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Abstract—In high-speed analog to digital converters (ADCs),
two main factors contribute to high power consumption. The
first is the super-linear relationship with the sampling rate; i.e.
by doubling the sampling rate, the power consumption more than
doubles. The second factor arises from the consumption of analog
circuitry responsible to mitigate the jitter noise. By employing a
multichannel sampling system, one can achieve high sampling
rates by incorporating multiple low sampling-rate channels,
which results in linear scaling of power consumption with the
number of channels. The main drawback of this system is the
timing mismatch between the sampling channels. In this paper,
we intend to jointly compensate the jitter noise and the timing
mismatch between the channels using statistical methods. We
first approximate the acquisition system and derive a stochastic
model. Then, we propose an iterative maximum likelihood (ML)
algorithm to estimate the parameters of the input signal. We
further evaluate the Cramér-Rao lower bound (CRLB) for the
estimation error to examine the proposed algorithm. Simulation
results indicate that our algorithm is capable of closely following
the CRLB curve for reasonable values of jitter noise and wide
range of timing mismatch errors. Moreover, it is shown that the
mismatch-compensated multichannel sampling system performs
almost equivalently to a single-channel high rate sampler without
having its shortcomings.

Index Terms—Cramér-Rao lower bound, jitter noise, maxi-
mum likelihood estimation, multichannel sampling system, timing
mismatch compensation.

I. INTRODUCTION

VAST and efficient processing capabilities of high-speed
microprocessors have led to a major shift in signal

processing from continuous to digital domain within the past
decades. Nowadays, it is difficult to find a piece of technology
that does not benefit from digital data processor units. In de-
vices that take continuous-domain signals as input, the signal
needs to be discretized (digitized) before being processed by
digital processors. The block responsible for the discretization
task is called an analog-to-digital converter (ADC). An ideal
ADC uniformly samples the input signal according to a given
sampling rate.

The practical limitations on the sampling rates of current
ADCs is a major challenge in modern applications that deal
with wideband signals. Examples of the applications with
high sampling rate requirement include software-defined radio
receivers [1], [2], ultra-wideband communications [3], [4],
and spectrum sensing for cognitive radio networks [5], [6].
However, ADCs with high conversion rates are also power-
consuming and very costly [7].

One simple technique to tackle the power and cost problems
is to utilize multiple low-rate ADCs in a time-interleaved (TI)
structure instead of one high-speed ADC [8]. A TI-ADC of

sampling rate C fs passes the analog signal into C identical
parallel ADC channels where each channel samples the signal
at the rate fs. Ideally, the timing clock of the ith ADC has
a delay of i/(C fs) relative to the reference channel i = 0.
The output of the TI-ADC can be formed by multiplexing the
channel samples into a single high-rate output; nevertheless, it
is sometimes easier to separately study the channels (including
our approach in this paper). Although the single output of a
TI-ADC is essentially the same as a high-rate ADC, it does
suffer from power dissipation as much [9].

While parallel usage of low-rate and low-power ADCs in
form of a TI-ADC helps in increasing the overall sampling rate
and power efficiency (and decreasing the cost), the synchro-
nization of channels could potentially be a challenge. Further,
varying specifications of the ADCs in different channels,
which is known as manufacturing mismatch, degrades the
performance. Due to limitations in physical layout, variations
in the signal and clock path lengths, and different gate delays
of the channels, such mistmatches are unavoidable [8], [10]–
[12].

The three major types of mismatches in the time interleaved
structure are offset, gain, and timing mismatches. Their adver-
sarial effects in the sampling process have been extensively
studied in [13]–[15].
• Gain mismatch: The amplifiers of the ADCs are not

exactly identical. Hence, the input signals are subject to
different gains (gi).

• Offset mismatch: When the ADCs do not have a unified
voltage ground, they might differ by additive amplitude
mismatch constants (ai).

• Timing mismatch: The requirement of equal time delays
between consecutive sampling channels in a TI-ADC may
not be accurately satisfied. As a result, the ADCs sample
the input signal with a different but fixed time delays (ti)
from their nominal sampling instances. This mismatch is
known as the timing mismatch and results in a periodic
nonuniform sampling structure.

Among these three types of mismatches, compensating the
timing mismatch is more challenging due to its non-linear,
signal-dependent nature [15]. In this paper, we focus on
estimating and compensating the timing mismatch in a TI-
ADC by ignoring the two other sources of mismatch, which
are straightforward to correct. The compensation of offset and
gain mismatches have been previously studied in [16]–[18].

Another source of timing error in general ADCs (not limited
to TI-ADCs) is the jitter noise. This noise disrupts the regular-
ity of the clock signal and results in unpredictable deviation of
the sampling instances from the nominal equidistant structure
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Fig. 1. The mathematical model of the ith channel in a TI-ADC. The input
signal x(t) experiences gain (scaling with gi) and offset mismatches (addition
with ai). The constant offset of the clock signal is modeled via ti, while the
random and sample-dependent jitter noise is shown in the form of zi[n].

[19], [20]. This effect could be reduced in the analog domain
by employing clock sources with relatively low phase noise
[20], [21]. Unfortunately, the required circuits for this purpose
impose high power-consumption [22]. The other alternative is
to apply signal processing techniques in the digital domain (af-
ter the samples are taken) to compensate for the timing errors
[23]. Due to the advancement of microelectronic hardware,
this solution is quite low-power and low-cost.

