, (3)

where wi represents the weight associated with the i’th ele-
ment of the coefficient vector in the analysis domain. In this
work, we assume that the available prior information is about
the subsets tPiuLi“1 that partition t1, ..., pu. Thus, the elements
of Pi are all assigned the same weight (ωi). Moreover, we
define

w “
L
ÿ

i“1

ωi1Pi
, αi “

|Pi X S|
|Pi|

, ρi “
|Pi|
p
, (4)

where |¨| denotes the cardinality of a set and 1E is the indicator
function of the set E . The parameters αi and ρi are commonly
called the accuracy and the normalized size of the subsets,
respectively. Alternatively, tPiuLi“1 can be considered as L
analysis support estimators with different accuracies tαiuLi“1.
Our goal is to find the weights that minimize the required
number of measurements. To this end, we first find an upper-
bound for the required number of measurements in Proposition
1. Then, we minimize the upper-bound with respect to the
weights. Since the bound is not tight (especially in redundant
and coherent dictionaries), we can not claim optimality of
the weights. However, with the obtained weights, we almost
achieve the optimal phase transition curve of `1 analysis
problem in low-redundant analysis operators in numerical
simulations.

A. Related Works

The use of prior information in analysis sparse signal
models is initiated by the work [3]. With numerical simu-
lations, it is shown in [3] that by including weights in the `1
minimization, analysis sparse signals can be recovered with a
greater success. In [3], the weights are iteratively determined
as 1

|Ωpx|`ε where px is the solution of the previous iteration.
However, the optimal tuning of the weights is not discussed.
Recently, closed-form expressions are derived for the optimal
weights in [6] and [7] by minimizing the sample complexity



2

functions corresponding to weighted `1 and `1,2 minimization
problems (for the recovery of sparse and block-sparse signals,
respectively). Unfortunately, the approaches in [6] and [7]
cannot be extended to analysis sparse signals, mainly because
finding the sample complexity function in the case of `1
analysis is a challenging task [8], [9].

B. Outline and Notations

The paper is organized as follows: a brief overview of
convex geometry is given in Section II. We explain our main
contribution in Section III followed by numerical experiments
in Section IV. Indeed, the experiments confirm the theoretical
results.

Throughout the paper, scalars are denoted by lowercase
letters, vectors by lowercase boldface letters, and matrices
by uppercase boldface letters. The ith element of a vector
x is shown either by xpiq or xi. p¨q: denotes the pseudo
inverse operator. We reserve the calligraphic uppercase letters
for sets (e.g. S). The cardinality of a set S is denoted by
|S|. C˝ represents the polar of a cone C. In this work, paq`
stands for maxta, 0u for a scalar a. For a matrix A, the
operator norm and the condition number are represented by
}A}pÑq “ sup

}x}pď1

}Ax}q and κpAq :“ }A}2Ñ2}A
:}2Ñ2,

respectively. We denote i.i.d standard Gaussian random vector
by g. Lastly, } ¨ }8 returns the maximum absolute value of the
elements of a vector or matrix.

II. CONVEX GEOMETRY

In this section, basic concepts of conic integral geometry
are reviewed.

A. Descent Cones and Statistical dimension

The descent cone of a proper convex function f : Rn Ñ
RYt˘8u at point x P Rn is the set of directions from x that
do not increase f :

Dpf,xq “
ď

tě0

tz P Rn : fpx` tzq ď fpxqu¨ (5)

The descent cone of a convex function is a convex set. There
is a famous duality [10, Ch. 23] between decent cone and
subdifferential of a convex function given by:

D˝pf,xq “ conepBfpxqq :“
ď

tě0

t.Bfpxq. (6)

Definition 1. Statistical Dimension [11]: Let C Ď Rn be a
convex closed cone. Statistical dimension of C is defined as:

δpCq :“ E}PCpgq}
2
2 “ Edist

2
pg, C˝q, (7)

where g has i.i.d. standard normal distribution, and PCpxq is
the orthogonal projection of x P Rn onto the set C defined as:
PCpxq “ argmin

zPC
}z ´ x}2.

Statistical dimension specifies the boundary of success and
failure in random convex programs with affine constraints.

III. MAIN RESULTS

In this section, we first present an upper-bound for the
required number of Gaussian measurements for the case of a
redundant analysis operator Ω. A lower-bound is also derived
for non-singular Ω. The lower-bound is not new and was
previously reported in [12, Theorem A], but here we present
a simpler approach for the proof.

