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Abstract—This paper investigates the problem of learning a
graphical model from incomplete spatio-temporal measurements.
Our purpose is to analyze a time-varying graph signal repre-
sented by an incomplete data matrix, the rows and columns of
which correspond to spatial and temporal features/measurements
of the signal, respectively. In contrast to the conventional
approaches which utilize either a directed or an undirected
graphical model for data analysis, we propose a compound
multi-relational model exploiting both directed and undirected
structures. Our approach is based on statistical inference in which
a spatio-temporal signal is considered as a random graph process
to which we can apply maximum-a-posteriori estimation methods
for model identification. We incorporate the Gaussian-Markov
random field (GMRF) and the vector auto-regressive (VAR)
models to capture both the (undirected) spatial correlations and
the (directed) temporal dependencies. We propose an algorithm
for joint estimation of the signal and the graphical models, from
incomplete measurements. For this purpose, we formulate an
optimization problem that we solve using the block successive
upperbound minimization (BSUM) method. Our simulation re-
sults confirm the efficiency of the proposed method for signal
recovery and graph learning.

Index Terms—Graph learning, graph signal recovery, incom-
plete data, Laplacian matrix, time-varying signal, vector auto
regressive (VAR), Gaussian Markov random field (GMRF).

I. INTRODUCTION

GRAPH-STRUCTURED models are widely used in signal
processing and machine learning [1], [2], [3]. Indeed,

graph signal processing (GSP) is now a trending research topic
with many applications in social networks [4], internet and
telecommunication networks [5], sensor networks [6], etc.

The primary step in graph signal processing is to find a
graphical model that provides an efficient representation of the
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signal. An undirected graph is used to illustrate the degree
of similarities or mutual correlations (constraints) (e.g., factor
graphs [7]), while a directed graph applies for modeling the
causal or directional dependencies (e.g. Bayesian or belief net-
works (BN) [8]). There are a variety of methods which aim to
learn the topology/structure of the graph modeling the signal.
There is also an important category of methods for recovery of
a graph signal from corrupted (noisy and incomplete) measure-
ments. The first category called the graph learning methods [9],
[10], [11], usually require complete statistics of the data, while
in the second class of methods known as graph signal recovery
methods [12], [13], knowledge of the graphical model describ-
ing the data is a postulate. However, in real-world applications,
the observed data may be incomplete or prior information of
the underlying graph may be unavailable. Therefore, this paper
investigates the problem of learning a graph from incomplete
measurements which can also be viewed as a blind graph signal
recovery problem.

A. Related Works

There are various approaches to graph learning from data,
mainly classified as undirected and directed methods. The use
of stochastic Gaussian Markov random field (GMRF), which
is a graphical model for a multivariate Gaussian distribution
with Markov property, is quite common to fit an undirected
graph to the data. This approach often leads to the penalized
log-likelihood estimation of the precision matrix Θ as

min
Θ∈ΩΘ

Tr(ΘS)− log det(Θ) + αh(Θ), (1)

where ΩΘ denotes the feasibility set, S represents the statistics
of the data (e.g., sample covariance matrix), and h(Θ) is a reg-
ularization term (e.g., a sparsity promoting penalty function).
The method in [14] known as the GLASSO, is an early work
in this area which solves (1) for the set of positive definite preci-
sion matrices (ΩΘ = {Θ� 0}). This work was later improved
in [15] by introducing Laplacian structural constraints to ΩΘ. A
general framework for learning different classes of the Lapla-
cian GMRFs (attractive GMRFs with Laplacian as the preci-
sion matrix [16]) with different structural constraints is also
proposed in [17]. Additionally, a similar estimation approach
has been employed for graph learning via a stochastic factor
analysis model [18]. There have also been some recent meth-
ods that incorporate additional spectral constraints to problem
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(1), to learn specific types of undirected graphs (e.g., regular,
k-component, or bipartite graphs) [19]. The eigenvectors of the
sample covariance matrix have been utilized in some works as
the nominal eigenspace for graph learning, which is shown to
improve the performance when the sample size is limited [20],
[21]. Besides the stochastic approaches, there are several non-
probabilistic algorithms for undirected graph learning. For in-
stance, a signal-representation perspective for undirected graph
learning is proposed in [10], in which, signal smoothness is
used as a measure to learn a graph from the data [22]. Some
methods also consider learning a parametric dictionary with
graph-induced kernels for signal representation [23].

