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Abstract

This study presents two innovative approaches for jointly optimizing the radar transmit waveform and receive

filter to improve the signal-to-interference-plus-noise ratio (SINR) for extended targets under signal-dependent

interference. We operate under the assumption of incomplete information about the target impulse response

(TIR), which is confined within a predefined uncertainty set. To ensure robustness against this uncertainty,

we frame the problem as a max-min (worst-case) optimization. Additionally, we impose a constant modulus

constraint (because it has the lowest possible peak-to-average power ratio (PAPR)) on the transmit waveform

to guarantee our system operates close to saturation. To solve this, both approaches use a sequential optimiza-

tion procedure, alternating between the transmit waveform and receive filter subproblems. The first approach

employs the ADMM, decomposing each subproblem into a semi-definite programming (SDP) problem and a

least squares problem with a fixed rank constraint, solvable via SVD. The second approach tackles the problem

over two Riemannian manifolds: the sphere manifold for the receive filter and the product of complex circles

for the transmit signal. By applying manifold optimization, the constrained problem is transformed into an

unconstrained one within a restricted search space. The max-min problem is reformulated as a minimization

problem, yielding a closed-form expression involving log-sum-exp. This is solved using the Riemannian conju-

gate gradient descent (RCG) algorithm, which builds on Euclidean conjugate gradient descent and utilizes the

manifold’s properties, such as the Riemannian metric and retraction. Our numerical results demonstrate the

robustness and effectiveness of these methods across various uncertainty sets and target types.

Keywords: ADMM, max-min optimization, Riemannian conjugate gradient descent (RCG) algorithm, SVD.

1. Introduction

One of the main challenges in designing radar, sonar, and communication systems is the joint optimization

of the transmit waveform and receive filter. With advancements in radar resolution, targets frequently exhibit
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extended range properties on radar screens. Consequently, waveform design tailored for extended targets has

emerged as a relevant and widely studied topic in the literature [1–26].

The concept of an extended target in radar, first introduced in [21], has described situations where the target’s

size exceeds the radar’s resolution, covering multiple range cells on the radar display. With the expansion of

radar bandwidth and advancements in high-resolution range profiling techniques, extended targets have become

increasingly common in radar detection scenarios. Unlike point-like targets, the echoes from extended targets

are not simply scaled-down versions of the transmit waveform. Instead, they are the result of the convolution

between the target impulse response (TIR) and the transmit waveform [12, 27–29]. The TIR, which is used

to characterize the scattering properties of extended targets, depends on both the physical attributes of the

target and the radar frequency [15, 25, 28, 30]. Traditional processing techniques optimized for point-like

targets may not be ideal for extended targets. For example, while a matched filter maximizes the output

signal-to-interference-plus-noise ratio (SINR) for point-like targets, it is not necessarily optimal for extended

targets. Consequently, optimizing radar transmitters and receivers for extended targets has been a major focus

of research over the past decades [12, 13, 16, 25, 31]. Significant advancements in enhancing radar performance

can be achieved through a detailed understanding of TIR or its descriptive model [30]. A variety of TIR models

have been employed to optimize radar performance based on diverse criteria [32]. The journey to optimize

radar waveforms for extended targets was initiated with [12], which investigated waveforms for both optimal

detection and information extraction. In the pursuit of an optimal detection waveform, the author of [12] strived

to maximize the output SINR with a deterministic TIR. Conversely, for information extraction waveforms, the

TIR was represented by a random vector, and the transmit waveform design aimed at maximizing the mutual

information (MI) between TIR and the received signal. Moreover, the minimum mean square error (MMSE)

metric was utilized for TIR parameter estimation or range profiling, as discussed in [13, 31, 33]. According to

[13], minimizing MMSE and maximizing MI result in identical optimal waveforms in an additive white Gaussian

channel. For extended targets, these waveform design methods, along with works such as [6, 23, 24, 34], are

based on having knowledge of the TIR. However, in practical applications, accurately determining the TIR

is challenging due to its sensitivity to factors such as the target aspect angle (TAA) relative to the radar

line-of-sight (LOS).

To address this problem, one strategy is to make an assumption that the TIR or power spectral density (PSD)

is partially known through cognitive methods [35–37]. This approach has allowed the design of robust waveforms

or filters [14, 17, 18, 22, 38], which have led to minimax optimization problems [39–41]. To handle the uncertainty

of PSD, a minimax waveform design model for MIMO radar based on MI and MMSE criteria was introduced
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in [14]. In [18, 22], waveforms were designed by maximizing the worst-case SINR under an energy constraint

(EC), where the minimax optimization was solved by changing the order of maximization and minimization.

However, the waveform designed under the EC does not meet the requirements of the radar transmitter due to

its high peak-to-average ratio (PAR) [42, 43]. In the study [25], the constant modulus constraint was considered

because radar amplifiers typically operate in a saturation condition, which prevents amplitude modulation in

radar waveforms. Karbasi et al. [25] approximated the spherical TIR set by sampling from its boundary. This

was followed by the optimization of the waveform and filter, carried out using a step-by-step procedure rooted in

semidefinite relaxation (SDR) techniques [44]. Finally, they employed randomization methods, as referenced in

[44, 45], to synthesize the transmit code and the receive filter. However, one limitation of this approach has been

its sensitivity to the sample size. When fewer samples are used, the method has demonstrated significantly lower

SINR performance and reliability compared to direct optimization without relaxation techniques. Moreover,

solving the relaxed optimization problem initially and then applying randomization can yield a suboptimal

solution.