Fig. 1 depicts the block diagram for the equivalent model of
all the discussed mismatches for a single channel of a TI-ADC.
In this figure, besides the desired time shift of i/(C fs) in the
ith channel, the sampling clock is perturbed by a constant but
unwanted time shift ti, as well as the stochastic jitter noise
zi[n] which independently varies over time. The amplitude
and gain mismatches are also modeled by ai and gi in this
figure, respectively. As explained earlier, ai is applied in an
additive manner, while gi has a multiplicative form.

A. Related work

Compensation of timing mismatch in multichannel sampling
structures has been widely studied during past few years [11],
[13], [15], [24]–[32]. The methods can be divided into two
main categories based on the available knowledge about the
input signal. The category of “foreground” techniques refer to
the cases where a known signal is injected into the TI-ADC
for the estimation of the offsets [27], [31], [32]. By having the
estimates, there exist various approaches for the compensation,
namely, least squares approach [26], time-varying filtering
[28], and Lagrange interpolation [31], [32]. While foreground
techniques usually result in more accurate estimations, they
interrupt the normal operation of the TI-ADC. To avoid
this drawback, one might opt for “background” (or blind)
techniques, which only require the knowledge about the model
of the input (e.g., correlation pattern, or bandlimitedness),
instead of the actual input. These methods estimate the offsets
gradually and adaptively. A more elaborate technique in [25]
proposes a rank minimization problem instead. Since the
variables in the minimization techniques are the set of channel
time shifts, the size of the problem grows as the number of
channels increases. Hence, the computational complexity of
the estimation method increases. In practice, the computational
cost is tolerable only for TI-ADCs with small number of
channels. By considering the out-of-band energy of the signal

caused by aliasing, a least mean-square method is presented
in [29]. A connection between the I/Q mismatch problem
and the timing offset compensation is exploited in [30] for a
four-channel TI-ADC. The method works by identifying and
suppressing spurious frequency components in the sampled
signal.

Digital mitigation of jitter noise in the ADCs dates back
to the work of Balakrishnan [33]. In this work, the effect
of jitter noise is studied for a bandlimited signal with both
deterministic and stochastic approaches. Also, optimal basis
functions are derived that result in minimum mean–square er-
ror among linear methods. In [34], probability density function
(pdf) of the jitter noise is approximated by a parametric model.
The author utilizes a minimization algorithm to determine
the parameters. Then, the compensated waveform is obtained
with a pdf deconvolution method. Authors in [35] present a
maximum likelihood estimator to determine the additive and
the jitter noise variances. For the maximization part, they
employ a Newton–like method and compare their results with
the least squares solution. The optimal linear estimator for
the amplitude noise in presence of jitter noise is evaluated in
[36]. The mean-square-error study of reconstrcuting periodic
bandlimited signals in [37] reveals that the error decays as
O(1/n), where n stands for the number of samples per cycle.
Weller and Goyal establish a Bayesian framework for the
jitter mitigation problem and develop a non-linear estimator
based on Gibbs sampling method [38]. They also implement
an Expectation-Maximization (EM) algorithm using numerical
integration to approximate the ML estimation of input signal
parameters [39]. However, Gibbs sampling and EM methods
are computationally expensive. A low-cost approximate ML
estimator is proposed in [40], that assumes jitter noise values
are small and employs truncation of the corresponding Taylor
series.

B. Contribution

In this paper, our goal is to jointly compensate the ef-
fects of both jitter noise and time shift errors in a time-
interleaved sampling structure. The obtained results show that
we can use low-power clock sources with higher jitter noise to
achieve similar performances. In [41], a numerical approach
of the Bayesian model for the joint compensation problem
is introduced. The iterative ML algorithm for the simpler
approximation model of the TI-ADC structure are presented
in [42], where it can be viewed as an extension of [40] with
non-zero-mean location errors. In [42], it is assumed that the
sum of jitter noise and time shift errors are Gaussian random
variables and can be approximated by Taylor expansion. While
this assumption can be true for jitter noise, time shifts errors
may have larger values which violate the assumption. Hence
in the current paper, we do not assume small time shifts
errors. We first derive an approximate acquisition model for
the problem with deterministic unknown time shift errors.
Then, we propose a new block-based iterative ML algorithm
which eliminates the need to assume small values for time
shift errors. The algorithm is capable of both estimating
and compensating these large values. After collecting the
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necessary number of samples from each different channels,
this block-based postprocessing algorithm can be performed to
estimate the signal parameters either by an off-chip computer
or an on-chip processing unit installed after the acquisition
system. Moreover, the Cramér-Rao lower bound (CRLB) of
the approximate model is computed and used as a performance
quality measure.

C. Notation

Throughout this paper, vectors are denoted by boldface
lowercase letters, e.g. x and η, and matrices by boldface
uppercase letters, e.g. A and Σ. We use (·)T for transpose
of a vector or matrix and brackets for indexing, e.g. x[k]
or A[m,n]. In addition, the ith column of the matrix A
is shown by A[:, i]. We use p(x) notation for probability
density function of x and p(x; y) for conditional pdf x given
nonrandom parameter vector y. N (η, σ2) represents the pdf
for the special case of Gaussian variable with mean η and
variance σ2; similarly, N (η,Σ) is the multivariate Gaussian
distribution with mean vector η and covariance matrix Σ.
We reserve the notations E[·] for the operator of statistical
expectation. Further, tr{·} stands for the trace operator for
square matrices. A < B implies that the matrix A − B is
positive semidefinite. Finally, diag(x) is a diagonal matrix
whose diagonal entries correspond to the elements in the
vector x:

diag(x)[i, j] =

{
xi i = j

0 i 6= j

Similarly, block-diagonal matrix operator is defined as

blkdiag(A0,A1, . . . ,AN−1) =


A0 0

A1

. . .