In contrast to the above approaches, an important but limited
class of graph learning algorithms aim at learning a directed
topology. The majority of these models are based on stochastic
modeling. The Granger causality [24] or the structural equation
model [25] can be used to formulate the causal (directional)
dependencies between the components of the signal. The vec-
tor autoregressive (VAR) approach [26], [27] is another well-
studied method for directed topology identification, modeling
the directions of the temporal dependencies in a time-varying
signal (stochastic process). In the VAR(p) model, the signal
vector at time t (xt) is stated in terms of a linear combination
of the previous samples

xt =

p∑

i=1

A(i)xt−i + εt, (2)

Here, A(i) is known as the state evolution matrix of order i. This
matrix is generally not symmetric and can be represented by
the weighted adjacency matrix of a (generally) directed graph
with possibly negative weights. There are, of course, some
works that use undirected graphs to represent symmetric VAR
model parameters, e.g., [28]. The signal εt, called the excitation
(innovation) process, is temporally white, i.e., εt is independent
of εt−i for i > 0. A similar concept is the family of causal
graph processes (CGP) introduced in [29], in which causal
relationships are incorporated into a directed graph topology
and A(i)s are assumed to be polynomial functions of a common
matrix A. It is very common in the literature to simply assume
the covariance matrix of the innovations is diagonal (spatially
white). There are, however, some references that consider the
excitation process to be non-white. For instance, [30] and [31]
utilize a variant of the VAR model, in which the covariance
matrix of the innovations represents spatial correlations.

The graph learning methods, both undirected and directed,
rely on true statistics or measurements of the data. However,
in practice, the data is often contaminated with noise or there
may be missing entries in the data due to unavailable measure-
ments. The graph signal recovery methods can restore signals
from corrupted observations, exploiting various criteria such
as spatio-temporal smoothness [32], total variation [33], [34],
bandlimitedness and sparsity in the graph Fourier transform
(GFT) domain [13], [35]. A recent work in [36] considers a
multi-relational graphical model for probabilistic signal recon-
struction using a Gaussian mixture model. There have also
been some modern approaches based on graph neural networks

(GNN) [37] for signal recovery. These methods, however, need
to know the topology of the underlying graph a priori. Hence,
there have been some recent efforts to fill in the gap through
simultaneous signal recovery and graph learning. For instance,
[38] considers the joint inference of a directed network topology
and the graph process in a structural VAR model. The authors
in [39] investigate the problem of joint graph Laplacian infer-
ence and signal denoising. In [40], the problem of learning a
graph from noisy and incomplete measurements (inpainting) is
investigated, which employs the total variation metric. An algo-
rithm for joint graph Laplacian estimation and signal denoising
has been proposed in [41], which exploits long and short-term
characteristics of the data. A recent approach is also proposed in
[42] which exploits spatio-temporal smoothness for joint signal
recovery and undirected graph learning. All these approaches
are either tailored for learning undirected or directed graphs (to
model either spatial or temporal dependencies). Nonetheless,
learning a single directed/undirected graph model may not be
sufficient to capture both the spatial correlations and the tem-
poral dependencies in a spatio-temporal signal.

Thus, in this paper, we address this gap by proposing a joint
signal and graph inference method from corrupted measure-
ments of spatio-temporal data, using a multi-relational model
composed of both undirected and directed graph structures.

B. Contributions

The main contributions of this paper are as follows
1) We have adopted a maximum-a-posteriori estimation ap-

proach to formulate the problem of joint signal recovery
and graph learning from noisy and incomplete measure-
ments of spatio-temporal data under a multi-relational
graphical model. Our structure is based on a VAR model
where a directed graph is used to model the temporal
dependencies via the state transition matrix with arbitrary
(off-diagonal) entries, and a simple undirected graph is
utilized to represent the spatial similarities via a Lapla-
cian GMRF model for the innovations process.

2) Our learning algorithm is based on the block successive
upperbound minimization (BSUM) approach, also called
block majorization minimization (MM), with three sub-
problems (update steps) for joint estimation of our pro-
posed model parameters. We also prove the uniqueness
of the solution to each subproblem, and subsequently
the convergence of the proposed method. The simulation
results demonstrate that the proposed method exhibits
a faster rate of convergence as well as superior perfor-
mance in simultaneous graph learning and signal recov-
ery from corrupted data compared to some state-of-the-art
methods.

C. Outline and Notations

This paper is organized as follows. In Section II, some pre-
liminaries and definitions are provided. Section II introduces
the proposed model and formulates the problem of learning
the model from noisy and incomplete data. We propose an
iterative algorithm to solve the problem via three update-steps in
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TABLE I
LIST OF NOTATIONS USED IN THE PAPER

Notation Description

A /a / vec(A) a matrix / a vector / vectorized form of a matrix
det(L) / |L| determinant / pseudo determinant of L

L /L∗ Laplacian operator / and its adjoint
‖A‖1,1 / ‖A‖1,off �1 norm of all / off-diagonal elements of A

‖A‖ / ‖A‖F spectral / Frobenius norm of matrix A
Tr(A) trace of matrix A
Diag(a) diagonal matrix with elements from a

A�B /A⊗B Hadamard / Kronecker product of A and B
AS sub-matrix of A with column indices in S
DXf directional derivative of f with respect to X

Section IV. Here, we also analyze the conditions for uniqueness
of the solutions to each subproblem and the convergence of the
proposed method. Finally, the simulation results are given in V.

