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Sample Complexity of Total Variation Minimization
Sajad Daei, Farzan Haddadi, Arash Amini

Abstract—This work considers the use of Total Variation
(TV) minimization in the recovery of a given gradient sparse
vector from Gaussian linear measurements. It has been shown
in recent studies that there exists a sharp phase transition
behavior in TV minimization for the number of measurements
necessary to recover the signal in asymptotic regimes. The phase
transition curve specifies the boundary of success and failure
of TV minimization for large number of measurements. It is a
challenging task to obtain a theoretical bound that reflects this
curve. In this work, we present a novel upper-bound that suitably
approximates this curve and is asymptotically sharp. Numerical
results show that our bound is closer to the empirical TV phase
transition curve than the previously known bound obtained by
Kabanava.

Index Terms—sample complexity, total variation minimization,
phase transition.

I. INTRODUCTION

COMPRESSED Sensing (CS) is a method to recover a
sparse vector x ∈ Rn from a few linear measurements

y = Ax ∈ Rm where A ∈ Rm×n is the measurement matrix.
In most cases in practice, the signal x is not sparse itself but
there exists a dictionary such that x = Dα for some sparse α.
This is known as synthesis sparsity and the following problem
called `1 minimization in the synthesis form is considered for
recovering x:

min
z∈Rn

‖z‖1 s.t. y = ADz. (1)

In [1]–[3], recovery guarantees of this problem are studied. In
general, one may not be able to correctly estimate α from
(1), but can hope for a good approximation of x = Dα
[2]. The second approach to deal with such cases, is to focus
on signals that are sparse after the application of an operator
called analysis operator Ω (See e.g. [3]–[5]). In the literature
this is known as cosparsity or analysis sparsity. The following
problem called `1 minimization in the analysis form is studied
to estimate the signal x:

min
z∈Rn

‖Ωz‖1 s.t. y = Az. (2)

A special case of this problem that has great importance in a
variaty of applications including image processing 1 is the case
where Ω is the one- or two-dimensional difference operator
that leads to the total variation (TV) minimization problem
which we call PTV from this point on.

Although many results in the CS literature have been
established via Restricted Isometry Property (RIP) and Null
Space Property (NSP) conditions (e.g. in [1], [6]–[9]), they fail
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1Piecewise constant images are modeled as low variational functions.

to address gradient sparse 2 vectors (the rows of the difference
matrix do not form a dictionary).

In a separate field of study, it is shown that the problem (2)
undergoes a transition from failure to success (known as phase
transition) as the number of measurements increases (e.g. see
[10], [11]). Namely, there exist a curve m = Ψ(s,Ω) that
the problem (2) succeeds to recover a gradient s-sparse vector
with probability 1

2 . Obtaining a bound that approximates this
curve has been an important and challenging task in recent
years as it specifies the required number of measurements in
problem (2) (See for example [11], [12]). This work revolves
around this challenge. Specifically, we propose an upper-bound
on Ψ(s,Ω) in the case of one dimensional difference operator

Ω =


1 −1 0 · · · 0
0 1 −1 · · · 0

. . . . . . . . .
0 · · · · · · 1 −1

 ∈ Rn−1×n.

A. Related Works

Despite the great importance of TV minimization in imaging
sciences, few works have been established to find explicit
formula for the number of measurements required for PTV

to succeed [11]–[14]. In [14], Needle et al. transformed
two-dimensional signals with low variations into those with
compressible Haar wavelet coefficients. Then a modified RIP
is considered for A to guarantee stable recovery. However,
their proof does not hold for one-dimensional gradient sparse
signals. In [13], a geometric approach based on “escape
through a mesh lemma” is used to recover gradient s-sparse
vectors from Gaussian measurements. Recently, in [12], Krah-
mer et al. provided an overview on the number of Gaussian
linear measurements in TV minimization based on the mean
empirical width [15], [16]. It is not evident from [13], [14]
whether the obtained lower-bound on the number of measure-
ments is sharp. The authors in [11] conjectured that the phase
transition for the TV Approximate Message Passing (AMP)
algorithm coincides with the number of measurements that
PTV needs. However, this conjecture has not been proved
yet. Furthermore, it is not simple nor practical to know the
required number for TV AMP algorithm in advance. In [5],
an upper-bound on Ψ(s,Ω) is proposed. The approach is based
on generalizing the proofs of [17, Proposition 1] to TV mini-
mization. In [18], a Monte Calro method is proposed to replace
the involved expectation operators with empirical means to
obtain Ψ(s,Ω); due to the numerical nature of the method, the
computational cost might not be feasible in certain settings.
Overall, [5] and [13] seem to be the only available bounds