0 AN−1

 .

D. Outline

The rest of this paper is organized as follows. In Section II,
we describe the acquisition model and incorporate the jitter
noise and timing mismatch effects. Section III presents the
iterative ML method for the estimation of the unknown pa-
rameters of the input signal and the time shift errors. We
derive the Cramér-Rao lower bound for the MSE of the
approximate model in Section IV. Numerical simulations in
Section V show the performance of the proposed method and
demonstrates the CRLB results of Section IV. Discussion of
computational complexity and sub-Nyquist sampling scenario,
as well as practical remarks can be found in Section VI.
Finally, Section VII concludes the paper.

II. ACQUISITION MODEL

In this section, we describe mathematical models for the
TI-ADC structure as well as the input signal in separate
subsections.

A. TI-ADC structure

To model the TI-ADC structure, we suppose that there
exist C parallel channels and that each of them samples the
input signal at an oversampling ratio of M where M ≥ 1,
resulting in an overall MC oversampling ratio. The ideal set
of sampling instances for the ith channel is given by

Ti =
{
nTs + iTs

C

}
n∈Z , (1)

where Ts = 1/fs is the sampling period in each channel, and
0 ≤ i ≤ C − 1. However, according to Fig. 1, we perturb the
sampling instances in each channel by an additive constant ti
and time varying values zi[n] to model the time shift error
and jitter noise, respectively. Hence, the obtained model for
the sampling instances shall be

T̃i =
{
nTs + iTs

C + zi[n] + ti
}
n∈Z . (2)

By including the amplitude noise, the output of the ith channel
is then formulated as

yi[n] = x
(
nTs + iTs

C + zi[n] + ti
)

+ wi[n]. (3)

Here, we assume that wi[n]s are independent and identically
distributed (i.i.d.) zero-mean Gaussian variables with variance
σ2
w to model the joint effect of thermal and quantization noises.

We also use zero-mean Gaussian noise with variance σ2
z for

zi[n]s which are independent of wi[n]s. To set a basis for the
time shifts, we assume t0 = 0.

B. Input signal model

The input signal x(t) is assumed to lie in the subspace of
Hilbert space L2(R) with basis {hk(t) = h(t/T−k) : k ∈ Z}:

x(t) =
∑
k∈Z

x(k)h
( t
T
− k
)
, (4)

where {x(k)}k∈Z is the set of deterministic signal parameters.
One important example of h(t) used throughout this paper is
sinc(t) = sin(πt)/πt which by choosing T = Tc corresponds
to bandlimited signal subspace with maximum frequency of
fc/2 = 1/ 2Tc. If we choose fc = 1 (without loss of
generality), the famous Shannon sampling theorem states that
x(t) can be written as

x(t) =
∑
k∈Z

x(k) sinc
(
t− k

)
. (5)

where x(k) denotes the uniform samples at the Nyquist rate
of fc = 1, and sinc(t) = sin(πt)/πt. By evaluating (5) at the
actual sampling instances provided in (2) and replacing Ts
with 1

M fc
= 1

M to take the oversampling ratio into account,
we can rewrite (3) as

yi[n] =∑
k∈Z

x(k) sinc
(
n
M + i

M C + zi[n] + ti − k
)

+ wi[n]. (6)

The recovery of the original signal x(t) is now equivalent to
obtaining the samples x(k) based on the observations {yi[n]}i.
The infinite summation in (6) relates each observed sample
to an infinite set of noiseless samples x(k) of the original
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signal. In practice, however, the observation period is always
limited in time (finite number of observations). Moreover, the
estimation of the signal beyond the observed time window is
rarely a priority. Hence, we approximate (6) as

yi[n] ≈
K−1∑
k=0

x(k) sinc
(
n
M + i

M C + zi[n] + ti − k
)

+ wi[n], (7)

where the observation period is limited to t ∈ [0,K) and the
set of observations in the ith channel shall be {yi[n]}NC−1

n=0

with NC = M K. In equation (7), the terms beyond 0 ≤ k ≤
K−1 are ignored in the summation which can add some error
to the acquired samples especially at the borders. To reduce
the effect of the truncation error, one may prefer to use a fast
decaying function for h(t) instead of sinc function with slow
decay, e.g. raised cosine or wavelet scaling functions. With this
approximation, the recovery problem translates into estimating
{x(k)}K−1k=0 based on the available C NC observations of a C-
channel TI-ADC. Equation (7) can be expressed in a matrix
form as

yi = Hi(ti, zi)x + wi, (8)

where

yi = [yi[0], . . . , yi[NC − 1]]T ,

x = [x[0], . . . , x[K − 1]]T ,

zi = [zi[0], . . . , zi[NC − 1]]T ,

wi = [wi[0], . . . , wi[NC − 1]]T ,

Hi(ti, zi)[n, k] = sinc( nM + i
M C + zi[n] + ti − k).

Here, the variables ti and zi in the notation H(ti, zi) highlight
the fact that this matrix depends on these variables.

III. ITERATIVE ML ESTIMATOR

In this section, we develop an iterative Maximum Likeli-
hood (ML) method to estimate the signal parameters which are
the Nyquist-rate samples of the input signal in the observation
period.