For clarity of presentation, the list of notations used in this
paper is provided in Table I.

II. PRELIMINARIES

We represent a graph with n vertices by the triplet G =
{V, E ,W}, with V = {1, ..., n} being the set of graph ver-
tices, and E the set of graph edges; i.e., E = {e1. . . . , e|E|} ⊆
{(i, j)| i, j ∈ V}, and a pair (i, j) ∈ E indicates a directed edge
starting from vertex i and ending at vertex j. For undirected
graphs, we simply denote each edge with ek = {i, j}. The ma-
trix W in the graph triplet is the weighted adjacency matrix
whose elements represent the weight of the edges; the elements
of this matrix are commonly assumed to be non-negative, i.e.,
Wi,j ≥ 0. Obviously, we expect to have Wi,j = 0 if (i, j) �∈ E .
The support of the weight matrix is known as the adjacency
or the connectivity matrix C= 1W �=0. For a simple undirected
graph, W is symmetric with zero diagonals, whereas for a
directed graph, it is in general, non-symmetric. The Laplacian
matrix, or combinatorial graph Laplacian (CGL), for an undi-
rected graph, is defined as L=D−W where D is the diagonal
degree matrix of the graph, with Di,i =

∑
j Wi,j being the

degree of vertex i.
Learning a graph is equivalent to learning its Lapla-

cian or weighted adjacency matrix. For a simple undirected
graph, Wn×n consists of n(n− 1)/2 degrees of freedom
which we denote by the vector w ∈ R

n(n−1)/2. The rela-
tionship between the vector w and the Laplacian matrix
can be stated as L= L(w) where L : Rn(n−1)/2 → R

n×n is
called the Laplacian operator [19], [21]. An adjoint opera-
tor L∗ : Rn×n → R

n(n−1)/2 may also be defined that satisfies
〈L(w),M〉= 〈w,L∗(M)〉 for any square matrix M. When
it comes to learning graphs from data, we often deal with a
(two-dimensional) matrix of signal samples denoted by X ∈
R

n×m. For spatio-temporal data, each column of the matrix
represents one realization of a deterministic or a stochastic
graph signal (spatial measurements) and each row encodes
the variations of the graph signal at a given vertex over time
(temporal measurements).

III. PROBLEM STATEMENT

To capture both temporal and spatial dependencies (corre-
lations) in a time-varying graph signal, we propose a spatio-
temporal first-order VAR model as follows:

xt =Axt−1 + εt, p(εt|L)∝ |L| 12 exp
(
− 1

2ε
�
t Lεt

)
.
(3)

Here, A represents the state transition matrix of the VAR
model parameters, which can have an arbitrary (non-diagonal
and asymmetric) structure, and εt is a zero-mean excitation
(noise) process. We assume a Laplacian GMRF model for εt
characterized with L� 0 as the precision matrix. The matrix
L is the Laplacian of a simple undirected graph, which en-
codes the conditional dependence relations among the vari-
ables. In other words, a missing edge between nodes i and j
indicates that εi,t and εj,t are independent, given all the other
elements of εt. The Laplacian matrix is singular and the term |L|
denotes the pseudo-determinant (generalized determinant) de-
fined as|L|=

∏
λi �=0 λi(L). Throughout this paper, we assume

that the undirected graph used in our model is connected and
hence, L has only one zero eigenvalue, i.e., rank(L) = n− 1.
Thus, we may write |L|= det(L+ J), where J= ( 1n )11

�.
In practice, the graphs we encounter have few edges and
therefore, the matrices L and A are sparse. To promote spar-
sity, similar to [17], we assume an exponential prior with
parameter α0 for the edge weights of the undirected graph.
Thus, we have the prior distribution p(w)∝ exp

(
−2α01

�w
)

on w ≥ 0. Hence,

p(L)∝ exp (−α0‖L‖1,off) , (4)

where ‖L‖1,off denotes the �1 norm of the off-diagonal elements
of L. There is also a division by 2 due to L= L�. Since
all off-diagonal elements of L are non-positive, we can also
write ‖L‖1,off =Tr(LHoff) where Hoff = I− 11�. It should be
noted that although the �1 -norm is shown not to be effective in
promoting sparsity in learning some types of graphical models
[43], [44], our simulation results (presented in Section V-A)
demonstrate that we can still apply the �1 -norm in our case,
since we further scale and apply a threshold on the inferred
Laplacian (weighted adjacency matrix).