1.1. Contributions

This paper presents two innovative approaches for jointly designing the transmit waveform and receive filter

to improve SINR for extended targets in the presence of signal-dependent interference, while also adhering to an

energy constraint. We assume partial knowledge of the TIR, which is constrained within a predefined uncertainty

set. This set is obtained by sampling the actual TIR at various TAAs, derived from previous observations and

tracking files, and is defined by their corresponding TIRs. Additionally, we impose a constant modulus constraint

on the transmit waveform to ensure our system operates near saturation. To ensure robustness against this

uncertainty, we frame the problem as a max-min (worst-case) optimization optimization. Both proposed methods

utilize a sequential optimization process that alternates between the transmit waveform and the receive filter

during the optimization procedure. The first approach decomposes each design problem into a semi-definite

programming (SDP) problem and a least square function with a fixed rank constraint, using the alternating

direction method of multipliers (ADMM) [46]. Actually, using ADMM to decompose the problem allows us to

efficiently address the fixed rank constraint using singular value decomposition (SVD). We call this approach

the alternating direction method of multipliers with semidefinite programming and singular value decomposition

(ASSD). The second approach addresses the max-min problem by optimizing over two Riemannian manifolds:

the sphere manifold for the receive filter and the product of complex circles for the transmit signal. Manifold

optimization treats the constrained problem as an unconstrained one over a restricted search space. Here, we
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transform our max-min problem into a minimization problem by approximating the maximum of the objective

function using the log-sum-exp form. We then tackle the reformulated problem by utilizing specific properties

of the manifold, such as the Riemannian metric and retraction, to develop a Riemannian gradient descent

algorithm derived from the Euclidean conjugate gradient descent method. We name this approach log-sum-exp

Riemannian conjugate gradient descent (LSE-RCG).

Our numerical results validate the robustness and efficiency of the proposed methods across various uncer-

tainty sets and target types. A significant advantage of our methods is that they not only enhance the SINR but

also do so for the worst-case scenario. In other words, our strategies improve the SINR for every element of the

uncertainty set, outperforming the methods proposed in previous studies. Additionally, our methods achieve

convergence with fewer iterations compared to the main competitor [25], and even one of our approaches is faster

in runtime too, indicating a reduction in computational resources. This advancement highlights the effectiveness

of our strategies in enhancing radar system performance. The remainder of the paper is organized as follows. In

Section 2, we begin by introducing the system model, detailing the target response, and examining the statistical

properties of interference noise. Section 3 then outlines the optimization problem within a specific uncertainty

set of TAAs. Following this, Section 4 presents our detailed strategies for the joint design of the waveform-filter

pair and discusses the computational complexity involved in our proposed methods. In Section 5, we analyze

simulation results, first considering three distinct uncertainty sets and then examining two different types of

targets. Finally, Section 6 summarizes our findings and draws conclusions based on the research presented.

Notations. In this paper, we represent vectors and matrices using boldface letters: vectors are indicated by

lowercase boldface a and matrices by uppercase boldface A. The transpose is denoted by (.)T , while the

conjugate transpose is indicated by (.)H . The identity matrix is represented as I, and 0 signifies a matrix or

vector with all zero elements, with sizes understood from the context. The set of N -dimensional complex vectors

is denoted by CN , and HN denotes the set of N × N Hermitian matrices. The Euclidean norm of a vector a

is written as ∥a∥2. The notation |a| refers to a vector whose elements are the absolute values of the elements

of a. The Hadamard product is denoted by ⊙, and the convolution operator by ∗. We represent the objective

function of the optimization problem P as obj(P) and denote the optimal value as v(P). The expectation

operator is indicated by E[·]. Finally, N (0,Σ) represents a zero-mean complex Gaussian distribution with a

covariance matrix Σ.
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Figure 1: Return wave from scattering centers located in the range of radar visibility.

2. Target and Signal Model

2.1. Target Model

In high-resolution radar systems, the size of the range cell is considerably smaller than the physical dimensions

of extended targets. This makes it insufficient to model the target as a single-point scatterer. Instead, the target

is represented by its dominant scattering centers, which ensures that significant returns are confined to specific

range cells along the radar’s LOS. To accurately model this, the target is treated as a linear system with a finite

impulse response (FIR). The parameters of this system are based on the target’s shape and LOS [47–49]. It

is widely recognized for its pronounced sensitivity to minor alterations in the orientation of the target. Fig. 1

illustrates the formation of TIR by projecting the scattering centers onto the LOS.

2.2. Signal Model

In our analysis, we concentrate on a monostatic radar setup, where the transmitted signal is described by

an N -dimensional fast-time code:

s = [s(0), ..., s(N − 1)]
T ∈ CN . (1)

When the target is surrounded by clutter, the discrete-time baseband equivalent of the return signal from

5



the extended target can be described as follows:

r(n) =

N−1∑
k=0

[hθ(n− k) + c(n− k)]s(k) + υ (n)= [hθ(n) + c(n)] ∗ s(k) + υ (n). (2)

In (2), the variable n indicates the discrete time index, and hθ(n) represents the TIR corresponding to the TAA

θ. The TIR hθ(n) is assumed to be nonzero only within a support interval of length Q, meaning hθ(n) = 0 for n

outside the range {0, . . . , Q−1}. The term c(n) represents the clutter impulse response (CIR), and v(n) denotes

receiver noise. The TIR vector is defined as hθ = [hθ(0), . . . , hθ(Q− 1)]
T ∈ CQ. All observations r(n) of the

desired target are collected into a vector r = [r(0), . . . , r(M − 1)]
T ∈ CM , where M = Q+N − 1 represents the

total number of discrete time observations. This observation vector is expressed as:

r = Tθs+Cs+ υ, (3)

where υ = [υ(0), . . . , υ(M − 1)]
T
represents the additive noise component. C =

M−1∑
n=−N+1

c(n)Jn and Tθ =

q−1∑
n=0

hθ(n)Jn are, respectively, the CIR and the TIR matrices, where Jn is the M ×N -dimensional shift matrix:

Jn(α1, α2) =


1, if α1 − α2 = n

0, if α1 − α2 ̸= n
, (4)

α1 = {1, 2, ..,M}, α2 = {1, 2, .., N}. (5)

Assuming the noise vector υ to be circularly symmetric, we characterize it by the following statistical properties:

E[υ] = 0, (6)

Συ = E[υυH ] = σ2
υI. (7)

Here, σ2
υ represents the variance of each filtered noise sample. In addition, we make the assumption that the

clutter has a zero mean, represented as E[c(n)] = 0, and it is independent from the noise random process. Due

to the high sensitivity of TIR to changes in TAA, giving an exact specification of TIR might not accurately

represent the real world. Thus, the true TIR is considered to fall within a finite uncertainty set I, which is
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generated by sampling the TIR across various TAAs. We define the uncertainty set Iϕ2

ϕ1
of length K as follows:

Iϕ2

ϕ1
= {k∆θ | k ∈ Z, k∆θ ∈ [ϕ1, ϕ2]}, (8)

where ∆θ represents the TAA sampling step, and ϕ1 and ϕ2 define the lower and upper bounds of the TAA

set, respectively. Our goal is to optimize the waveform-filter pair to maximize the worst-case SINR across

the uncertainty set of TIRs. More details on the formulation of this worst-case optimization problem will be

discussed in the following section.