2Low variational signal.
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with closed-form expressions that approximate Ψ(s,Ω); we
will discuss them in detail in Section III.

B. Outline of the paper

The paper is organized as follows. Section II provides a brief
review of some concepts from convex geometry. Section III
discusses our main contribution which determines an upper-
bound on the sufficient number of Gaussian measurements for
PTV to succeed. In Section IV, numerical experiments are
presented to verify our theoretical bound. Finally, the paper is
concluded in Section V.

C. Notation

Throughout the paper, scalars are denoted by lowercase
letters, vectors by lowercase boldface letters, and matrices by
uppercase boldface letters. The ith element of a vector x is
shown either by x(i) or xi. (·)† denotes the pseudo inverse
operation. We reserve calligraphic uppercase letters for sets
(e.g. S). The cardinality of a set S is shown by |S|. [n] refers to
the set {1, ..., n}. Furthermore, we write S̄ for the complement
[n]\S of a set S in [n]. For a matrix X ∈ Rm×n and a subset
S ⊆ [n], the notation XS is a matrix in Rm×n consisting of
the rows of X indexed by S and zero elsewhere. Similarly,
for x ∈ Rn, xS is the vector in Rn which coincides with x
on the entries in S and is zero on the entries outside S. Lastly,
the polar K◦ of a cone K ⊂ Rn is the set of vectors forming
non-acute angles with every vector in K, i.e.

K◦ = {v ∈ Rn : 〈v, z〉 ≤ 0 ∀z ∈ K}. (3)

II. CONVEX GEOMETRY

In this section, basic concepts of convex geometry are
reviewed.

A. Descent Cones

The descent cone of a proper convex function f : Rn →
R∪ {±∞} at point x ∈ Rn is the set of directions from x in
which f does not increase:

D(f,x) =
⋃
t≥0

{
z ∈ Rn : f(x+ tz) ≤ f(x)

}
· (4)

The descent cone of a convex function is a convex set. There
is a famous duality result [19, Ch. 23] between the decent
cone and the subdifferential of a convex function given by:

D◦(f,x) = cone(∂f(x)) :=
⋃
t≥0

t.∂f(x), (5)

where ∂f(x) denotes the subdifferential of the function f at
the point x.

B. Statistical Dimension

Definition 1. (Statistical Dimension [10]). Let C ⊆ Rn be
a convex closed cone. Also, assume that g ∈ Rn is a
random vector with i.i.d standard normal entries. The statistical
dimension of C is defined as:

δ(C) := E‖PC(g)‖22 = Edist2(g, C◦), (6)

where, PC(x) is the projection of x ∈ Rn onto the set C
defined by: PC(x) = arg min

z∈C
‖z − x‖2.

The statistical dimension generalizes the concept of dimen-
sion for subspaces to the class of convex cones. Let f be a
function that promotes some low-dimensional structure of x.
Then, δ(D(f,x)) specifies the required number of Gaussian
measurements that the optimization problem

min
z∈Rn

f(z) s.t. y = Az, (7)

needs for successful recovery [10, Theorem 2].

III. MAIN RESULT

In this work, we provide an upper-bound for the required
number of Gaussian measurements for PTV to succeed.