Similarly, we assume a Laplace distribution (with parameter
α1) for the components of A, to promote sparsity. Hence:

log p(A) = n2 log(α1/2)− α1‖A‖1,1. (5)

Now consider the proposed model expressed by (3). In terms
of time (variable t), the graph signal xt describes a first order
Markov process. Similarly, based on the spatial dependencies
(vertex domain), the signal defines a GMRF. While xt stands
for the signal of interest in this work, we assume to have access
to some incomplete noisy measurements yt from xt. Hence, the
observations are obtained by

yt =mt 
 (xt + nt), nt ∼N (0, σ2
nI), (6)

where the measurement noise component nt, is assumed to be
additive and temporally-spatially i.i.d. Gaussian with zero mean
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and covariance matrix σ2
nI. Furthermore, mt is a known mask

vector defining the sampling pattern of the graph signal at time
t. Therefore, by horizontal concatenation of the vectors from
t= 1 to t= T (left to right), we obtain the following compact
matrix form (where Yi,t = yt(i)):

Y =M
 (X+N) (7)

Now, the problem considered in this paper is as follows: by
observing the measurement matrix Y and the sampling masks
M, we would like to estimate the VAR model parameters A,
the graph Laplacian L, and the time snapshots of the graph sig-
nal X. Let ΩL = {L� 0 | Lij = Lji ≤ 0 (i �= j), L · 1= 0,
rank(L) = n− 1} be the set of feasible Laplacian matrices. We
then employ the maximum-a-posteriori (MAP) rule to estimate
X, L, and A by knowing M and observing Y in (7):

X∗,L∗,A∗ = argmax
X,L∈ΩL,A

p(X,L,A|Y,M)

= argmin
X,L∈ΩL,A

{− log p(Y|M,X,L,A)

− log p(X|L,A)− log p(A)− log p(L)},
(8)

where in the last equation, we have assumed A to be indepen-
dent from L; M is also a fixed and known matrix. Because of
the Markovian property of the proposed VAR model (in time-
domain), starting from x0 = 0 we have:

log p(X|A,L) = log

T∏

t=1

p(xt|xt−1,A,L)

=
T∑

t=1

log p(εt|A,L)

= C0 +
T

2
log det(L+ J)− 1

2

T∑

t=1

ε�t Lεt,

where C0 =−(n− 1)/2 log(2π). By denoting the t-th canon-
ical basis as et with the convention e0 = 0, we can define
et =Eet, and proceed as

log p(X|A,L) = C0 +
T
2 log det(L+ J)− 1

2 Tr
(
LEE�) ,

where

E=X−AXD, DT =
T∑

t=1

et−1e
�
t . (9)

Since Y is independent of A and L given X, we may write:

log p(Y|X,L,A,M) = log p(Y|X,M)

= C1 −
1

2σ2
n

T∑

t=1

‖mt 
 (yt − xt)‖2

= C1 −
1

2σ2
n

‖M
Y −M
X‖2F ,

(10)

where C1 is another constant. Now, using the Laplacian op-
erator [19], we can restate L as L= L(w). Hence, by simple

steps, the MAP problem can be restated in terms ofX,A, andw
as follows

X∗,A∗,w∗ = argmin
X,A,w

f(X,A,w), s.t. L(w) ∈ ΩL

f(X,A,w) � 1

σ2
n

‖YM −M
X‖2F + 2α1‖A‖1,1

+Tr
(
L(w)(X−AXD)(X−AXD)�

)

− T log det(L(w) + J) + 2α0 Tr(L(w)Hoff),
(11)

where YM =M
Y.

IV. PROPOSED ALGORITHM

The cost function in (11) is convex with respect to each
block variable X, A, and w. Hence, we can use the block
successive upperbound minimization (BSUM) [45] or the block
MM [46] method to minimize the proposed objective function.
The BSUM algorithm is indeed a generalization of the block-
coordinate-descent (BCD) or the Gauss-Seidel method [47],
which minimizes an uppperbound of the original cost in each
iteration. This way, starting from (X(0),A(0),w(0)), for j ≥ 0
we have the following iterations:

X(j+1) = argmin
X

fS
X(X;X(j),A(j),w(j)),

A(j+1) = argmin
A

fS
A(A;X(j+1),A(j),w(j)),

w(j+1) = argmin
w

fS
w(w;X(j+1),A(j+1),w(j)), (12)

where fS
X(X;X(j),A(j),w(j)) is a convex upperbound or a

majorization (as defined in [45]) for the function fX(X) �
f(X,A=A(j),w =w(j)). This majorizer also uses X(j) as
a parameter. Similarly, fS

A and fS
w are convex functions of A

and w, that majorize fw(w) � f(X=X(j+1),A,w =w(j))
and fA(A) � f(X=X(j+1),A=Aj+1,w) respectively. To
simplify the notations, from now on, we drop the super-scripts
(j) and (j+1) from constant variables. Below, we separately
study the updating rules for X, A, and w.

A. X-Subproblem

Assuming A and w to be fixed, the function in (11) can be
restated in terms of X as follows

fX(X) =
1

σ2
n

Tr
(
(YM −M
X)(YM −M
X)�

)

+Tr
(
L(w)(X−AXD)(X−AXD)�

)
+ const.

(13)

This function is convex with respect to X as stated in the
following theorem.

