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Deterministic Design of Toeplitz Matrices with
Small Coherence Based on Weyl Sums
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Abstract—The design of deterministic measurement matrices
has been the focus of research in compressed sensing from the
early stages. In particular, structured measurement matrices are
of great interest as they could be efficiently stored. Our focus
in this paper is on Toeplitz structure where naturally arises in
linear shift-invariant systems (convolution operator). We design
complex-valued Toeplitz matrices with unit modulus elements
that have small coherence. The complex phase of the matrix
elements are determined by certain polynomials. We provide
upper-bounds for the coherence of the resulting matrix using tools
from analytic number theory, namely, the Weyl sum theorem.
Simulation results confirm that the proposed matrices perform
similar to the Gaussian Toeplitz matrices of the same size.

Index Terms—Coherence, Compressive sensing, Toeplitz ma-
trix, Sparse channel estimation, Weyl sum.

I. INTRODUCTION

COMPRESSED sensing (CS) [1]–[3] is a prominent field
which aims at sampling sparse signals efficiently using

a linear and non-adaptive approach; i.e., projecting sparse
signals onto lower-dimensional subspaces. Specifically, if x
denotes a length n vector which is k-sparse, then, in CS the
data acquisition process can be described as

ym×1 = Φm×n xn×1 + em×1, (1)

where e denotes the additive noise vector and Φ is called the
measurement (sensing) matrix. Obviously, the recovery of x
from y depends on the size and properties of the matrix Φ.
One of the well-studied sufficient conditions on Φ for stable
recovery of x is the so-called Restricted Isometry Property
(RIP). We say that Φ satisfies RIP of order k with constant
δk if [4]

(1− δk)∥xn×1∥22 ≤ ∥Φm×nxn×1∥22 ≤ (1 + δk)∥xn×1∥22 (2)

holds for all k-sparse vectors xn×1. It is shown in [5] that
a wide range of random sensing matrices (such as Bernoulli
and Gaussian) satisfy the aforementioned property with high
probability when m ≥ O(k log(nk )). However, checking this
property for a generic matrix is proved to be computationally
NP-hard [6]. This is a great restriction for deterministic
designs, as the averaging technique used for random matrices
is no longer available. A common alternative to RIP which
is computationally feasible, is the coherence measure. The
coherence (or mutual coherence) of a matrix Φ is defined as

µ(Φ) = max
0≤i<j≤n−1

|⟨ϕi,ϕj⟩|
∥ϕi∥2 ∥ϕj∥2

, (3)
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where ϕ0,ϕ1, . . . ,ϕn−1 represent the columns of Φ. It is
known that if µ(Φ) < 1

k−1 , then, Φ satisfies the RIP of order
k with δk < (k−1)µ(Φ) [7], [8]. Thus, the coherence bound is
stronger than the RIP condition. Unfortunately, the guarantees
based on the coherence bound are too conservative. The Welch
bound for m× n matrices with m ≤ n implies that [9]

µ(Φ) ≥
√

n−m

m(n− 1)
. (4)

Therefore, to guarantee the RIP of order k, at least m = O(k2)
measurements are required. Compared to m = O(k log(nk ))
for random matrices, this is a considerable increase. With all
the shortcomings of the guarantees based on the coherence
measure, it is the dominant tool for the design of deterministic
matrices (see for instance [8], [10]–[14]). In other words, it
is desirable to construct fat matrices with unit-norm columns
that have small coherence values. Our approach in this paper
is also based on minimizing the coherence value.

In general, the matrix design problem is solved by tuning
all the elements of the matrix, possibly independently. In some
applications, however, the physics of the problem enforce
certain structures on the matrix. An example which will
be studied in this paper is the sparse channel estimation,
where the Toeplitz structures is involved [15], [16]. While the
structure is mainly restrictive for the design, it might bring
some advantages. For instance, the existence of the structure
simplifies the task of storing the matrix, particularly, in large
dimensions. A special advantage of Toeplitz (and circular)
structure is the existence of fast matrix-vector multiplication
routines, that expedite the recovery algorithms [17].