3. Problem Formulation

In this section, our attention is directed towards formulating the problem for designing the waveform-filter

pair. Assuming that the observation vector r is filtered through w = [w(0), ..., w(M − 1)]
T ∈ CM , the SINR at

the filter output can be expressed as:

SINRθ(s,w) =

∣∣wHTθs
∣∣2

E
[
|wHCs|2

]
+ E

[
|wHυ|2

] . (9)

To ensure our system can operate near saturation, we impose a constant modulus constraint on the transmit

waveform, which can be equivalently considered as applying a unit energy constraint on the transmit waveform,

i.e., ∥s∥22 = 1, along with the lowest possible upper bound for the PAR constraint:

PAR =

max
n=0,...,N−1

|s(n)|2

1
N ∥s∥2

2 = max
n=0,...,N−1

N |s(n)|2 ≤ 1. (10)

As a result, our optimization problem can be formulated as:

P :

max
s,w

min
θ

SINRθ(s,w)

s.t. ∥s∥22 = 1

|s(n)|2 ≤ 1

N
, n = 0, ..., N − 1.

(11)

In order to simplify our SINR optimization process, we introduce the rank-one code and filter matrices as

S = ssH and W = wwH , respectively. Utilizing these definitions, we derive two equivalent expressions for
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equation (9):

SINRθ(s,w) =
wHΓ(Tθ,S)w

wHΣCυ(S)w
=

sHΓ̄(Tθ,W)s

sHΣ̄Cυ(W)s
, (12)

where

Γ(Tθ,S) = TθST
H
θ , (13)

ΣCυ(S) = E
[
CSCH

]
+ σ2

υI, (14)

Γ̄(Tθ,W) = TH
θ WTθ, (15)

Σ̄Cυ(W) = E[CHWC] + σ2
υtr(W)I. (16)

For a thorough explanation of the derivation of the SINR formulation (12), please refer to the Appendix A.

In the subsequent section, we delve into our proposed methodologies regarding the optimization of s and w

within the context of the worst-case problem P.

4. Design of the waveform-filter pair

In this section, we are set to explore the jointly design of the transmit waveform and the receive filter. This is

achieved by a process of alternating optimization between the receive filter and the transmit waveform. Initially,

we concentrate on optimizing the receive filter, under the assumption that s remains fixed. Following this, we

shift our focus towards optimizing the transmit signal, under the assumption that the receive filter w remains

fixed. We persist in alternating between these two procedures until we arrive at the optimal solutions for both

w and s.

In examining the optimization problem P, we see that scaling w by a constant does not impact the objective

function since it affects both the numerator and denominator equally. Thus, we can add the constraint ∥w∥22 = 1

to the problem. As a result, when we solve the optimization problem alternately, we get:

P(m)
w :

max
w

min
θ∈Iϕ2

ϕ1

wHΓ(Tθ,S
(m−1))w

wHΣCυ(S(m−1))w

s.t. ∥w∥22 = 1,

(17)
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P(m)
s :

max
s

min
θ∈Iϕ2

ϕ1

sHΓ̄(Tθ,W
(m))s

sHΣ̄Cυ(W(m))s

s.t. ∥s∥22 = 1

|s(n)| ≤ 1√
N
, n = 0, ..., N − 1.

(18)

If we define

SINR(m) = SINR
(
S(m),W(m)

)
, (19)

where
{(

S(m),W(m)
)}

denotes a sequence of points produced by the proposed sequential optimization method,

we set the stopping criterion as:

|SINR(m)−SINR(m−1) | ≤ η. (20)

The proposed sequential process demonstrates several interesting properties, as described in the following propo-

sition.

Proposition 1. Suppose that P(m)
w and P(m)

s are solvable, meaning each is feasible, bounded, and has an at-

tainable optimal value. Then, it can be proven that the sequence
{
SINR(m)

}
is monotonically increasing and

converges to a finite value. For the proof, refer to Appendix B.

In the forthcoming discussion, we will address the optimization problem of designing the transmit waveform

s and the receive filter w using two distinct approaches. Recognizing the similarity in optimizing s and w, to

avoid repetition of their structure, we intend to present each of our proposed approaches in a unified manner.

4.1. ASSD Approach

Let us consider the optimization problem P̄1, where x represents the continuous variable and k indicates the

discrete variable, which corresponds to the kth element of the uncertainty set Iϕ2

ϕ1
as defined in Section 2:

P̄1 :

max
x

min
k∈1,2,...,K

xHAkx

xHBx

s.t. ∥x∥22 = 1

|x(n)|2 ≤ γ, n = 0, ..., N − 1.

By setting γ = 1 and γ = 1
N , the optimization problem P̄1 transforms into Pw and Ps respectively. To streamline

our objective function from a fractional quadratic form to a quadratic form, we seek to simplify it using the

Dinkelbach approach [50–53], which we present as Lemma 1.
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Lemma 1. If we define our fractional function as follows:

Pfrac : max
x

{
Q(x) =

N(x)

D(x)
| x ∈ S

}
,

where S ⊆ R2 is nonempty and compact, and N and D are continuous functions on S with D being positive,
the problem Pfrac can be restated as:

Pq : max
x
{N(x)− qD(x) | x ∈ S} .

An optimal point x+ for Pfrac is optimal for Pq+ , where q
+ is the unique root of:

F (q) = max {N(x)− qD(x) | x ∈ S} ,

with q ∈ R. It is important to note that q+ = Q(x+). Additionally, the function F (q) is continuous, convex,
and strictly decreasing on R, with F (q) > 0 for q < q+ and F (q) < 0 for q > q+.