Proposition 1: The function fX(X) defined in (13) is convex
with respect to X. Furthermore, if σn <∞ and

∑
k Mk,i >

0, ∀i (i.e., there is at least one observation sample at each
time snapshot), the function is strictly convex with a unique
minimizer given by the following closed-form solution

X∗ = vec−1
(
G−1b

)
, (14)
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where

G=
1

σ2
n

Diag(vec(M)) +H�(IT ⊗ L(w))H,

H= InT −D� ⊗A,

b=
1

σ2
n

(vec(YM )). (15)

Proof: Refer to Appendix A.
Although fX(X) is convex and has a closed-form minimizer

if G is invertible, the computational complexity of inverting
GnT×nT is problematic in practice. Therefore, we introduce a
motorize to reduce the computational load which can also be
utilized in the BSUM algorithm.

Lemma 1: The function fS
X(X;X0) as

fS
X(X;X0) = fX(X)

+ vec(X−X0)
�(θI−G)vec(X−X0) (16)

defines a strictly convex majorization for fX(X) if θ > θ̂min �
1
σ2
n
+ 2 ‖L(w)‖

(
1 + ‖A‖2

)
.

Proof: Refer to Appendix B.
Using this Lemma, theX-update step in the BSUM algorithm

can be obtained by setting X0 =X(j) as follows

X(j+1) = argmin
X

fS
X(X;X(j))

=X(j) − 1
2θ

∂
∂XfX(X)|X(j) , (17)

where

∂
∂XfX(X) = 2

(
L(w)E−A�L(w)ED� − YM−M�X

σ2
n

)

and E=X−AXD. This is actually a gradient descent (GD)
step with adaptive step-size.

B. A-Subproblem

With X and w fixed, the cost function reduces to

fA(A) � Tr(L(w)(X−AXD)(X−AXD)�)

+ 2α1‖A‖1,1. (18)

Proposition 2: fA(A) is convex with respect to A, and the
minimizer a∗ = vec(A∗) of fA(A) is unique if the submatrix
RE is full column rank, where the equi-correlation set E is

E = {1≤ i≤ n : |〈ri,d−Ra∗〉|= α1}, (19)

ri is the ith column of R= (XD)
� ⊗ L(w)1/2, and d=

vec(L(w)1/2X).
Proof: Refer to Appendix C.

The next step is to find a suitable majorization function
fS
A(A;A0) for fA(A) that could be simply minimized.

Lemma 2: For any A0 and β > βmin = ‖XD‖2 ‖L(w)‖, the
function fS

A(A;A0) defined below is a strictly convex ma-
jorizer for fA(A).

fS
A(A;A0) = fA(A) + β‖A−A0‖2F

− Tr
(
L(w)(A−A0)XDD�X�(A−A0)

�).
(20)

Proof: Refer to Appendix D.
We can simplify fS

A(A,A0) as follows

fS
A(A;A0) = 2α1‖A‖1,1

+β
∥∥∥A−

(
A0− 1

βL(w)(A0XD−X)(XD)�
)∥∥∥

2

F
+const,

where const is a term that does not involve A. Hence, setting
A0 =A(j), a closed-form solution yields for the A update step
in the BSUM algorithm using the soft-thresholding operator S
[48] as

A(j+1) = argmin
A

fS
A(A,A(j))

= Sα1/β

(
A(j) − 1

βL(w)(A(j)XD−X)(XD)�
)
.

(21)

C. w-Subproblem

Assuming X and A to be fixed, we need to solve the follow-
ing problem for the w-update step,

w∗ = argmin
L(w)∈ΩL

fw(w) (22)

where

fw(w) = Tr(L(w)K)− log det(L(w) + J) (23)

and K= 1
T ((X−AXD)(X−AXD)� + 2α0Hoff). Now,

according to the following proposition, we may restate problem
(22) as follows

w∗ = argmin
w∈Ωw

fw(w), Ωw = {w|w ≥ 0}. (24)

Proposition 3: The optimization problem in (22) is convex
and equivalent to (24) if and only if Ωw = {w|w ≥ 0}. Further-
more, (24) has a unique minimizer if K� 0 or α0 > 0.

Proof: See Appendix E for the proof.
Lemma 3: Assume w0 ≥ 0 and τ > 0 to be constant. Also

define q= L∗ ((L(w0) + J)−1
)

and r= L∗(K). A strictly
convex majorization function for fw(w) denoted by fS

w(w;w0)
can be obtained as

fS
w(w;w0) = τ〈q
w◦2

0 ,w �w0 + (w0 + 1/τ)�w − 2〉
+ 〈w, r〉+Tr

(
(L(w0) + J)−1J

)

− log det(L(w0) + J)− n, (25)

where ◦ and �, respectively denote the element-wise power
and division.