A. Application

From the theory of communications we know that a digi-
tal communication system with band-limited continuous-time
pulse shape could be modeled by a discrete-time counterpart
[18]. The communication channel in most setups can be
fairly approximated as a linear shift-invariant operator (at
least for short time spans), e.g., a filter. This operator is
initially unknown to the transmitter and receiver sides, and
should be estimated before its effect is compensated at the
receiver. For this purpose, the transmitter includes certain fixed
patterns within the transmitting data to facilitate the estimation
procedure at the receiver. Such fixed data are known as pilots.

Considering a fixed-size structure for pilot and data symbols
as in Figure 1, we can model the discrete-time communication
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Fig. 1: The transmitted signal.

system as

...
yi+L−2

yi+L−1

...
yi+Np−1

yi+Np

...


=



...
xj+L−2 xj+L−3 · · · xj−1

xj+L−1 xj+L−2 · · · xj

...
...

. . .
...

xj+Np−1 xj+Np−2 · · · xj+Np−L

xj+Np xj+Np−1 · · · xj+Np−L+1
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...
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...
zi+L−2
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...
zi+Np−1

zi+Np

...


(5)

where in the discrete-time model, h[i], 0 ≤ i < L stand for the
finite-length channel taps, x[i] represents the ith transmitting
symbol, and y[i] shows the received data corresponding the ith
transmitting symbol, which includes an additive noise term z[i]
besides the channel effect.

As the receiver is only aware of the pilot values, it is logical
to estimate the channel based on y[i]s that are solely composed
of pilot values: yi+L−1

...
yi+Np−1

 =

 xi+L−1 · · · xi

...
. . .

...
xi+Np−1 · · · xi+Np−L


 h0

...
hL−1

+

 zi+L−1

...
zi+Np−1

 . (6)

By using vector and matrix notations, we can rewrite (6) as

y = Φh+ z, (7)

where Φ is the Toeplitz matrix formed by pilot values, h is
the length L vector of channel taps, and z is the vector of
additive noise values.

In many real-world applications such as underwater acous-
tic communications [20], channels tend to exhibit a sparse
behavior. Compressed sensing is a tool for such scenar-
ios to increase both accuracy and computation efficiency of
the estimates. Alternatively, compressed sensing allows for
maintaining the performance of the channel estimation block
with fewer pilots, thus, reducing the communication overhead.
In summary, we are interested in designing suitable sensing
matrices Φ with Toeplitz structure that can be converted into
pilot sequences.

B. Related Works

The literature of sensing matrix design has a history almost
equivalent to that of the compressed sensing; therefore, men-
tioning all of the designs in this short note is not feasible.
Instead, we briefly mention the existing designs related to the
Toeplitz structure. The study of random Toeplitz matrices is
carried out in [16]. It is shown that if the elements of the
first row and column of Φm×n are set as i.i.d. realizations
of a bounded zero-mean distribution with variance 1

m , then,
the matrix satisfies RIP of order k (with high probability)
when m ≥ O(k2 log n). This bound is improved to m ≥
O
(
k1.5 log1.5n

)
in [21] for random partial circulant matrices

(randomly selecting rows from a circulant matrix) drawn from

Rademacher distribution. This bound was later improved to
m ≥ O

(
k log2k log2n

)
in [22]. The bound m ≥ O

(
k log4n

)
is derived in [23] when Φ is obtained by random row se-
lection from certain deterministic circulant matrices. A fully
deterministic matrix design is presented in [24], where the
matrix consists of the elements of the form exp(j2παi3),
where α is an algebraic irrational number that is the root of a
quadratic polynomial with integer coefficients. For large m,n

values, the matrix is guaranteed the RIP order of n3/8√
m
n logn

.