As per Lemma 1, we can reformulate P̄1 as follows:

P̄q
1 :

max
x

min
k∈1,2,...,K

xHCkx

s.t. ∥x∥22 = 1.

|x(n)|2 ≤ γ, n = 0, ..., N − 1.

where Ck = Ak − qB. Here, based on the Dinkelbach method, we start by fixing the parameter q and solving

the problem P̄q
1 for x. Once we find the optimal x, we update q by locating the root of obj(P̄q

1 ) with respect

to q. This iterative procedure repeats until, at iteration l, the difference
∣∣q(l) − q(l−1)∣∣ is less than a predefined

tolerance ηD. For ease of reference, the iteration index l is dropped in the subsequent optimization problems.

By introducing the matrix X as X = xxH , we can reformulate P̄q
1 as bellow:

P̄q
2 :

max
X

min
k∈1,2,...,K

tr(CkX)

s.t. tr(X) = 1

X = XH

X ⪰ 0

rank(X) = 1

tr(EnX) ≤ γ.

It is important to highlight that, in the P̄q
2 problem, we have utilized the definition of En as a matrix where only

the (n, n)th entry is one and all other entries are zero to represent the constraint |x(n)|2 ≤ γ, n = 0, . . . , N−1,
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in a matrix format. The transformation of problem P̄q
2 into an equivalent one, which optimizes over the epigraph

of the objective function, yields:

P̄q
3 :

max
X,α

α

s.t. tr(CkX) ≥ α, k ∈ 1, 2, ...,K

tr(X) = 1

X = XH

X ⪰ 0

rank(X) = 1

tr(EnX) ≤ γ.

To tackle P̄q
3 , we introduce the change of variables X = Z, enabling us to employ ADMM. Recently, numerous

studies have focused on the convergence of ADMM for non-convex and non-smooth functions [54–59]. Drawing on

the convergence proof provided in [58, 59]—due to the equivalence of our rank constraint with rank(X) ≤ 1—we

conclude that the optimization problem Pq
2 satisfies the necessary conditions for applying ADMM. As a result,

ADMM facilitates the isolation of the non-convex constraint rank(X) = 1 from the remaining constraints, and

we derive:

P̄q
4 :

max
X,α,Z

α

s.t. tr(CkX) ≥ α, k ∈ 1, 2, ...,K

tr(X) = 1

X = XH

X ⪰ 0

tr(EnX) ≤ γ

X = Z

rank(Z) = 1.

Hence, the related augmented Lagrangian (AL) function takes the form:

Lρ(X, α,Z,R) = α− ⟨R,X− Z⟩ − ρ

2
∥X− Z∥2F , (21)
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without directly associating other constraints with it. In (21), ρ is the penalty parameter, and R is the dual

variable. Following this, we delve into the step-by-step procedure for updating X, α, Z, R. It is crucial to note

that during the update process for X, Z, and α, R is treated as a constant. As a result, the associated term

can be conveniently expressed in Frobenius form, which is the intended representation.

4.1.1. Updating X, α

When updating X and α, while keeping the variables Z and R unchanged, we have:

P̄X,α
4 :

max
X,α

α− ρ

2

∥∥∥∥X− Z+
R

ρ

∥∥∥∥2
F

s.t. tr(CkX) ≥ α, k ∈ 1, 2, ...,K

tr(X) = 1

X = XH

X ⪰ 0

tr(EnX) ≤ γ

The SDP problem P̄X,α
4 is evidently convex and can be efficiently addressed using the CVX framework [60] in

MATLAB and CVXPY [61, 62] in Python. In our work, we employed the CVX framework in MATLAB and

used the SeDuMi solver to tackle this problem.

4.1.2. Updating Z

Concerning the update of Z, we arrive at the following optimization problem:

P̄Z
4 :

min
Z

f(Z) =

∥∥∥∥X− Z+
R

ρ

∥∥∥∥2
F

s.t. rank(Z) = 1.

The problem P̄Z
4 can be solved using the SVD of X+ R

ρ . Given the equation X+ R
ρ =

∑r
i=1 σiuivi where r is

the rank of the matrix X + R
ρ , σi are the singular values of X + R

ρ ordered in nonincreasing form, ui are the

left-singular vectors of X+ R
ρ , and vi are the right-singular vectors of X+ R

ρ , the closed-form solution for P̄Z
4

in the one-rank case is σ1u1v1.
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Algorithm 1 ASSD Method

Require: Ak = 0, B, λ, x(0), ηADMM, ηD
Ensure: A solution xopt for P̄1

1: Set l = 0, q(0) = 0, X(l) = x(l)x(l)H ;
2: repeat
3: l← l + 1
4: Convert P̄1 to P̄q

1 |q = q(l−1) using the Dinkelbach method;
5: Set i = 0
6: repeat
7: i← i+ 1
8: Solve P̄X,α

4 to find the optimal value X
(l)
i

9: Solve P̄Z
4 based on SVD as mentioned in subsection updating Z to find the optimal values Z

(l)
i

10: Update R
(l)
i based on (22)

11: until |X(l)
i − Z

(l)
i |F ≤ ηADMM

12: Inner Output: X(l) = X
(l)
i

13: Find the root of obj(P̄ q
1 ) with respect to q to obtain q(l)

14: until
∣∣q(l) − q(l−1)∣∣ ≤ ηD

15: Output: xopt =
√
λmax(X(l)) · eigenvector corresponding to λmax(X

(l))

4.1.3. Updating R

In updating our Lagrange multiplier matrix Ri, we use the results from updating X and Z, denoted as Xi

and Zi, respectively. This gives us:

Ri+1 = Ri + ρ(Xi − Zi). (22)

According to the inner ADMM process we discussed, we need to continue iterating through Xi, Zi, and Ri

until the following stopping criterion is satisfied:

∥Xi − Zi∥F ≤ ηADMM. (23)

For an overview of our proposed method, see Algorithm 1.