Proof: Refer to Appendix F for the proof.
Finally, the BSUM step corresponding to w-update is

w(j+1) = argmin
w

fS
w(w;w(j))

=w(j) 

√

(τw(j) 
 q+ q)� (τw(j) 
 q+ r).

(26)
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Algorithm 1 The STSRGL (proposed) algorithm to solve (11)
based on the BSUM method

Input: Y, M, Parameters: σn, α0, α1, τ ,
Output: X(t), A(t), L(t) = L(w(t)).
Initialization: X(0) =Y, A(0) = 0, w(0) = Pw≥0(S

†
Y ),

j = 0
repeat

Obtain X(j+1) using (17) with (A,w) = (A(j),w(j)).
Obtain A(j+1) via (21) with (X,w) = (X(j+1),w(j)).
Obtain w(j+1) via (26) with (X,A) = (X(j+1),A(j+1)).
Set j ← j + 1

until A stopping criterion is satisfied

D. The Overall Algorithm

Now, that we have obtained solutions to each subprob-
lem of the BSUM algorithm, we can summarize the pro-
posed method, called spatio-temporal signal recovery and graph
learning (STSRGL), in Algorithm 1. For the initialization, we
choose X(0) =Y, A(0) = 0, and w(0) = Pw≥0(S

†
Y ), where

SY = 1
T YY�. The stopping condition is satisfied if the rel-

ative error between consecutive iterates falls below a thresh-
old called the error tolerance, or the maximum number of
iterations is reached.

E. Computational Complexity

The computational complexity of the X-update step in (17)
is O(n2T + T 2n+ n3) including the computation of θ > θmin.
The update-step for A (21) is similarly O(n2T + T 2n+ n3)
complex and O(n3) operations are also needed to obtain β >
βmin. Moreover, given K, the computational complexity of the
w update step is dominated by the evaluation of (L(w(k)) +
J)−1, which requires O(n3) operations (the complexity of the
remaining operations isO(n2)). It also requiresO(n2T + T 2n)
in general to obtain K. Thus, the overall complexity of each
iteration of Algorithm 1 is O(n3 + n2T + T 2n). This may not
be scalable to very large graphs. However, if we can cluster the
nodes into several disjoint classes, then, the algorithm can be
more efficiently applied locally to infer the graph and the signal
within each cluster.

Theorem 1: For α0 > 0, the proposed method given in
Algorithm 1 converges to a stationary point of problem (11).

Proof: As stated in Lemmas 1, 2, and 3, each subproblem
of the BSUM algorithm is strictly convex (quasi-convex) and
admits a unique minimizer. Moreover, we have

f(X,A,w) =
1

σ2
n

‖YM −M
X‖2F
+ 2α1 ‖A‖1,1 + Tfw(w),

where fw(w) is defined in (23). Using Proposition 3 for α0 >
0, we conclude that f(X,A,w) in (11) is lower-bounded
by Th(z∗) with h(z) defined in (33). This function is also
continuous in X, A, and w ≥ 0 and thus, the sub-level sets
{(X,A,w)|f(X,A,w)≤ f0} are compact for any f0. Hence,

using Theorem 2 in [45], it is concluded that the proposed algo-
rithm converges to the set of coordinate-wise minima of (11).
That means the directional derivatives along any feasible block
direction z0 = (X0,A0,w0), at any limit point, i.e., DX0

f(ẑ),
DA0

f(ẑ), and Dw0
f(ẑ) are all non-negative, where ẑ denotes

an arbitrary limit point. Now, we may write

f(X,A,w) = hX(X) + hA(A) + hw(w) + g(X,A,w),

with hX(X) = 1
σ2
n
‖YM −M
X‖2F , hA(A) = 2α1 ‖A‖1,1,

hw(w) =−T log det(L(w) + J) + 2α0 Tr(L(w)Hoff), and
g(X,A,w) = Tr

(
L(w)(X−AXD)(X−AXD)�

)
.

Since g(.) is smooth, one can show that

Dz0
f(ẑ) = lim

μ→0+

f(ẑ+ μz0)− f(ẑ)

μ

=DX0
f(ẑ) +DA0

f(ẑ) +Dw0
f(ẑ)≥ 0.

Hence, it is concluded that f is regular at any coordinate-
wise minimum, implying that every limit-point is also
stationary [45].

V. SIMULATION RESULTS

In this section, we present the simulation results of the pro-
posed algorithm for inference in graphical models and recov-
ery of corrupted (noisy and incomplete) observations for both
synthetic and real data. In Sec. V-A, we compare the proposed
method with some of the state-of-the-art methods in the lit-
erature with synthetic data. The results on real data shall be
presented in Sec. V-B.