Unlike the previous random designs, this matrix is Toeplitz
(rather than partially Toeplitz). We should highlight that our
designed matrices have many similarities with these matrices,
except that we avoid using irrational α values (due to practical
considerations) which forces us to adopt completely different
proof techniques. Other Toeplitz-related matrix designs can be
found in [25]–[29].

C. Contributions
In this paper, we shall introduce a fully deterministic matrix

design for Toeplitz sensing matrices. The elements of the
designed matrices all have unit modulus. We provide an upper-
bound for the coherence value of such matrices by invoking
some of the known results regarding Weyl sums. The general
structure of our matrices is similar to that of [24]; however,
besides more degrees of freedom in our approach, we have
the advantage of using finitely many elements from the unit
complex ball. To be more specific, a critical part of the design
in [24] is to use non-repeating complex values on the unit
complex ball as matrix elements. In practical scenarios, how-
ever, all elements are subject to quantization which violates the
non-repeating nature of the design. In contrast, we use only 3n
different values of the form ej

2π
3n l, 0 ≤ l < 3n. Furthermore,

our coherence guarantee holds for all prime n, instead of the
sufficiently large n in [24]. Finally, when m

n is fixed and n
goes to infinity, the scaling order of our guaranteed RIP level
is superior than that of [24].

D. Outline
The organization of the paper is as follows: in Section II

we will review some of the mathematical tools related to the
Weyl sums. Then, we shall propose our design in Section
III and derive an upper-bound for its coherence using Weyl
sums. We shall investigate the designed matrices via numerical
simulations in Section IV. Finally, we conclude the paper in
Section V.

II. MATHEMATICAL PRELIMINARIES

In this section, we describe a particular family of sums
in analytic number theory, widely known as Weyl sums, and
express some of the available bounds on such sums. A Weyl
sum is of the form [30]

Sh(N) =
N∑
i=1

exp
(
j2πh(i)

)
, (8)

where h(x) is a polynomial of variable x with real coefficients.
The following theorems present some of the known upper-
bounds on Weyl sums.
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Theorem 1 ( [31]). Let h(x) = α1x+ · · ·+ακx
κ with κ ≥ 2,

and ∣∣∣ακ − a

q

∣∣∣ ≤ 1

q2
, N ≤ q ≤ Nκ−1.

for relatively prime integers a and q. Then for any 0 < ϵ < 1
we have ∣∣Sh(N)

∣∣ ≤ C(κ, ϵ)N1− 1−ϵ

2κ−1 , (9)

where the constant C(κ, ϵ) does not depend on N .

As we shall see later, we relate the cross correlation of the
columns of the sensing matrix to the Weyl sums. Therefore,
we prefer to have lowest possible bounds in order to reduce
the coherence of the matrix. The upper-bound in (9) is of
O
(
N1− 1−ϵ

2κ−1
)

as a function of N , which is increasing in terms
of κ. Therefore, we set κ = 2 in this paper, and focus on a
sharper bound for the specific case of κ = 2:

Theorem 2 ( [32]). Let h(x) = α2x
2 + α1x + α0 where αi

are real numbers such that∣∣∣∣α2 −
a

q

∣∣∣∣ ≤ 1

q2
, (10)

for some relatively prime integers a and q. Then∣∣Sh(N)
∣∣ < √

N + 1
q

(
2N + q

)(
N + q log q

)
. (11)

III. MAIN RESULT

As discussed in Section I, the aim of this paper is to propose
a Toeplitz sensing matrix with small coherence measure. In
other words, we would like to determine the elements of an
m× n matrix of the form

Φ =


ϕn ϕn−1 · · · ϕ2 ϕ1

ϕn+1 ϕn · · · ϕ3 ϕ2

...
...

...
. . .