4.2. LSE-RCG Approach

With the closed-form expression of the objective function of P̄1 at hand, manifold optimization is utilized

to address the mentioned optimization problem. The geometrical structure of the manifold helps to avoid

some saddle points and delivers high-quality solutions to our problem [23, 63, 64]. Essentially, a manifold

generalizes Euclidean space and can only be locally approximated by a linear space around its points. The

developed algorithm is a variant of the conjugate gradient algorithm, incorporating geometric operations for the

conversion from Euclidean space to the manifold.
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M

T
x(l)
Mx(l)

d(l−1)

−∇Mf (x(l))

T
x(l+1)

M
x(l+1)

−∇Mf (x(l+1))
Trans

x(l)←x(l−1)(d
(l−1)
x )

d(l)d(l)

d(l+1)

Retrx(ψ
(l)d

(l)
x )

Figure 2: The geometric interpretation of Riemannian conjugate gradient descent (RCG).

Once more, let us consider P̄q
1 . When optimizing over x, for γ = 1, the feasible region corresponds to

∥x∥22 = 1, resembling a sphere manifold. However, when γ = 1
N , the feasible region alters to ∥x∥22 = 1 and

|x(n)| ≤ 1√
N

for n = 0, . . . , N − 1, treating it as a complex circle manifold. By defining these manifolds, it is as

if we are dealing with unconstrained optimization problems over these defined manifolds:

for γ = 1 : Mx = {x ∈ CN | ∥x∥2 = 1, i = 1, 2, . . . , N}, (24)

for γ =
1

N
: Mx = {x ∈ CN | |xi| =

1√
N
, i = 1, 2, . . . , N}. (25)

Smooth manifolds exhibit a property where they can be locally approximated by linear structures around every

point. This local approximation at a point x ∈Mx is referred to as the tangent space at x. To be precise, the

tangent space ofMx at x(l) consists of linear subspaces embedded within CN , and can be represented as:

for γ = 1 : Tx(l)M = {ξ ∈ CN | Re{ξHx} = 0}, (26)

for γ =
1

N
: Tx(l)M = {ξ ∈ CN | Re{ξ ⊙ x∗} = 0}. (27)

Here, ξ represents a tangent vector situated at the point x(l) within the tangent space Tx(l)M.

Suppose we have converted our original max-min optimization problem P̄q
1 into a minimization problem,

where f(x) acts as the objective function of the minimization problem (Details on this conversion will be

provided in the following subsection.). To define the Riemannian gradient of f(x) on our selected manifoldM,

we first need to specify a Riemannian metric forM. A convenient approach is to regardM as a Riemannian

submanifold embedded within the Euclidean space CN by equipping it with the induced Riemannian metric.
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Hence, we can adopt the standard Euclidean inner product as our Riemannian metric:

⟨ξ,η⟩ = Re{ξHη}, (28)

where η, similar to ξ, represents tangent vectors at x(l) on the tangent space Tx(l)M, and the operator ⟨·, ·⟩ in

the following derivation is consistent with this Riemannian metric.

To advance, we define the Riemannian gradient ∇Mf as the unique element within Tx(l)M that leads to the

steepest decrease of f :

Df(x)[ξx] = g(∇Mf(x), ξx), ∀ξx ∈ TxM, (29)

where Df(x)[ξx] is the directional derivative of f(x) at x in the direction of ξ. Since Mx is submanifold of

Euclidean space CN , we further have that ∇Mf(x) is the orthogonal projection of the Euclidean gradient ∇f(x)

to TxMx, respectively:

for γ = 1 : ∇Mf = ∇f − Re{xH∇f}x, (30)

for γ =
1

N
: ∇Mf(x) = ∇f(x)− x⊙ Re(∇f(x)⊙ x∗). (31)

Given the concepts outlined above regarding the manifold, we embrace the RCG framework, a specialized variant

of the conjugate gradient algorithm designed for Riemannian manifolds. Thanks to the local Euclidean structure

present on Tx(l)Mx, the descent direction d(l) is expressed as:

d(l)
x = −∇Mf(x(l)) + µ(l−1)

x Transx(l)←x(l−1)(d(l−1)
x ), (32)

where

Transx(l)←x(l−1)(d(l−1)
x ) = ProjT

x(l)Mx
(d(l−1)

x ) (33)

represents the transport operation that projects the tangent vector d
(l−1)
x ∈ T (l−1)

x M to T
(l)
x M. Specifically,

for the manifold of the unit sphere and the complex circle manifold, the transport operators are obtained as
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follows, respectively:

for γ = 1 : Transx(l)←x(l−1)(d(l−1)
x ) = d(l−1)

x − Re{xHd(l−1)
x }x, (34)

for γ =
1

N
: Transx(l)←x(l−1)(d(l−1)

x ) = d(l−1)
x − x(l) ⊙ Re{d(l−1)

x ⊙ x(l)∗}. (35)

Here, µ(l−1) represents the Polak-Ribière parameter [65], defined as:

µ(l−1)
x =

⟨∇Mf(x(l)),∇Mf(x(l))− ProjT
x(l)M(∇f(x(l−1)))⟩

⟨∇Mf(x(l−1)),∇Mf(x(l−1))⟩
, (36)

where ProjT
x(l)M(∇f(x(l−1))) is obtained from (33).

To guarantee that the updated x(l+1) moves in the direction of d
(l)
x and stays within the confines of the

manifoldM, we establish the retraction operator to map the tangent vector ξx ∈ Tx(l)Mx back to the manifold

Mx, as follows:

for γ = 1 : Retrx(ξx) =
x+ ξx
∥x+ ξx∥

, (37)

for γ =
1

N
: Retrx(ξx) = (x+ ξx)⊙

1

|x+ ξx|
. (38)

Thus, the updated x(l+1) is retracted to the manifold by:

x(l+1) = Retrx(ψ
(l)d(l)

x ), (39)

where ψ(l) is the step size determined by the following backtracking Armijo line-search method [66]:

ψ(l) = βjα,

f(x(l))− f(Retrx(ψ(l)d(l)
x )) ≥ −δ⟨∇f(x(l)), ψ(l)d(l)

x ⟩. (40)

Here, α > 0, β and δ lie within the interval (0, 1), and j denotes the smallest non-negative integer that meets

the stated condition. Figure 2 provides a clear visualization of the RCG algorithm during each iteration.