A. Synthetic Data

We set n= 100 and T = 1000 in our experiments and gen-
erate synthetic data: we construct the Laplacian matrix L using
the Stochastic Block Model (also known as the Modular Graph)
and generate random samples of the εt signal according to a
multivariate Gaussian distribution (GMRF). In this undirected
graphical model, the nodes are divided into a number of clus-
ters/blocks (4 clusters in our case), and the edges are formed by
setting inter-cluster and the intra-cluster probabilities. Finally,
the generated Laplacian matrix is uniformly scaled such that
Tr(L) = n. We generate random samples εt via

εt =
√
L†νt, νt ∼N (0, I),

where L† represents the pseudo-inverse of the Laplacian matrix.
Next, we use the Laplace distribution to generate the el-

ements of the state transition matrix A in equation (3), and
then use the adjacency matrix of the undirected graph in our
model to mask the components of A. Finally, we divide the
matrix by its operator norm. Now by generating time sam-
ples xt (initialized with x0 = 0) according to equation (3), the
matrix of the original data X is constructed by column-wise
concatenation of the vectors xt from t= 1 to t= T . We further
normalize the data matrix (each row is centralized and scaled by
its standard deviation). The final measurements are constructed
by Y =M
 (X+N), where M is a random binary sampling
matrix (mask) following rate parameter SR and N is the noise
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matrix filled with i.i.d. Gaussian random variables with zero
mean and variance εn. Indeed, the matrices Y and M are the
inputs for learning the graphical models and recovering the
data matrix.

To examine the graph learning performance, we measure the
relative error and the F-score criteria for the Laplacian and the
state transition matrices. If B∗ ∈ R

n×n is either the Laplacian
or the state transition of a graph, and B̂ ∈ R

n×n represents its
estimated version, the relative error and the F-score values are
given by

RelErr =
‖B∗ − B̂‖F

‖B∗‖F
, F-score =

2TP
2TP + FP + FN

.

In the above equation, TP, FP, and FN stand for the number
of connections in the original graph that are correctly detected,
the number of connections in the estimated graph that do not
exist in the original one, and the number of connections from
the original graph missing in the estimated one, respectively.

We also use SNR and NMSE criteria to measure the sig-
nal recovery performance. If we denote the ground-truth data
matrix with X∗ ∈ R

n×T , its recovered/estimated version by
X̂ ∈ R

n×T and their ith columns by x∗
i and x̂i, respectively,

then, we have

SNR = 20 log10

(
‖X∗‖F

‖X∗−̂X‖F

)
, NMSE =

1

T

T∑

i=1

‖x∗
i −x̂i‖2

‖x∗
i ‖2 .

To provide more robustness, we average the results over 50
different random realizations. In addition, we separately report
the results of the Laplacian matrix inference, the state transi-
tion matrix inference, and the signal recovery. In the follow-
ing simulations, we have chosen τ = 50, α0 = 0.1T , α1 = 20,
and σn = 0.1.

1) Inference of the Laplacian Matrix: In this subsection,
we present the results of the Laplacian matrix inference from
noisy and incomplete data. For this purpose, we compare the
simulation results of the proposed algorithm with several state-
of-the-art undirected graph learning methods, consisting of
CGL1 [17], the GSP-Log and GSP-L2 versions of the GSP
toolbox2 [22], the GLE-MM method in [21], the nonconvex
graph learning method introduced in [44], named NGL3, and
the GL-LRSS method [41] for joint signal and graph Laplacian
inference based on low-rank and spatio-temporal smoothness.
For the sake of comparison, we include two versions of the
proposed algorithm: in the first one, we only solve the Laplacian
estimation subproblem with A= 0 and X=Y(referred to as
STSRGL L-sub), while in the second one, we run the complete
BSUM method with all the steps according to Algorithm 1
(referred to as STSRGL). For a fair comparison, we scale the
output Laplacian matrices obtained by all the algorithms in
order to have Tr(L) = n. We then, eliminate edges with weights
below a threshold value.

Fig. 1, represents the results of the Laplacian matrix esti-
mation in the Stochastic-Block model in terms of RelErr and

1https://github.com/STAC-USC/GraphLearning
2https://github.com/epfl-lts2/gspbox
3https://github.com/mirca/sparseGraph

Fig. 1. Relative error and F-score performance of the Laplacian matrix (L)
estimation under the synthetic data model at different εn values with fixed
SR = 0.8.

Fig. 2. Relative error and F-score performance of the Laplacian matrix (L)
estimation under the synthetic data model at different SR values with fixed
εn = 0.01.

Fig. 3. Convergence plots of different algorithms for inference of the
Laplacian/state evolution matrix at SR = 0.8 and εn = 0.01. The vertical
axis shows the error with respect to the ground-truth (denoted with asterisk),
and the horizontal axis shows the iteration times in seconds.

F-score at different noise levels (εn) and the fixed sampling rate
of SR = 0.8. Fig. 2 also shows the same results for different
sampling rates (SR) assuming εn = 0.01 (fixed). As depicted,
both versions of the proposed algorithm perform suitably in
estimating the graph Laplacian matrix, especially in terms of
the F-score criterion. Furthermore, the convergence rate of the
STSRGL method in Fig. 3 (expressed in CPU time) for the
sampling rate SR = 0.8 and εn = 0.01 is observed to be faster
than the other techniques.