In practice, the Jitter noise is relatively small compared to
the sampling period 1/(M C). Based on this fact, we eliminate
the non-linear effect of jitter noise (zi) by applying the first-
order Taylor series approximation to (7):

yi[n] ≈
K−1∑
k=0

x(k) sinc
(
n
M + i

M C + ti − k
)

+

K−1∑
k=0

x(k) sinc(1)
(
n
M + i

M C + ti − k
)
zi[n] + wi[n], (9)

where sinc(1)(x) = d
dx sinc(x). The matrix form of (9) is

given by

yi ≈ Hi(ti,0) x + Zi Di(ti) x + wi, (10)

where Zi = diag(zi) and Di(ti) is a NC × K matrix with
the elements

Di(ti)[n, k] = sinc(1)
(
n
M + i

M C + ti − k
)
. (11)

In our approach, we treat the signal parameters x and
the time shift errors of the channels tis as deterministic but
unknown variables of the problem. This helps us conclude
that given x and tis, yis are jointly normal random vectors.
Indeed, each yi[n] can be seen as a linear combination of
independent Gaussian random variables zi[n] ∼ N (0, σ2

z) and
wi[n] ∼ N (0, σ2

w). Therefore, yi is a Gaussian random vector

yi ∼ N (ηi,Σyi
), (12)

with mean

ηi = E[yi] = Hi(ti,0) x, (13)

and covariance

Σyi
= E

[(
yi −Hi(ti,0) x

)(
yi −Hi(ti,0) x

)T ]
= E

[
Zi
(
Di(ti) x xT Di(ti)

T
)
Zi
]

+ σ2
w INC

= E
[
zi z

T
i

]
�
(
Di(ti) x xT Di(ti)

T
)

+ σ2
w INC

(14a)

= Σzi
�
(
Di(ti) x xT Di(ti)

T
)

+ σ2
w INC

, (14b)

where � denotes the Hadamard matrix product and the first
term in (14a) is obtained by recalling that the matrix Zi is
diagonal. Here, Σzi

is the covariance matrix of jitter noise
zi. In general, equation (14b) is used for the correlated jitter
noise. However, Σyi can further simplify to a diagonal matrix
for the uncorrelated case as below

Σyi = σ2
z INC

�
(
Di(ti) x xT Di(ti)

T
)

+ σ2
w INC

, (15)

where σ2
z is the variance of jitter noise. We assume uncor-

related jitter noise throughout the paper, but our proposed
method can be extended easily to the correlated case by using
equation (14b) instead of (15).

For the random vectors wi and zi with 0 ≤ i, j ≤ C − 1
and i 6= j we have that

zi ⊥⊥ wi zi ⊥⊥ zj wi ⊥⊥ wj

Here, a ⊥⊥ b denotes the statistical independence of vectors
a and b. Thus, given x and tis, the vectors yi are pairwise
independent:

yi ⊥⊥ yj (i 6= j). (16)

From (16), the pdf of y = [yT0 ,y
T
1 , . . . ,y

T
C−1]T can be written

as

p(y; x, t) =

C−1∏
i=0

p(yi; x, ti). (17)

Hence, the log likelihood function of x, {ti}i after observing
y̆ is

LL(x, t; y̆) , log p(y̆; x, t) =

C−1∑
i=0

log p(y̆i; x, t)

= − CNC
2

log(2π)− 1

2

C−1∑
i=0

log(det(Σyi
))

− 1

2

C−1∑
i=0

(y̆i −Hi(ti,0) x)TΣ−1yi
(y̆i −Hi(ti,0) x), (18)
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where y̆ is the observing vector of all channels output and y̆i
is the observing vector of ith channel output.

The Maximum Likelihood (ML) estimate of x given y̆ is
found based on the maximizer of the LL in (18) as a function
of x and t. (

x̂ML, t̂ML
)

= arg max
x,t

LL(x, t; y̆). (19)

As it can be seen in (15), the covariance matrix Σyi
depends

on both x and ti. Therefore, it is not straightforward to find a
closed form expression for the ML estimator. In order to tackle
the problem, we use an iterative method to approximately
maximize the LL function. First, we fix tis and maximize
the function with respect to x; next, we fix x by the updated
values and maximize the function with respect to tis. Before
each step, we evaluate Σyi based on the available x and tis;
however, we ignore the dependency of the covariance matrix
on both x and tis in each maximization. As indicated in (15),
the variations of the covariance matrix are negligible for small
jitter noise values (σz � 1).

A. Maximization with respect to x

By fixing t
(j)
i s (jth iteration) and the covariance matrices

Σyis, the LL function becomes quadratic in terms of x and
its gradient is given by

∂

∂x
LL
(
x, t(j); y̆

)
=

C−1∑
i=0

Hi

(
t
(j)
i ,0

)T
Σ−1yi

(
y̆i −Hi

(
t
(j)
i ,0

)
x
)
. (20)

Hence, the maximizer for which the gradient vanishes could
be written as

x(j+1) =
[C−1∑
i=0

Hi

(
t
(j)
i ,0

)T
Σ−1yi

Hi

(
t
(j)
i ,0

)]−1
×
C−1∑
i=0

Hi

(
t
(j)
i ,0

)T
Σ−1yi

y̆i. (21)

As it can be seen x(j+1) is a function of t(j)i s; further, it
depends on x(j), σ2

z , and σ2
w through Σ−1yi

. Here, we assume
the values of σ2

z and σ2
w are available. For example, we

can estimate these variances using the method introduced in
[35]. In Subsection V-B, we investigate the sensitivity of the
proposed algorithm to the error in these values.