...
ϕm+n−1 ϕm+n−2 · · · ϕm+1 ϕm

 . (12)

In this paper, we set ϕis as

ϕi =
1√
m

exp
(
j2πf(i)

)
, (13)

where the function f shall be introduced later. This choice is
beneficial in the mentioned communication application (pilot
values), since the peak-to-average-power ratio is reduced to its
minimum value of 1. In Theorem 3 we bound the coherence
of a specific family of sensing matrices formed with (13).

Theorem 3. Let n be a prime integer and define Φm×n to be
the Toeplitz matrix in (12) with

ϕi =
1√
m

exp

(
j2π

(
1
n i

3/3 +Bi2/2 + Ci
))

. (14)

Then, we have that

µ(Φ) <
1

m

√
m+ 1

n

(
2m+ n

)(
m+ n log n

)
(15)

Proof. First note that |ϕi| = 1√
m

for all i. Therefore, ∥ϕj∥2 =
1 for all 1 ≤ j ≤ n. Recalling the definition of coherence in
(3), we can write that:

µ(Φ) = max
0≤k2<k1≤n−1

|⟨ϕk1 ,ϕk2⟩|
∥ϕk1∥2 ∥ϕk2∥2

= max
0≤k2<k1≤n−1

∣∣∣∣ m∑
i=1

ϕi+k1ϕ
∗
i+k2

∣∣∣∣ (16)

Using the proposed format of the matrix elements in (14), we
can simplify (16) as

µ(Φ) = max
0≤k2<k1≤n−1

1

m

∣∣∣∣ m∑
i=1

exp

(
j2π

(
f(i+ k1)

− f(i+ k2)
))∣∣∣∣, (17)

where f(x) = 1
nx

3/3 + Bx2/2 + Cx. With this choice of
f(x), the difference f(i+k1)−f(i+k2) is always a quadratic
polynomial of i that can be expressed as α2i

2+α1i+α0 where

α2 = 1
n (k1 − k2),

α1 = 1
n (k

2
1 − k22) +B(k1 − k2),

α0 = 1
3n (k

3
1 − k32) +B(k21 − k22)/2 + C(k1 − k2). (18)

Hence, (17) can be rewritten as

µ(Φ) = max
0≤k2<k1≤n−1

1

m

∣∣∣∣ m∑
i=1

exp

(
j2π

(
α2i

2 + α1i+ α0

))∣∣∣∣.
(19)

Since 1 ≤ k1−k2 ≤ n−1 and n is a prime integer, k1−k2 and
n are coprime. Moreover, |α2 − k1−k2

n | = 0 < 1
n2 . Therefore,

the conditions of Theorem 2 are met here, and we can conclude
that

µ(Φ) <
1

m

√
m+ 1

n

(
2m+ n

)(
m+ n logn

)
, (20)

and the proof is complete.

The coherence bound in (20) can be restated as

µ(Φ) <
√
2
(

1
m + 1

n

)
+ (2 + γ) logn

m ≈
√

2 + γ
√

logn
m ,

(21)
if γ = n/m and n,m ≫ 1. Indeed, the parameter γ encodes
the aspect ratio of the matrix. For a fixed aspect ratio (fixed γ),
the coherence bound in (21) differs from the universal Welch
bound (4) by an O(log n) factor. Note that the Welch bound
is a general bound for all matrices, while here we are focusing
on the small subset of Toeplitz matrices. Overall, we find this
a fair trade-off.

Corollary 1. The designed matrix satisfies RIP of order k <√
m/ logn√
2+γ

+ 1 with δk < (k − 1)×
√
2 + γ

√
logn
m .

In summary, the introduced Toeplitz matrices in Theorem
3 have relatively small coherence values which makes them
suitable for sparse signal recovery. In particular, they are
useful in applications such as sparse channel estimation due
to their Toeplitz structure. Besides, the matrices are formed of
a finite number of equidistant elements on the unit circle in
the complex plane (except for the normalizing constant 1√

m
).