As previously mentioned, to derive the Riemannian gradient from the objective function, we require a closed

form of the objective function. Therefore, we aim to rephrase problem P̄1 in the following manner.
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4.2.1. Log-sum-exp approximation

In this part, our goal is to apply the RCG approach to a distinct approximation of our objective function.

Let us revisit P̄q
1 . Utilizing

max
x

min
k

xHCkx = −min
x

max
k
−xHCkx, (41)

argmax
x

min
k

xHCkx = argmin
x

max
k
−xHCkx, (42)

we arrive at the modified optimization problem:

P̄q
2 :

min
x

max
k

− xHCkx

s.t. x ∈Mx.

(43)

Given that the maximum of a function can be approximated using the log-sum-exp function, our optimization

problem transforms into:

P̄q
2 :

min
x

ϵ ln

K∑
k=1

exp(
−xHCkx

ϵ
)

s.t. x ∈Mx.

(44)

For a much more precise approximation, we should select the scaling factor ϵ to be as small as possible. To

transition from the Euclidean gradient to the Riemannian gradient descent, we express the Euclidean gradient

as:

∇f(x(l)) = −2
K∑

k=1

exp(−x(l)TCkx
(l))∑K

j=1 exp(−x(l)TCjx(l))
Ckx

(l). (45)

For a detailed description of the approach used to solve P̃ 3 with the log-sum-exp-based method (known as the

LSE-RCG method), please see Algorithm 2.

4.3. Computational Complexity of ASSD and LSE-RCG

In this paper, the ASSD method tackles each of P(m)
w and P(m)

s by first employing the Dinkelbach method

and then applying ADMM. This method divides the problem into a SDP problem and a fixed-rank non-convex

optimization problem. The SDP part of P(m)
w has a complexity of O(N6.5), while the SDP part of P(m)

s has a

complexity of O(M6.5). For the fixed-rank part, which has the advantage of being solved in one iteration, P(m)
w

has a complexity of O(M3) and P(m)
s has a complexity of O(N3).

To evaluate the complexity of the LSE-RCG Algorithm, we focus on the log-sum-exp part, the most com-
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Algorithm 2 LSE-RCG algorithm

1: Consider an initial x(0), tolerance parameter ϵ > 0, and set l = 0;

2: Calculate d
(l)
x = −∇Mf according to (30) or (31), depending on whether dealing with the sphere manifold

or the complex circle manifold.
3: Choose Armijo backtracking line search step size ψ(l) according to (40);
4: repeat
5: l← l + 1;
6: Find the point x(l) using retraction in (39);
7: Determine Riemannian gradient ∇Mf according to (30) or (31), depending on whether dealing with the

sphere manifold or the complex circle manifold;

8: Calculate the vector transport Transx(l)←x(l−1)(d
(l−1)
x ) according to (34) or (35), depending on whether

dealing with the sphere manifold or the complex circle manifold;
9: Obtain Polak-Ribiere parameter µ(l−1) according to (36);

10: Compute conjugate search direction d
(l)
x with (32);

11: Choose Armijo backtracking line search step size ψ(l) according to (40);
12: until ∥∇Mf∥2 ≤ ϵ.

putationally demanding component. Each matrix-vector multiplication Cix
(l) and quadratic form x(l)TCix

(l)

requires O((length(x))2) operations. The inner summation over j in the denominator involves K terms, each

requiring a quadratic form computation, resulting in O(K · (length(x))2). Similarly, the outer summation over

i and the subsequent multiplication add another O(K · (length(x))2). Accordingly, each update of P(m)
w has a

complexity of O(K ·M2), and each update of P(m)
s has a complexity of O(K ·N2).

5. Numerical Results

Let us delve into the assessment of the proposed method using the available TIR information. We will

explore its effectiveness across various scenarios, considering the uncertainty associated with the TIR data. Our

focus is on an S-band radar with specific parameters: a rectangular subpulse duration of 6.67 ns and a working

frequency of fc = 3 GHz, resulting in an approximate range resolution of 1 meter.

To model the TIR of extended targets, we generate radar backscattering data using simulation software

referenced in [67, 68]. Specifically, we simulate data for two different aircraft: the F15 and the Tornado. The

F-15 has target dimensions of 19.43 meters in length and 13.05 meters in width, while the Tornado measures

16.72 meters in length and 13.91 meters in width.Considering the targets’ dimensions and the radar’s range

resolution, we define the TIR support interval as Q = 17.

Let us explore the statistical properties of the clutter environment and noise. In our scenario, we consider a
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homogeneous clutter environment where the elements of the covariance matrix follow an exponential distribution:

Rc(n, n
′) = σ2

cr
−|n−n′|, (n, n′) ∈ {1, ...,M +N}2. (46)

Here, we set σ2
c = 10 and r = 0.8. As to the noise, we suppose a discrete white noise with variance σ2

υ = 1.

Regarding the parameter configurations and stopping criteria for our proposed methods, we set ρ = 2 and

ηADMM = 10−4 for the ASSD method. Moreover, for the ADMM within ASSD, whether for updating s or for

updating w, the initial values of Z and R are considered as zero matrices. Additionally, the LSE-RCG method

uses a scaling factor ϵ = 10−4. Furthermore, both proposed methods are configured with η = 10−4.

Regarding the initial value for the transmit waveform s, we first consider the transmit waveform as a sequence

with linear frequency modulation (LFM) to satisfy condition (11) related to signal energy:

s0(n) =
1√
N
ejπ

n2

2N , n = 0, 1, . . . , N − 1. (47)

Then, to obtain the initial value for the receiver filter w, we use the initial value s obtained by (47) to create

S = ssH . By substituting this into the optimization problem (17) and defining W = wwH , we reformulate the

problem as an SDP by relaxing the rank-one constraint, as shown below:

max
W,α

α

s.t. tr (ΣCυ(S)W) = 1

tr (Γ(Ti,S)W) ≥ α,

W ⪰ 0.