B. Maximization with respect to t

Similar to the previous step, we fix x(j+1) and the covari-
ance matrices Σyi

s, and maximize the LL function in terms
of t. We have

∂

∂ti
LL
(
x(j+1), t; y̆

)
=(

y̆i −Hi(ti,0) x(j+1)
)T

Σ−1yi

(
Di(ti) x(j+1)

)
. (22)

As tis are implicitly involved in the matrices Hi(ti,0) and
Di(ti), it is not possible to directly compute the roots of
the gradient. We use steepest ascend algorithm to update ti:

t
(j+1)
i = t

(j)
i +α ∂

∂ti
LL. To find the exact step-size, we replace

H(ti,0) with its first-order Taylor series approximation

Hi(t
(j+1)
i ,0) ≈ Hi(t

(j)
i ,0) + (α

∂

∂ti
LL) Di(t

(j)
i ). (23)

By inserting (23) into LL function of (18) and maximizing it
with respect to α,we have

α(exact) =
1

xTDi(t
(j)
i )T Σ−1yi

Di(t
(j)
i )x

(24)

and ti is updated according to the steepest ascend algorithm
as below

t
(j+1)
i = t

(j)
i +

(y̆i −Hi(t
(j)
i ,0)x)T Σ−1yi

Di(t
(j)
i )x

xTDi(t
(j)
i )T Σ−1yi

Di(t
(j)
i )x

, (25)

for 1 ≤ i ≤ C − 1. As it can be seen from (23), the
Taylor expansion is performed around ti in each iteration of
the algorithm. Therefore, we do not need to assume small
value for ti and only the difference between the two estimates
(t(j+1)
i −t(j)i ) is needed to be small. This enables the algorithm

to tolerate large values of time shift errors as demonstrated in
Subsection V-A.

C. Initialization and stopping criterion

For the initialization of our iterative method, we assume
the ideal case in the beginning. More precisely, we set t(0)i s
to zero

t
(0)
i = 0, 0 ≤ i ≤ C − 1, (26)

which reflects the timing shift-free setup. In addition, we
ignore the jitter noise effect which leads to

Σyi = σ2
w INC

, 0 ≤ i ≤ C − 1. (27)

According to (15), this corresponds to σz = 0.
The stopping criterion for the algorithm is met when there

exists negligible change in the update of the vectors x and
t (‖x(j+1) − x(j)‖22 < εx and ‖t(j+1) − t(j)‖22 < εt), or the
number of iterations exceeds a predefined max iter number of
iteration. Here, εx and εt are the acceptable tolerance of error
for x and t, respectively. Table I summarizes the proposed
approximate iterative ML estimator.

IV. CRAMÉR RAO LOWER BOUND

In this section, we present the Cramér-Rao lower bound of
the problem (10) for the estimation of the unknown parameter
vector

α = [t1, . . . , tC−1, x0, . . . , xK−1]T . (28)

As shown in (17), the likelihood function of y is decom-
posed into the multiplication of likelihood functions of yis,
that are Gaussian random vectors with the mean ηi and the
covariance matrix Σyi . Thus, given the parameters, y is also
a multivariate Gaussian random vector with

y ∼ N (η,Σy), (29)

where η , [ηT0 , . . . ,η
T
C−1]T is the N × 1 mean vector and

Σy , blkdiag(Σy0
, . . . ,ΣyC−1

) is the N × N covariance
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TABLE I
ALGORITHM 1: ITERATIVE ML ESTIMATOR FOR THE x AND t

Input: y̆i for 0 ≤ i ≤ C − 1, output vectors of each channel.
Output: x, input signal parameters (Nyquist rate samples).
1: Initialize t(0)i and Σyi for 0 ≤ i ≤ C − 1 according to (26) and (27),

respectively.
2: j ← 0
3: repeat
4: Calculate x(j+1) using (21).
5: for i = 0 to C − 1 do
6: update Σyi by replacing x(j+1) and t(j)i into (15).
7: Calculate t(j+1)

i using (25) (t(j+1)
0 = 0).

8: update Σyi by replacing x(j+1) and t(j+1)
i into (15).

9: end for
10: until

(
‖x(j+1) − x(j)‖22 ≥ εx or ‖t(j+1) − t(j)‖22 ≥ εt

)
and j ≤

max iter
11: return x(j+1)

matrix (N = NC × C). Moreover, we define matrices H, D,
and J as

H ,
[
H0(t0,0)T ,H1(t1,0)T , . . . ,HC−1(tC−1,0)T

]T
,(30a)

D ,
[
D0(t0)T ,D1(t1)T , . . . ,DC−1(tC−1)T

]T
, (30b)

J ,
[
J0(t0)T ,J1(t1)T , . . . ,JC−1(tC−1)T

]T
, (30c)

where the NC ×K matrix Ji(ti) is the second derivative of
Hi(ti,0), i.e.,

Ji(ti)[n, k] = sinc(2)
(
n
M + i

M C + ti − k
)
, (31)

and sinc(2)(x) = d2

dx2 sinc(x).
The Fisher information matrix for the estimation of un-

known parameters α from the multivariate Gaussian model
of (29) is introduced in [43] as

FIM[i, j] =
1

2
tr
{∂Σy

∂αi
Σ−1y

∂Σy

∂αj
Σ−1y

}
+
( ∂η
∂αi

)T
Σ−1y

( ∂η
∂αj

)
. (32)

We use the following Lemma to simplify the calculation of
the Fisher information matrix in (32).

Lemma 4.1: Suppose that A, B, and C are arbitrary N×N
matrices, Di and Ej are diagonal matrices of size N × N ,
and gi and hj are N × 1 vectors, for 0 ≤ i ≤ L − 1 and
0 ≤ j ≤M − 1. If we define the L×M matrix F as

F[i, j] =
1

2
tr{Di A Ej B}+ gTi C hj , (33)

the compact form of F can be obtained as

F =
1

2
DT (A�BT )E + GTC H, (34)

where D, G are N×L matrices, and E, H are N×M matrices
with the following definitions

diag(D[:, i]) = Di, G[:, i] = gi,

diag(E[:, j]) = Ej , H[:, j] = hj ,

for 0 ≤ i ≤ L− 1 and 0 ≤ j ≤M − 1.