Theorem 1. Let x ∈ Rn be an arbitrary gradient s-sparse
vector with gradient support S. Let A be an m × n matrix
whose rows are independent random vectors drawn from
N (0, In). Then, if m ' m̂TV with

m̂TV := inf
t≥0
Edist2(g, t∂‖ · ‖TV(x)) ≤ n− 3(n− 1− s)2

π(2n+ s− 4)
,

(8)

(g ∈ Rn is a random vector with i.i.d standard normal entries)
PTV recovers x from y = Ax with probability at least 1

2 . In
the noisy case of y = Ax + e ∈ Rm, where ‖e‖2 ≤ η, the
outcome of PTVn

PTVn : min
z∈Rn

‖Ωz‖1 s.t. ‖Az − y‖2 ≤ η (9)

satisfies

‖x̂η − x‖2 ≤
2η

τ
, (10)

with probability at least 1− e− t2

2 , given that

m >

(√
n− 3(n− 1− s)2

π(2n+ s− 4)
+ t+ τ

)2

+ 1. (11)

Proof sketch . The left-hand side of (8), besides the infimum
over t, implicitly includes an infimum inside the expectation
over the set ∂‖ · ‖TV(x) because of the definition of “dist”.
Instead of this latter infimum, we choose a vector in the set
∂‖ · ‖TV(x) that leads to an upper bound for dist2(g, t∂‖ ·
‖TV(x)). This results in a strictly convex function of t. Then,
by finding infimum over t, we obtain the desired upper-bound
(8). The bound (11) is the consequence of the fact that δ(D(‖·
‖TV,x)) appears in the number of measurements required for
stable recovery of x [15, Corollarry 3.5] and m̂TV provides
an upper bound for δ(D(‖ · ‖TV,x)).

See Appendix A for details.

A. Comparison

In [5, Lemma 1], the following upper-bound is derived for
δ(D(‖ · ‖TV,x)):

m̂TV ≤ n−
(n− 1− s)2

nπ
. (12)
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This bound is rather loose in low sparsity regimes. The main
ideas in the proof of this bound are drawn from [17, Propo-
sition 1]. In [17, Proposition 1], an upper-bound is derived
for δ(D(f,x)) where f is a decomposable norm function3

that promotes a low-dimensional structure. This upper-bound
does not approach the phase transition curve in the low-
dimensional structured regimes. The problem arises from a
redundant maximization in the proof that increases the number
of required measurements (See section IV).

In [18], it is shown that f = ‖ · ‖TV satisfies the weak
decomposability assumption in [17, Equation 27]. Then, it is
inferred that ( [18, Equation 12]):

m̂TV ≤ δ(D(‖ · ‖TV,x)) + 6. (13)

While the validity of the above result needs more clarification,
the value of m̂TV describes δ

(
D(‖ · ‖TV,x)

)
asymptotically

well. To compute m̂TV, a numerical approach is devised in
[18]: for each sparsity level, the minimization problem inside
the expectation is numerically performed using a gradient
method for an arbitrary t ≥ 0. The outcome for 104 random
realizations of g are averaged to replace the expectation.
Finally, a numerical search determines the optimal t over a
large interval.

In [13, Theorem 3.3], unlike [18], a closed-form upper-
bound is [implicitly] derived for δ

(
D(‖ · ‖TV,x)

)
:

δ(D(‖ · ‖TV,x)) ≤
√

32(2
√

5 +
√

10)2
√
ns log(2n) + 1.

(14)

The scaling O(
√
n log(n)) of this bound, which is optimal

up to a logarithmic factor, is obviously superior to our O(n)
bound in (8). However, the effect of this scaling order differ-
ence becomes evident only for n ≥ 109. On one hand, there
are nowadays very rare applications for which n exceeds 109,
and on the other hand, for n < 109 our bound in (8) is much
better than (14). Therefore, we believe that (8) is still a useful
bound.

In Theorem 1, we propose a tight upper-bound that leads to
a reduction in the required number of Gaussian measurements
in TV minimization. This upper-bound better follows the
empirical TV phase transition curve. The upper-bound and the
proof approach are completely new and differ from [5] and
[17]. Our bound only depends on the sparsity level s and the
special properties of the difference operator Ω. It also tends to
the empirical TV phase transition curve at large values of m.
In addition to TV, our approach can be applied to other low
dimensional structures. For instance, the result in Theorem 1
can be easily extended to two dimensional images. Compared
with [5, Theorem 5], the reduction of the required number of
measurements, would be more evident in that case.