(48)

After obtaining the optimal value W from (48), we consider the initial value for the receiver filter w as
√
λ1v1,

where λ1 is the maximum eigenvalue of W and v1 is the corresponding eigenvector. Next, we substitute the

receiver filter w into the following optimization problem:
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max
S,α

α

s.t. tr
(
Σ̄Cυ(W)S

)
= 1

tr
(
Γ̄(Ti,W)S

)
≥ α,

tr(EnX) ≤ 1

N
,

S ⪰ 0.

(49)

After solving this optimization problem, we obtain the initial value for s as
√
λ̄1v̄1, where λ̄1 is the maximum

eigenvalue of S and v̄1 is the corresponding eigenvector. It is worth mentioning that this s is then used as the

initial value for our ASSD algorithm, not the one from (47).

Now, our objective is to assess the effectiveness of the proposed methods in jointly designing the transmit

signal and receive filter under the constant modulus condition. We will investigate three distinct scenarios, as

outlined below:

1. Iteration-based convergence: Evaluating the speed of convergence by counting the iterations needed.

2. Influence of diverse TAA uncertainty sets on SINR and convergence: We investigate the effects of different

TAA uncertainty sets on both SINR and convergence for a specified target.

3. Influence of different target types with unique TAA uncertainty sets: Examining how different target

types, each with their own TAA uncertainty sets, affect the results.

Considering the uncertainty set, we configured the TAA sampling step for Iϕ2

ϕ1
to 0.1 degrees in our simu-

lations. For each TAA k∆θ within this uncertainty set, we calculate the actual TIR using the toolbox cited in

[67, 68].

To validate the effectiveness of our approach, we compare the optimized SINR achieved by our method

against those obtained from other waveform-filter design techniques. The first comparison is with a simplified

version of the unconstrained design method from [22], which assumes knowledge of the TIR and is specifically

designed for SISO scenarios. We also consider the manifold-based nominal method from [23, 24], which, like [22],

assumes exact TIR knowledge and incorporates a constant modulus constraint. This method defines a complex

circle manifold and uses Riemannian conjugate gradient descent for the design of waveform-filter pairs. Lastly,

we evaluate the nominal and robust design method from [25], which employs a constant modulus constraint

as a PAR constraint, accounts for TIR uncertainties (only in the robust design), and employs randomization
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strategies to generate waveform-filter pairs after solving a relaxed version of the problem.

5.1. The Optimal SINR Obtained for Different TAAs

Figure (3) displays the worst-case SINR(m) against iteration m for various design strategies. For comparison

with the robust method described in [25], their worst-case SINR versus iteration has been plotted in such a way

that randomization is applied after the last iteration. For instance, the curve at m = 5 represents a scenario

in which 4 iterations are conducted without randomization, and randomization is applied only after the 5th

iteration when updating (s,w). The non-monotonic behavior observed in the robust approach of [25] can be

attributed to their randomization stage, where they aim to pick only 50 random samples (as mentioned in their

paper). To prevent their approach from becoming slower and to ensure a fair comparison, we have kept this

parameter exactly as described in their paper. For comparison, we considered three uncertainty sets: I3◦−3◦ , I4
◦

−4◦ ,

and I5◦−5◦ . The plots clearly show that as the uncertainty set size increases, our approach yields lower worst-case

SINR values. This conforms with the principle that for two sets of uncertainties I1 and I2 where I1 ⊆ I2, the

minimum SINR over I2 is less than or equal to that over I1. Hence, solutions with larger uncertainty sets tend

to have worse worst-case SINR values.

In a separate analysis, we present the SINR achieved against the TAA within the uncertainty set considered

during the design phase (refer to Fig. 4). It is worth noting that the nominal design approaches proposed in [25],

along with the manifold-based nominal method from [23, 24], optimize SINR specifically for the matched TAA

I0◦0◦ . In contrast, the robust design from [25] and our proposed approaches focus on optimizing the worst-case

SINR across the predefined uncertainty set. This comparison is carried out over the uncertainty sets I3◦−3◦ ,

I4◦−4◦ , and I5
◦

−5◦ . As previously mentioned, the plots illustrate that enlarging the TAA uncertainty set results

in reduced worst-case SINR values. Furthermore, the findings indicate that both the ASSD and LSE-RCG

approaches demonstrate superior performance in terms of minimum SINR values and, as a result, exhibit more

robust SINR values over the entire TAA uncertainty set compared to all competitor methods, especially its

main competitor [25], which served as the benchmark before the introduction of our proposed solutions.

5.2. The Performance of SINR for a Different Target

In this subsection, we evaluate the performance of the proposed method for a different target type—specifically,

the Tornado—within the uncertainty set I3◦−3◦ (see Fig. 5). This analysis is conducted in a manner similar to

our evaluation of the F15 target (see Fig. 4). As observed, the proposed method in [22], the manifold-based

method from [23, 24], and the nominal method from [25] exhibit inferior performance due to their inability to

account for worst-case scenarios within the uncertainty set. In contrast, the ASSD and LSE-RCG approaches
21
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Figure 3: Plotting SINR(m) versus the Number of Iterations for the F15 Target, considering three different TAA uncertainty sets:
(a) I3◦

−3◦ , (b) I4◦
−4◦ , (c) I5◦

−5◦ .

demonstrate superior performance, achieving higher SINR values across the entire TAA uncertainty set and

surpass other methods, especially the robust method proposed by [25], in terms of attaining higher minimum

SINR values.

5.3. Execution time

As the final examination, we evaluate the performance of the methods based on their execution times. Refer

to Table 1, which presents the convergence times of our approaches in seconds, compared to the method proposed

by [22], the manifold-based methods in [23, 24], and the nominal and robust methods from [25]. As shown,

the LSE-RCG method demonstrates the lowest runtime, showcasing significant superiority in convergence time.

Although the ASSD method ranks behind the robust method from [25] in terms of execution time, it was observed

in the previous two subsections that ASSD achieved the best accuracy by attaining the highest minimum SINR.
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Figure 4: SINR versus TAA, over different uncertainty sets for F15: (a) I3◦
−3◦ , (b) I4◦

−4◦ , (c) I5◦
−5◦ .
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It is worth noting that, although the runtimes of the method in [22], the manifold-based methods in [23, 24],

and the nominal method in [25] are extremely low, these methods are not of interest because they only consider

the matched situation (I0◦0◦ ) and do not account for the uncertainty sets of TAA.