Proof: See Appendix.

The derivative of the vector η and the matrix Σy with
respect to the unknown parameters xi and tj for 0 ≤ i ≤ K−1
and 1 ≤ j ≤ C − 1 are given by

∂η

∂xi
= H[:, i], (35)

∂ηk

∂tj
=

{
Dk(tk)x k = j

0 k 6= j
,

∂η

∂tj
= ej ⊗ (Dj(tj)x), (36)

∂Σyk

∂xi
=
{

(Dk(tk)x)Dk(tk)[:, i]T

+ Dk(tk)[:, i](Dk(tk)x)T
}
� σ2

z INC

=
{
Dk(tk)[:, i](Dk(tk)x)T

}
� 2σ2

z INC

= 2σ2
z diag

{
Dk(tk)[:, i]� (Dk(tk)x)

}
,

∂Σy

∂xi
= 2σ2

z diag
{
D[:, i]� (Dx)

}
, (37)

∂Σyj

∂tj
=
{
Dj(tj)xxTJTj (tj)

+ Jj(tj)xxTDT
j (tj)

}
� σ2

z INC

=
{
Dj(tj)xxTJTj (tj)

}
� 2σ2

z INC

= 2σ2
z diag

{
(Dj(tj)x)� (Jj(tj)x)

}
,

∂Σyk

∂tj
= 0 k 6= j,

∂Σy

∂tj
= 2σ2

z diag
{
ej ⊗

(
(Dj(tj)x)� (Jj(tj)x)

)}
, (38)

where ⊗ represents the Kronecker product and ej is a vector
with one in jth position and zero in the other positions.

We utilize Lemma 4.1 together with equations (35) and (37)
to calculate the Fisher information matrix related to vector x

FIMxx =
1

2
FTx (Σ−1y �Σ−Ty )Fx + HTΣ−1y H

=
1

2
FTx Σ−2y Fx + HTΣ−1y H, (39)

where Fx[:, i] = 2σ2
z

(
D[:, i]� (Dx)

)
for 0 ≤ i ≤ K−1. The

latter expression in (39) comes from the diagonal property of
matrix Σy. Similarly, by using (36) and (38), we have

FIMtt =
1

2
FTt Σ−2y Ft + MTΣ−1y M, (40)

FIMxt =
1

2
FTx Σ−2y Ft + HTΣ−1y M, (41)

FIMtx = FIMT
xt. (42)

where

M[:, j] = ej ⊗ (Dj(tj ,0)x), (43)
Ft[:, j] = 2σ2

z

{
ej ⊗

(
(Dj(tj ,0)x)� (Jj(tj ,0)x)

)}
(44)

for 1 ≤ j ≤ C − 1.
The FIM matrix can be obtained by putting the submatrices

of (39) to (42) together, i.e.,

FIM =

FIMxx FIMxt

FIMtx FIMtt

 . (45)
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From the Cramér Rao Theorem, the following inequality is
achieved as the lower bound for the MSE of vector x:

E[(x− x̂)T (x− x̂)] < tr{Cxx}, (46)

where

FIM−1 =

Cxx Cxt

Ctx Ctt

 , (47)

and Cxx, Cxt, Ctx, and Ctt are the sub-matrices of FIM−1

with the same dimensions as FIMxx, FIMxt, FIMtx, and
FIMtt, respectively.

V. NUMERICAL SIMULATIONS

In this section, the behavior of our iterative ML estimator
is presented. We compare the performance of our algorithm
with its Cramér-Rao lower bound and the linear estimator
with no compensation of the timing mismatch and jitter noise.
Moreover, we study the bias of the proposed algorithm and
its sensitivity to erroneous values of jitter and additive noises’
variances.

A. Performance of the Iterative ML algorithm

We use the mean square error (MSE) as the measurement
of performance for the signal parameters estimation in our
experiments. For the simulations, 10000 independent runs are
executed, and each point in the figures represents the average
of square error for these runs. Using MATLAB, we generate
random jitter and additive noises with the zero mean Gaussian
distributions of variances σ2

z and σ2
w, respectively. The deter-

ministic variables of the signal parameters, xk 0 ≤ k ≤ K−1,
and the shift mismatches, ti 1 ≤ i ≤ C − 1, also have zero
mean Gaussian distributions with variances of σ2

x and σ2
t ,

respectively. In addition, we choose K = 10, σw = 0.05,
and σx = 1. The stopping criteria for εx and εt are set to
10−8 and max iter = 1000.

In the absence of time shift errors and jitter noise we have
zi = 0 and ti = 0, which yields Hi(ti, zi) = H(0,0) and
Σyi

= σ2
w INC

for 0 ≤ i ≤ C−1. Hence, the output vectors yi
simply can be expressed as a linear relationship with additive
i.i.d. Gaussian noise, i.e. yi = Hi(0,0) x + wi. The linear
estimator for x, in this case, is obtain as

x̂ =
[C−1∑
i=0

Hi(0,0)THi(0,0)
]−1 C−1∑

i=0

Hi(0,0)T y̆i. (48)

Here for Gaussian assumption, the best linear unbiased esti-
mator (BLUE) of (48) is also the minimum variance unbiased
estimator (MVUE). This means that the linear uncompensated
estimator of (48) is the best estimator among all other estima-
tors in the MSE sense when we have no time shift errors and
jitter noise.