Proposition 1. Let x P Rn be a s-analysis sparse vector with
redundant analysis operator Ω P Rpˆn(p ě n). Then,

δpDp}Ω ¨ }1,w,xqq ď κ2pΩqδpDp} ¨ }1,w,Ωxqq. (8)

Moreover, if Ω is non-singular and p “ n,

1

κ2pΩq
δpDp} ¨ }1,w,Ωxqq ď δpDp}Ω ¨ }1,w,xqq ď

κ2pΩqδpDp} ¨ }1,w,Ωxqq (9)

Proof. See Appendix A.

Theorem 1. Let x P Rn. Let the entries of A P Rmˆn be
a random matrix with entries drawn from an i.i.d. standard
normal distribution. If y “ Ax P Rm, and

m ą

ˆ

κpΩq
b

δpDp} ¨ }1,w,Ωxqq ` t
˙2

` 1, (10)

for a given t ą 0, then, Pw0 recovers x with probability at
least 1 ´ e´

t2

2 . Also, if y “ Ax ` ε and Ωxap is the best
s̃-term approximation of the s- sparse vector Ωx (s ě s̃), then
any solution px of Pwη satisfies

}px´ x}2 ď
2η

`?
m´ 1´ κpΩq

a

δpDp} ¨ }1,w,Ωxapqq ´ t
˘

`

,

(11)

with probability at least 1´ e´
t2

2 .

Proof. See Appendix B.

Remark. (Prior works) In the literature, there exist two
recovery results for Pη in [3, Theorem 1.4] and [5, Theorem
1]. One could think of generalizing the results regarding Pη to
the weighted case of Pwη . The main challenge is, however, to
incorporate the prior information in the analysis domain. The
distinctive advantage of our approach in (11) is that it paves
the way for simply exploiting the prior information in the
analysis domain. In turn, it allows us to achieve closed-form
expressions for optimal weights. Besides the fact that the error
bounds in [3, Theorem 1.4] and [5, Theorem 1] for the case of
Pη hold only for the exact analysis sparse signals (which are
rare in practice), the tightness of the bounds is of question. In
contrast, our results in Theorem 1 hold even for approximately
analysis sparse signals, and we demonstrate tightness of the
error bounds at least for the low-coherence dictionaries. We
should highlight that without the tightness result, the weights
that minimize the error bound are irrelevant.

In the exact recovery case, we determine the suitable
weights by minimizing the right-hand side of (10). In the
noisy setting, for stable and robust recovery, we determine the
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weights by minimizing the reconstruction error (the right-hand
side of 11):

ω˚ “ argmin
νPRL

`

Edist2pg, pDνq d B} ¨ }1pΩxqq, (12)

where D :“ r1P1
, ...,1PL

s P RpˆL. The latter optimization
problem is very similar to the one in weighted `1 minimization.
With the same approach as in [6], one can show that (12)
reduces to solving the following equations simultaneously [6,
Corollary 11]:

αiω
˚
i “ p1´ αiq

c

2

π

ż 8

ω˚i

pu´ ω˚i qe
´u2

2 du : i “ 1, ..., L.

(13)

It is not obvious whether the inequality (8) in Proposition 1
is tight for highly redundant and coherent analysis operators.
However, numerical evidence suggests that the obtained bound
is close to the `1 analysis phase transition curve for low-
redundancy regime (see bottom right image of Figure 1).

In practice, one may encounter some inaccuracies in de-
termining α P RL. The study of the sensitivity of weights
to the inaccuracies in α were previously considered in [7].
Fortunately, small changes in α are shown to have insignificant
impact on the derived weights.

IV. SIMULATION RESULTS

In this section, we numerically study the effect of weights
obtained by (13) on the number of required measurements.
First, we consider the scaling of the required number of
measurements for successful recovery of (2) with analysis
sparsity. The heatmap in bottom right image of Figure 1 shows
the empirical probability of success. Indeed, the results are
consistent with (8).

In the second experiment, we generate a s “ 10-analysis
sparse random vector x P R55 in two different analysis
operators with κpΩq “ 1.1 and κpΩq “ 240. We consider
two strategies

1) Choose five random sets tPiu5i“1 that partition the
analysis domain t1, ..., pu with α1 “

8
10 , α2 “

2
10 ,

α3 “
3
10 , α4 “

1
8 and α5 “ 0 and correspondingly

assign five suitable weights.
2) Consider two sets P1 Y P2 and P3 Y P4 Y P5 with

α1 “
4
10 and α2 “

4
45 and choose two suitable weights

accordingly.
The suitable weights are obtained via equation (13) by

MATLAB function fzero. The top and bottom left images
of Figure 1 show the success rate of Pw

˚

0 averaged over 50
Monte Carlo simulations. It is evident that the weighted `1
analysis (either with L “ 5 or L “ 2 estimates) with suitable
weights needs less number of measurements than regular `1
analysis. Moreover, we see that the strategy with L “ 5
estimators acts clearly better than just considering L “ 2
estimators. Reweighted `1 analysis in [3] with 4 steps are
also examined. However, its performance is weaker than our
weighting strategy.