Table 1: Examining runtime performance (in seconds) across different uncertainty sets and target types.

Algorithm I3◦−3◦ (F15) I4◦−4◦ (F15) I5◦−5◦ (F15) I3◦−3◦ (Tornado)

Method in [22] 0.5394 0.5375 0.4902 0.4115
Manifold-based method in [23, 24] 0.4362 0.297012 0.2903 0.2683

Nominal method [25] 14.9021 14.0891 14.1367 14.1727
Robust method [25] 46.7248 51.9721 55.8607 47.9586

ASSD method 63.4694 69.8073 77.6814 86.7538
LSE-RCG method 0.8432 1.1553 2.0650 1.3445

6. Conclusion

In this research, the challenge of optimizing the SINR for extended targets amidst signal-dependent inter-

ference has been addressed through the joint optimization of transmit codes and receive filters. To manage

uncertainties related to the TIR, we introduced a worst-case optimization framework over a predefined uncer-

tainty set, which comprises TIR samples corresponding to TAAs. This has led to a worst-case non-convex

optimization problem. Additionally, our strategy incorporates a constant modulus constraint on the transmit

code to ensure operation near transmitter saturation for radar systems. In this paper, we propose two ap-

proaches that employ a sequential optimization process to jointly design the transmit waveform and receive

filter.

In the first approach, which we named ASSD, each design problem was decomposed using ADMM into an

SDP problem and an non-convex problem due to a fixed rank constraint, solvable via singular value decomposi-

tion (SVD). The second approach tackled the problem over two Riemannian manifolds: the sphere manifold for

the receive filter and the product of complex circles for the transmit signal. Manifold optimization treated the

constrained problem as an unconstrained one within a restricted search space. We first converted our max-min

problem into a min problem, resulting in a closed form of log-sum-exp. We then solved the reformulated problem

using the Riemannian conjugate gradient descent algorithm, which was developed based on Euclidean conjugate

gradient descent, leveraging specific properties of the manifold such as the Riemannian metric and retraction.

We called this approach log-sum-exp RCG (LSE-RCG).

Our proposed methods offer significant advantages, including rapid convergence with minimal iterations, and

one of our approaches is the fastest in runtime as well, which are particularly valuable in real-time applications
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where swift decision-making is crucial. Furthermore, our approaches have not only improved SINR but also

done so under worst-case scenarios, outperforming prior methods.
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Figure 5: SINR versus TAA, over the uncertainty set I3◦
−3◦ for Tornado.

Appendix

A. The Proof of The SINR Formulation:

To prove how we arrive at the numerators in (12), consider the following:

∣∣wHTθs
∣∣2 = wHTθss

HTθ
Hw = wHΓ(Tθ,S)w

= sHTθ
HwwHTθs = sHΓ̄(Tθ,W)s. (50)

In order to prove the denominator part of (12), we simplify the denominator of (9) as follows:

E[
∣∣wHCs

∣∣2] + E[
∣∣wHυ

∣∣2] = wHE[CssHCH ]w +wHE[υHυ]w

= wHE[CssHCH ]w + σ2
υw

Hw

= wHΣCυ(S)w.
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Considering the considered energy constraint, i.e. ∥s∥22 = 1, the denominator of (9) becomes simpler:

E[
∣∣wHCs

∣∣2] + E[
∣∣wHυ

∣∣2] = sHE[CwwHCH ]s+wHE[υHυ]w

= sHE[CwwHCH ]s+ σ2
υtr(wwH)

= sHΣ̄Cυ(W)s.

B. The Proof of Proposition 1

Firstly, we demonstrate that the sequence
{
SINR(m)

}
is monotonically increasing, meaning SINR(m) ≤

SINR(m+1). To show this, we consider:

SINR(m) = min
θ∈I

tr
(
Γ
(
Tθ,S

(m)
)
W(m)

)
tr
(
Σcv

(
S(m)

)
W(m)

) ≤ v (P(m+1)
w

)
= min

θ∈I

tr
(
Γ̄
(
Tθ,W

(m+1)
)
S(m)

)
tr
(
Σ̄cv

(
W(m+1)

)
S(m)

) ≤ v (P(m+1)
s

)
= SINR(m+1) .

Secondly, we need to show that the objective function is bounded above. We start with:

SINR(m) = min
θ∈I

tr
(
Γ̄
(
Tθ,W

(m)
)
S(m)

)
tr
(
Σ̄cv

(
W(m)

)
S(m)

)
≤ min

θ∈I

tr
(
TH

θ W(m)TθS
(m)

)
σ2
v tr

(
W(m)

)
tr
(
S(m)

)
= min

θ∈I

tr
(
TθS

(m)TH
θ W(m)

)
σ2
v tr

(
W(m)

) (51)

≤ min
θ∈I

tr
(
TθS

(m)TH
θ

)
tr
(
W(m)

)
σ2
v tr

(
W(m)

) (52)

≤ min
θ∈I

tr
(
S(m)

)
tr
(
TH

θ Tθ

)
σ2
v

(53)

=
N

σ2
v

min
θ∈I
∥hθ∥2 .

In the first inequality, we used (16) to state:

Σ̄cv

(
W(m)

)
⪰ σ2

v tr
(
W(m)

)
I,
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which leads to (51) because tr
(
S(m)

)
= 1. Additionally, we employed the fact that for A,B ⪰ 0:

0 ≤ tr(AB) ≤ tr(A) tr(B),

to derive (52) and (53). Finally, tr
(
TH

θ Tθ

)
represents the sum of the squared norms of the columns of Tθ.

Considering the structure of Tθ, this can be expressed as tr
(
TH

θ Tθ

)
= N ∥hθ∥22. Therefore, the upper bound

on the sequence SINR(m) is:

SINR(m) ≤ N

σ2
v

min
θ∈I
∥hθ∥22 . (54)

Under the finite energy assumption for the TIR, inequality (54) together with the monotonic increasing property

of
{
SINR(m)

}
guarantees the convergence of the objective function sequence.
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