IV. NUMERICAL EXPERIMENTS

In this section, we evaluate how the number of Gaussian
measurements scales with gradient sparsity. For each m and
s, we repeat the following procedure 50 times in the cases
n = 50, n = 200 and n = 400:

3See [20, Section 2.1] for more explanations.

Fig. 1. Phase transition of PTV in the case of n = 50. The empirical
probability is computed over 50 trials (black=0%, white=100%). The previous
and new bounds come from (12) and (8), respectively.

Fig. 2. Phase transition of PTV in the case of n = 200. The empirical
probability is computed over 50 trials (black=0%, white=100%). The previous
and new bounds come from (12) and (8), respectively.

• Generate a vector x ∈ Rn that its discrete gradient has
s non-zero entries. The locations of the non-zeros are
selected at random.

• Observe the vector y = Ax, where A ∈ Rm×n is a
random matrix whose elements are drawn from an i.i.d
standard Gaussian distribution.

• Obtain an estimate x̂ by solving PTV.
• Declare success if ‖x− x̂‖2 ≤ 10−3.

Figs. 1 2 and 3 show the empirical probability of success
for this procedure. As shown in Figs. 1 2 and 3, our new
bound better describes δ(D(‖ · ‖TV,x)) in particular in low
sparsity regimes. As sparsity increases, the difference between
our bound and the bound (12) gets less. When the dimension
of the true signal i.e. n, increases, the difference between
our bound and (12) enhances (See Figs. 1, 2 and 3). In the
asymptotic case, it seems that our bound reaches the empirical
TV phase transition curve.

V. CONCLUSION

We have investigated the nonuniform recovery of gradient
sparse signals from Gaussian random measurements. Obtain-
ing a bound that suitably describes the precise behavior of TV
minimization from failure to success, is left as an unanswered
question. In this work, we derived an upper-bound for the re-
quired number of measurements that approximately estimates
this behavior. Also, this bound is close to the empirical TV
phase transition curve and seems to be asymptotically sharp.

APPENDIX

A. Proof of Theorem 1

Proof. Fix g ∈ Rn. Define

s1 =
∣∣{i ∈ {2, ..., n− 1} : i ∈ S, i− 1 ∈ S}

∣∣,
s2 =

∣∣{i ∈ {2, ..., n− 1} : i ∈ S̄, i− 1 ∈ S̄}
∣∣.
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Fig. 3. Phase transition of PTV in the case of n = 500. The empirical
probability is computed over 50 trials (black=0%, white=100%). The previous
and new bounds come from (12) and (8), respectively.

As indicated above, s1 and s2 stand for the number of adjacent
pairs in S and S̄, respectively, that are used in the sum of
differences (TV operator). Since ∂‖ · ‖1(Ωx) is a compact
set,

z0 = argmax
z∈∂‖·‖1(Ωx)

〈g,ΩTz〉

is well defined. In addition, we have that

z0 = argmax
z∈∂‖·‖1(Ωx)

〈Ωg, z〉 = argmax
‖z‖∞≤1

〈Ωg , sgn(Ωx)S + zS̄〉

= sgn(Ωx)S + argmax
‖z‖∞≤1

〈Ωg , zS̄〉 = sgn(Ωx)S + sgn(Ωg)S̄

The above choice of z0 helps us to make the below upper-
bounds more sharp:

dist2(g, tΩT∂‖ · ‖1(Ωx))
(I)
≤ ‖g − tΩTz0‖22 =

‖g − tΩT
S sgn(Ωx)S − tΩT

S̄ sgn(Ωg)S̄‖22 = ‖g‖22+

t2‖ΩT
S sgn(Ωx)S‖22 + t2‖ΩT

S̄ sgn(Ωg)S̄‖22
− 2t〈g,ΩT

S̄ sgn(Ωg)S̄〉+ 2t2〈ΩT
S sgn(Ωx)S ,Ω

T
S̄ sgn(Ωg)S̄〉,

where for (I), we used the chain rule lemma of subdifferential
[19, Theorem 23.9] ∂‖ · ‖TV(x) = ΩT∂‖ · ‖1(Ωx). The role
of z0 is to minimize the upper-bound in the inequality (I). By
taking expectation from both sides, we have:

E‖g − tΩT
S sgn(Ωx)S − tΩT

S̄ sgn(Ωg)S̄‖22
(I)
= n− 2t

√
2

π

∑
i∈S̄

‖ωi‖2 + t2
[∑
j∈S

∑
k∈S

ωTj ωksgn(Ωx)jsgn(Ωx)k

]
+ t2E

[∑
j∈S̄

∑
k∈S̄

ωTj ωksgn(Ωg)jsgn(Ωg)k

] (II)
≤ n− 2t

√
2

π

∑
i∈S̄

‖ωi‖2

+ t2
[∑
j∈S

∑
k∈S

ωTj ωksgn(Ωx)jsgn(Ωx)k

]
+

t2
[∑
j∈S̄

∑
k∈S̄

ωTj ωk
2

π
sin−1

ωTj ωk

‖ωj‖2‖ωk‖2

] (III)
≤ n− 4t√

π
s̄+ t2[2s

+ 2s1 + 2s̄+
2s2

3
]

(IV)

≤ n− 4t√
π
s̄+ t2[4s− 2 +

8

3
s̄− 2

3
],

(15)

where in the equality (I) in (15), we used the facts E‖g‖22 = n
and

E〈g,ΩT
S̄ sgn(Ωg)S̄〉 = E〈ΩS̄g, sgn(Ωg)S̄〉 = E‖(Ωg)S̄‖1∑

i∈S̄

E|ωTi g| =
√

2

π

∑
i∈S̄

‖ωi‖2,

where the last equality above comes from the mean of a
folded normal distribution. The inequality (II) follows from
the following lemma and Ω := [ω1,ω2, ...,ωp]

T .

Lemma 1. Let g ∈ Rn be a standard random Gaussian i.i.d
vector and Ω ∈ Rp×n be an analysis operator. Then,

E{sgn(Ωg)jsgn(Ωg)k} =
2

π
sin−1

ωTj ωk

‖ωj‖2‖ωk‖2
.

Proof. see Appendix B.
The inequality (III) is the result of the following properties of
the difference operator.

ωTj ωk =

{
−1, |j − k| = 1
0, o.w.

}
,

‖ωi‖2 =
√

2 : ∀i ∈ 1, ..., n− 1.

Also, s̄ = n−1−s. The inequality (IV) comes from the facts

s1 ≤ s− 1, s2 ≤ s̄− 1.

Now, by minimizing (15) with respect to t, we reach (8). Due
to [15, Corollary 3.5], if

m > (
√
δ(D(‖ · ‖TV,x)) + t+ τ)2 + 1, (16)

then, with probability 1− e− t2

2 ,

‖x− x̂‖2 ≤
2η

τ

A good upper-bound for δ(D(‖ · ‖TV,x)), is given by (8) and
thus, the claim is proved. �

B. Proof of Lemma 1

Proof. Consider Ω := [ω1,ω2, ...,ωp]
T . Define

hj =
ωTj g

‖ωj‖2
, hk =

ωTk g

‖ωk‖2
.

We have:

E{sgn(Ωg)jsgn(Ωg)k} = E{sgn(hj)sgn(hk)} =

1− 2P

{
hj
hk

< 0

}
= 1− 2

(
1

2
− 1

π
sin−1

(
E{ωTk gωTj g}
‖ωj‖2‖ωk‖2

))

=
2

π
sin−1

ωTj ωk

‖ωj‖2‖ωk‖2
(17)

where the second equality comes from total probability theo-
rem, the third equality comes from the fact that hj

hk
is a Cauchy

random variable. �
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