In the third experiment, we evaluate the relation between
accuracies and required number of measurements. In partic-
ular, we consider α1, α2 corresponding to two sets P1 and

P2 that partition the analysis domain rp “ 60s of a signal.
In the top right image of Figure 1, we depict the required
number of measurements versus the accuracy of the first set
i.e. α1. As it turns out, the more our analysis prior information
is nonuniform (the difference of α1 and α2 increases), the re-
quired number of measurements of Pw

˚

0 becomes less. In fact,
the choice of suitable weights w˚ becomes more important as
|α1 ´ α2| increases. In case of α1 “ α2 (uniform analysis
prior information), the corresponding optimal weights w˚1 and
w˚2 become equal and the required number of measurements
in Pw

˚

0 reduces to the one in P0.
In the forth experiment shown in the right block of Figure 2,

we compare the speed of convergence of our optimal weight-
ing strategy with existing methods. We can see that Pη has
the best performance in terms of computational complexity.

In the last experiment, we investigate a more practical
scenario where a Shepp-Logan image ( denoted by X of size
n1 ˆ n2 pixels) is under-sampled with a fat random Gaussian
matrix (of size mˆn1n2) and passed through an additive noise
with SNR=10 dB. Figure 2 illustrates the recovery of this
image (n1 “ n2 “ 128) by solving (2), (3), and reweighted
`1 analysis proposed in [3] when Ω P R114688ˆ16384 is a
redundant wavelet matrix from haar family (the weights in (3)
are obtained via 13) and in case of m “ 6554. The recovery
problems (2), (3), and reweighed strategy [3] are all carried
out using TFOCS algorithm [13]. The quality of each method
is reported in terms of the Peak SNR (PSNR) given by:

PSNRpX,xXq :“ 20 log10

˜

}X}8
?
n1n2

}X ´ xX}F

¸

. (14)

We assume 11 disjoint support estimators in the analysis
domain with known level of contributing (tαiu11i“1 in (4)) with
top 10% (specifying s̃ in Theorem 1) of wavelet coefficients.
As shown by Figure 2, while Pw

˚

η (bottom right image of
Figure 2) has an acceptable performance with PSNR=19 dB,
Pη (top right image of Figure 2) clearly fails with a poor
performance PSNR=10 dB. Moreover, since the selection
mechanism of the weights in reweighted `1 strategy (bot-
tom left image of Figure 2) is heuristic, its performance
(PSNR=13.1 dB) is weaker than our theoretical weighting
strategy.

APPENDIX

A. Proof of Proposition 1
Proof. In the following, we relate Dp}Ω ¨ }1,xq to Dp} ¨
}1,Ωxq.

Dp}Ω ¨ }1,xq
˝˝ “ closurepDp}Ω ¨ }1,xqq

Dp}Ω ¨ }1,xq “ cone˝pΩT B} ¨ }1pΩxqq

tw P Rn : xw,ΩTvy ď 0 : @v P conepB} ¨ }1pΩxqqu “

tw P Rn : Ωw P cone˝pB} ¨ }1pΩxqqu “

tw P Rn : Ωw P Dp} ¨ }1,Ωxqu. (15)

Therefore,

ΩDp}Ω ¨ }1,xq Ă Dp} ¨ }1,Ωxq. (16)

In particular, if Ω is non-singular and p “ n,

ΩDp}Ω ¨ }1,xq “ Dp} ¨ }1,Ωxq, (17)



4

Fig. 1. The top and bottom left images show the success rate of P0, Pw˚

0
and reweighted `1 analysis with parameters p “ 60, n “ 55, s “ 10,
κpΩq “ 1.1. OW, RW, and UW denote optimal weighting strategy, reweighted
`1 analysis with 4 steps and unweighted case, respectively. The top right
image shows the relation between accuracies and the required number of
measurements. The bottom right image shows empirical probability that
problem (2) recovers x P R55 that has s non-zero entries after applying
a redundant analysis operator with κpΩq “ 1.1. The black line shows the
number of measurements obtained by (8).