The equi-modulus property of the elements is desirable from
the practical perspective (small PAPR value). Moreover, the
minimum distance between the used elements in our design is
maximal; this property increases the robustness of the matrix
against quantization distortions. Another point is the degrees of
freedom provided by the parameters B and C in our matrices;
one can set these parameters arbitrarily without affecting the
overall coherence bound.
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Fig. 2: Perfect recovery probability as a function of sparsity
order k. All the matrices are of size 38× 113.

Fig. 3: MSE as a function of SNR. All the sequences are of
length 54.

Fig. 4: The comparison between the coherence of the proposed
matrices and typical Toeplitz Gaussian matrices of the size
a) 90 × 269 and b) 130 × 389. The color bars shows the
histogram of the coherence of the random matrices for 10000
realizations. The coherence of the deterministic matrices with
matching sizes are 0.271 and 0.217 in cases of a) and b),
respectively (the vertical lines).

IV. SIMULATION RESULTS

In this section, we numerically compare the performance
of the proposed matrices with some of the existing matrix
structures in recovering sparse vectors from compressed mea-
surements. In our comparison, we include complex-valued
random Gaussian Toeplitz matrices, the matrices designed in
[24], and a Toeplitz matrix found by search. For the latter,
we uniformly and independently draw m + n − 1 elements
from {ej 2πn a}n−1

a=0 and form an m × n Toeplitz matrix (using

these values as the elements in the first row and column);
we repeat this procedure 100, 000 times and select the matrix
with the minimum mutual coherence value. We also generate
k-sparse vectors xn×1 by first determining the support; indeed,
we randomly choose the support with a uniform probability
among

(
n
k

)
possibilities. Then, we set the non-zero values by

drawing k independent realizations from a standard normal
distribution.

In Figure 2, we plot the success rate (percentage of per-
fect recovery) of the considered matrices in terms of the
sparsity level k. A recovery is called successful whenever
∥x − x̂∥2/∥x∥2 ≤ 10−5 holds for the reconstructed vector
x̂, where x stands for the original sparse vector. The size of
all the matrices in this experiment is 38×113. Note that 113 is
a prime and γ = n

m ≈ 3; we have also used f(x) = x3

339 in the
design of our matrices. The exact Basis Pursuit (BP) method is
used as the recovery method in this experiment. Furthermore,
the percentages are found by observing the reconstruction
performance over 10, 000 different realizations of the random
input vectors x.

Figure 3 depicts the reconstruction performance in the noisy
setting where the Orthogonal Matching Pursuit (OMP) method
is used for recovery. The matrices are of size 14× 41 (or 54
pilot symbols in a communication system) and the sparsity
level of the input vector x is fixed at 2. The curves in this
figure depict the MSE of the reconstruction over 1, 000, 000
realizations of the input 2-sparse vector.

The curves in both Figures 2 and 3 indicate that the
performance of the proposed matrices match the one for
random matrices and the structure in [24]. However, there
is less degrees of freedom in selecting the elements in the
proposed method; besides, the choice of the elements in
the proposed method (equidistant points on the unit circle)
makes the resulting pilot sequence more suitable for practical
implementations.

Finally, we have numerically evaluated the coherence of
10,000 randomly generated Gaussian Toeplitz matrices and
plotted their distribution in Figure 4 for matrices with size
90 × 269 and 130 × 389. The green vertical line in these
plots indicate the coherence of the deterministic matrices
constructed with our approach (the same size). These figures
reveal that the coherence of the constructed matrices are
clearly smaller than typical Gaussian Toeplitz matrices.

V. CONCLUSION

In this paper, we proposed a deterministic design for
Toeplitz matrices with small coherence. The elements of the
matrices are chosen from a set of equidistant points on the
unit circle in the complex plane. We provided a closed-form
upper-bound for the coherence of the designed matrices using
tools from analytic number theory. The vanishing nature of
this bound enables us to design matrices with arbitrarily small
coherence values. Besides, the upper-bound differs from the
universal Welch bound by an O

(
log(n)

)
factor for fixed

aspect ratio of the matrix.
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