In Fig. 2, the iterative ML algorithm is compared against
the Cramér-Rao lower bound and the linear uncompensated
estimator for the various values of σz and σt. The number
of channels is C = 4 and the oversampling ratio is M = 1.
As we can see from the curves in Fig. 2, the iterative ML
algorithm almost follows its CRLB for both of the scenarios.
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−6

−2

2

6

shift std. dev. (σt) [×10−2 seconds]

M
SE

[d
B

]

Linear estimator (no compensation)
Iterative ML estimator
CRLB

(a) different values of σt for σz = 0.05

1 1.5 2 2.5 4 5 7.5 10
−22

−18

−14

−10

−6

−2

shift std. dev. (σz) [×10−2 seconds]

M
SE

[d
B

] Linear estimator (no compensation)
Iterative ML estimator
CRLB

(b) different values of σz for σt = 0.2

Fig. 2. MSE performance of iterative ML estimator for different values of
σt and σz , with σw = 0.05, M = 1, and C = 4.

1 2 4 10 20 40 75
0

0.2

0.4

0.6

0.8

1

std. dev. (σx) [×10−2 seconds]

p
(|
x
|>

1
2
M
C
)

Fig. 3. The probability that the sampling time goes beyond its nominal region,
i.e. p{|x| > 1

2MC
}.

The MSE of our algorithm starts to separate from CRLB for
σz > 0.05. The probability that the sampling time goes beyond
its nominal region, i.e. p{|x| > 1

2MC }, is depicted in Fig. 3
for the zero mean Gaussian variable and different standard
deviations. This figure shows that we begin to have violation
on the ordering of samples which is rare to be happened in
practice. The iterative ML algorithm operates near CRLB even
for larger values of σt rather than σz . This resistance to high
values of shift mismatches is more interesting for us since it
is reasonable to have bigger shift mismatches in comparison
with jitter deviations.

The next performance experiment describes the multichan-
nel effect for different cases of M and C. It is important in
each multichannel signal acquisition framework to compare its
performance with a higher rate sampler in order to measure the
performance loss due to the channel mismatches. Fig. 4 depicts
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(a) different values of σt for σz = 0.05
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(b) different values of σz for σt = 0.2

Fig. 4. Comparison of iterative ML estimator method between the samplers
with M C = 2, M C = 4, and M C = 8, for σw = 0.05 and different
values of σt and σz (The legend for Fig. 4a and Fig. 4b is shown in the
upper box).

three overall sampling rate group, M C = 2, M C = 4, and
M C = 8, with their corresponding CRLBs shown with dashed
lines under each sampler’s curve. It can be seen from Fig. 4a
and Fig. 4b that the samplers with the same product of M×C
have near MSE performances and the samplers with multiple
channels perform almost closely to the sampler of the same
product with one channel yet higher sampling rate. Whereas
according to Fig. 2, using multichannel structure without
compensation cannot demonstrate its superiority even over the
samplers with lower rates. For instance, linear uncompensated
sampler of M = 1, C = 4 has −10 dB MSE in σz = 0.05
and σt = 0.1, where it is −14.5 dB in the sampler with
M = 2, C = 1.
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(a) different values of σt for σz = 0.05
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γ = 0.5

γ = 1
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(b) different values of σz for σt = 0.2

Fig. 5. Sensitivity evaluation of the iterative ML method to the estimation
errors of the variances ratio of ( σz

σw
)(est.) = γ( σz

σw
) for cases γ = 0.1,

γ = 0.5, γ = 1, γ = 2, and γ = 5, with σw = 0.05, M = 1, and C = 4.

B. Sensitivity to errors in σ2
z and σ2

w

In this subsection, the sensitivity of the proposed algorithm
to the errors in σ2

z and σ2
w is analyzed. We suppose that the σ2

z

and σ2
w are estimated beforehand. Therefore, we measure MSE

performance of the method in the cases that the input values
of the algorithm for these variances differ from the original
ones. As it can be found from (21) and (25), multiplication
of Σyi

s by a constant does not affect formulas (21) and (25).
Multiplying Σyi

s with 1
σ2
w

in (15) helps that the algorithm
only depends on the proportion of σz

σw
. Fig. 5 plots the MSE

for various values of γ where ( σz

σw
)(est.) = γ σz

σw
is given to the

algorithm. The difference between the original and the given
portions in the variances causes the performance loss in the
algorithm. For the cases of γ = 0.1 and γ = 5, the algorithm’s
MSE becomes even higher than the linear estimator for small
amounts of σt (σt < 0.04). However, slight increase in σt
results in good distance between the curves with γ 6= 1 and
the uncompensated one.

VI. DISCUSSION

A. Computational complexity

The computational complexity of the proposed method can
be written as the number of iterations the algorithm needs to
converge multiplied with the number of operations required in
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Fig. 6. Average number of iterations that iterative ML algorithm needs to
converge for different values of σt and σz , with σw = 0.05, M = 1, and
C = 4. The error bar indicates the interval that includes 95% of data points
around the average point.

TABLE II
COMPUTATIONAL COMPLEXITY FOR ONE ITERATION OF OUR METHOD
FOR TWO CASES OF CORRELATED AND UNCORRELATED JITTER NOISE.