Ground-truth image (PSNR= )dB UW (PSNR 10dB)

RW (PSNR 13.1dB) OW (PSNR 19dB)

Fig. 2. Left block: Effect of suitable weights in analysis sparse recovery
with prior information. The associated parameters are n1 “ n2 “ 128, and
m “ 6554. Right block: Comparing our optimal weighting (OW) strategy
with reweighted (RW) method (4 steps) and unweighting (UW) strategy.

where in the last line of (15), we used the fact that Dp}Ω¨}1,xq
is a closed convex set. In the following, we state Sudakov-
Fernique inequality which helps to control the supremum of
a random process by that of a simpler random process and is
used to find an upper-bound for δpDp}Ω ¨ }1,xqq.

Theorem 2. (Sudakov-Fernique inequality). Let T be a set
and X “ pXtqtPT and Y “ pYtqtPT be Gaussian processes
satisfying ErXts “ ErYts : @t P T and E|Xt ´ Xs|

2 ď

E|Yt ´ Ys|
2 : @s, t P T , then

E sup
tPT

X2
t ď E sup

tPT
Y 2
t . (18)

δpDp}Ω ¨ }1,xqq :“ E

ˆ

sup
wPDp}Ω¨}1,xq
}w}2ď1

xg,wy

˙2

ď }Ω}22Ñ2

E

ˆ

sup
wPDp}Ω¨}1,xq
}Ω}2Ñ2}v}2ď1

xg,vy

˙2

ď }Ω}22Ñ2}Ω
:}22Ñ2

E

ˆ

sup
wPDp}Ω¨}1,xq
}Ω}2Ñ2}v}2ď1

xh,Ωvy

˙2

κ2pΩqE

ˆ

sup
wPDp}Ω¨}1,xq
}Ωv}2ď1

xh,Ωvy

˙2

ď κ2pΩqE

ˆ

sup
zPΩDp}Ω¨}1,xq

}z}2ď1

xh, zy

˙2

ď

κ2pΩqE

ˆ

sup
zPDp}¨}1,Ωxq
}z}2ď1

xh, zy

˙2

“ κ2pΩqδpDp} ¨ }1,Ωxqq,

(19)

where in (19), h P Rp is a standard normal vector with i.i.d
components. In the first inequality of (19), we used the change
of variable v “ }Ω}´1

2Ñ2w. The second inequality comes from
Theorem 2 with Xv “ xg,vy and Yv “ }Ω:}2Ñ2xh,Ωvy and
the fact that:

E|Xv ´Xw|
2 “ }v ´w}22 ď }Ω

:}22Ñ2}Ωpv ´wq}
2
2 “

“ E|Yv ´ Yw|
2 : @v,w P Rn. (20)

The last inequality comes from (16). In the special case p “ n
and Ω is non-singular we have:

δpDp}Ω ¨ }1,xqq :“ E

ˆ

sup
wPDp}Ω¨}1,xq
}w}2ď1

xg,wy

˙2

“

E

ˆ

sup
vPDp}¨}1,Ωxq
}Ω:v}2ď1

xg,Ω:vy

˙2

ě

}Ω}´2
2Ñ2E

ˆ

sup
vPDp}¨}1,Ωxq
}Ω:v}2ď1

xh,vy

˙2

ě

}Ω}´2
2Ñ2E

ˆ

sup
vPDp}¨}1,Ωxq
}v}2ď}Ω

:
}
´1
2Ñ2

xh,vy

˙2

“
1

κ2pΩq
δpDp} ¨ }1,Ωxqq,

(21)

where the first inequality comes from Ω:Ω “ I and (17). The
second inequality comes from Theorem 2 with Xv “ xg,Ω

:vy
and Yv “ }Ω}´1

2Ñ2xh,vy and the fact that

E|Xv ´Xw|
2 “ }Ω:pv ´wq}22 ě }Ω}

´2
2Ñ2}v ´w}

2
2 “

“ E|Yv ´ Yw|
2 : @v,w P Rn, (22)

where the last inequality is a result of norm properties. �

B. Proof of Theorem 1

Let T0 be the index set of s̃ largest analysis coefficients.
Then, it holds that,

}Ωxap}1 :“ }pΩxqT0}1 ě
s̃}Ωx}1

s
, (23)

and as a result, we have, Dp}Ω ¨ }1,xq Ď Dp}Ω ¨ }1,
s
s̃xq

and thus δpDp}Ω ¨ }1,xqq ď δpDp}Ω ¨ }1,
s
s̃xqq. The result in

Theorem 1 follows from [14, Corollary 3.5], Proposition 1,
and the fact that δpDp} ¨ }1,Ωxqq only depends on the support
of Ωx.
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