THE COST OF EACH PART OF THE ALGORITHM IS PRESENTED SEPARATELY.

correlated jitter noise uncorrelated jitter noise

calculate Σyi s O(C N2
C +KNC) O(C KNC)

update x
O(C N3

C + C KN2
C

+ C K2NC +K3)
O(K3 + C K2NC)

update tis O(C N3
C) O(C KNC)

each iteration. Fig. 6 displays the average number of iterations
needed for convergence of the algorithm in 10000 independent
trials. The error bars show the intervals in which 95% of
data points exist. On average, we observe that increasing σt
causes slower converge of the algorithm. However, the average
number of iterations is less than 25 for a broad range of
σt < 0.75. This number is almost constant for different values
of σz .

Next, we analyze the complexity of each iteration. In this
analysis, NC and K are assumed to be large variables with
the same growing rate. In each iteration of the algorithm,
we calculate Σyis twice and updating x and tis once. The
complexity of these different parts are presented in Table II for
both correlated an uncorrelated jitter noise. Since in uncorre-
lated case the covariance matrices Σyis become diagonal, the
required numbers of operations are greatly reduce compared
with the correlated case. According to Table II, updating x is
the most costly part among others.

B. Sub-Nyquist sampling scenario

For our method, we need to have M C ≥ 1 to avoid
underdetermined system and choose M such that the number
of samples collected by each channel belongs to positive
integer, i.e. NC = M K ∈ N. Moreover, in order to have
full-rank matrices of Hi(ti,0)TΣ−1yi

Hi(ti,0), M cannot take
values less than 1. Otherwise, one may find particular set of
{ti}C−1i=1 that causes the following matrix

C−1∑
i=0

Hi(ti,0)TΣ−1yi
Hi(ti,0) (49)

in equation (21) not to be invertible. For example, a prevalent
case observed in simulations is when tis tend to −i

M C in the
iterative algorithm. In this case, matrices Hi(ti,0) and Σyi

approaches H(0,0) and Σy0
for 1 ≤ i ≤ C − 1, respectively,

and the summation of (49) goes towards the singular matrix of
CH0(0,0)TΣ−1y0

H(0,0). Therefore, the method fails to esti-
mate the signal parameters correctly. Finding stable algorithms
that is able to operate in sub-Nyquist sampling case (M < 1)
is a topic of future works.

C. Practical remarks

From a practical point of view, the proposed method can
offer attractive features. It may not possible or cost-efficient
in some applications to change the analog hardware such as
ADCs, but instead it is feasible to utilize different digital
processing algorithms by updating a microcontroller or adding
a new processing unit. In some approaches like mixed-signal
techniques, it is required to design a new ADC architecture
with adjustable analog circuits to eliminate the effects of
time shift error. However, our method is able to work with
different types of conventional ADCs. Another advantage of
the proposed method is its capability of estimating the time
shift errors without the need for an additional reference ADC
channel, as opposed to many correlation-based algorithm.
Moreover, since the proposed algorithm is blind the acquisition
process has not to be periodically interrupted for calibration.
One of the main practical advantage of this method is for
applications that off-line post-processing of the collected data
is possible. In these applications, we can potentially reduce
power consumption of on-chip acquisition circuits by utilizing
low-power TI-ADC with greater jitter noise and perform the
compensation task with iterative ML algorithm. In recent
years, the performance and efficiency of integrated circuits
have significantly improved. Therefore, it could be possible
to implement the algorithm based on application specific
integrated circuit (ASIC) which allows block-processing of
ADC outputs in real-time.

VII. CONCLUSION

The TI-ADC is a low-cost analog to digital structure that can
achieve high power efficiency in sampling. However, its per-
formance is greatly affected by timing mismatch. Therefore, it
is essential to estimate and compensate the time shift errors.
Moreover, canceling the jitter noise through digital processing
can bring additional reduction in total power by eliminating
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the utilization of high power, accurate clock sources. In this
paper, we proposed a blind technique to mitigate the jitter
noise and the timing mismatch. The method employs an
iterative ML estimator to obtain the time shift errors, and
eventually achieve the uniform samples of the signal. Although
we use some simplifying approximations for deriving our
algorithm, the simulation results reveal that the performance
of the method tightly follows its CRLB for σt and σz lower
than 1.6 and 0.2 of the sampling time (0.25 seconds for the
case of C = 4 and M = 1), respectively. Fortunately, such
large values for variances of the shift errors and jitter noise
are uncommon in most of the practical cases. Furthermore,
we can see significant improvement over the linear estimation
case where no compensation is applied. Our method also has
lower estimation bias compared with linear estimator. For
performing the iterative ML estimator, the ratio of variances
( σz

σw
) is required. However, this method is capable of tolerating

relatively large amount of errors in the estimation of this ratio.

APPENDIX
PROOF OF LEMMA 4.1

For the first term in (33), we can write

tr{DiAEjB} =

N−1∑
n=0

(DiAEjB)[n, n]

=

N−1∑
n=0

N−1∑
k=0

(DiA)[n, k](EjB)[k, n]

=

N−1∑
n=0

N−1∑
k=0

Di[n, n]A[n, k]Ej [k, k]B[k, n]

=

N−1∑
n=0

N−1∑
k=0

D[n, i]A[n, k]E[k, j]B[k, n]

=

N−1∑
n=0

N−1∑
k=0

DT [i, n](A�BT )[n, k]E[k, j]

=
(
DT (A�BT )E

)
[i, j]. (50)

The second term is also compacted as

gTi Chj =

N−1∑
n=0

N−1∑
k=0

gi[n, 1]C[n, k]hj [k, 1]

=

N−1∑
n=0

N−1∑
k=0

G[n, i]C[n, k]H[k, j]

=
(
GTCH

)
[i, j]. (51)

Finally, we can achieve the equation (34) by replacing (50)
and (51) into (33).
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