We further apply these methods for learning the Laplacian of
different random graphs, namely Barabasi Albert, Erdos-Renyi,
and kNN geometric, for the sampling rate SR = 0.8 and noise
variance εn = 0.01. The results are provided in Table II.

2) Inference of the State Transition Matrix: In this part, we
present the results of learning the state transition matrix A from
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TABLE II
PERFORMANCE OF THE LAPLACIAN MATRIX ESTIMATION FOR RANDOM

GRAPH MODELS FROM INCOMPLETE MEASUREMENTS,
AT SR = 0.8 AND εn = 0.01

Barbasi-
Albert

Erdos-
Renyi kNN

F-score RelErr F-score RelErr F-score RelErr

CGL 0.4293 0.8721 0.5517 0.3932 0.3899 0.5669
GSPBOX-Log 0.4468 0.8373 0.3709 0.5783 0.5718 0.5604

GLE-MM 0.3522 0.7662 0.5094 0.3018 0.2873 0.4134
NGL 0.4797 1.1093 0.4998 0.3507 0.4764 0.7145

GL-LRSS 0.4804 0.8483 0.6017 0.3083 0.4989 0.5815
STSRGL L-sub 0.3784 0.7743 0.5694 0.3408 0.5782 0.3990

STSRGL 0.5109 0.6267 0.6587 0.2716 0.6911 0.3300

the corrupted observationsY. For this purpose, the performance
of the proposed algorithm is examined in terms of RelErr and
F-score compared to some of the state-of-the-art methods.
These include the method in the JISG algorithm in [38] for joint
inference of signals and graphs (consisting of two alternating
graph learning and signal recovery steps), and also two recent
methods in [49] called TISO and TIRSO4, for online learning
of a VAR model. We also use the classic ordinary least squares
regression method in the VAR toolbox5 [50], for comparison.
Similar to the previous part, we simulate two variants of the
proposed algorithm in this experiment and report the results. In
the first variant, we consider w(0) = Pw≥0(S

†
Y ) and X=Y,

and find only the solution to the A-subproblem. In the second
variant, we run the complete BSUM method with all its steps
according to the proposed Algorithm 1. The first variant is
called the STSRGL A-sub and the second variant is called the
STSRGL in the following figures. For the JISG algorithm, we
consider the output A(1) as the desired matrix. For a fair and
accurate comparison, we normalize the output matrix of all
the algorithms so that the element with the largest magnitude
equals 1. Next, we discard (set to zero) the small elements in
the normalized matrix A (below a given threshold). Finally the
matrix is scaled to have unit operator norm.

Figs. 4 and 5 demonstrate the performance of the proposed
algorithms compared to other methods in estimating the state
transition matrix under different sampling rates and noise levels.
As expected, learning the graph simultaneously when recover-
ing the signal, improves the performance of the A-subproblem,
specifically, at higher sampling rates and low noise levels.
Evidently, the proposed STSRGL method also outperforms
the other state-of-the-art algorithms in learning the directed
graph matrix A.

3) Data Matrix Recovery: Here, we examine the recovery
performance of the original data matrix X in terms of SNR
and NMSE criteria. In this experiment, we simulate and report
the results for three versions of the proposed algorithm. In
the first version, we execute only the X-subproblem of the
proposed method, and consider w(0) = Pw≥0(S

†
Y ) and A= 0.

In the second version, we again run the X-subproblem with
the same choice for the Laplacian matrix, except that here

4https://github.com/uia-wisenet/OnlineTopologyId
5https://github.com/ambropo/VAR-Toolbox

Fig. 4. Relative error and F-score curves of state evolution matrix (A)
estimation in the synthetic model, at different εn values for SR = 0.8.

Fig. 5. Relative error and F-score curves of state evolution matrix (A)
estimation in the synthetic model, at different SR values for εn = 0.01.

we assume A= I. In the third version, we run the complete
BSUM method with all the steps according to the proposed
Algorithm 1. We denote the first, the second, and the third
versions by STSRGL X-sub, STSRGL X-sub (A= I), and
STSRGL, respectively. We compare the results of our pro-
posed methods with several benchmark signal recovery (matrix
completion) algorithms. These algorithms include the SOFT-
IMPUTE method6 for matrix completion via nuclear norm reg-
ularization [51], the JISG method, the time-varying graph signal
reconstruction method (TVGS)7 [52], and the method in [53]
named as Graph-Tikhonov, which uses Tikhonov regularization
with the assumption of spatio-temporal smoothness. The latter
two methods require knowledge of the graph Laplacian matrix
to model the signal; hence, we primarily use the CGL algorithm
to learn the Laplacian matrix from incomplete observations
Y, and provide the estimated output as the input Laplacian to
these algorithms.

Fig. 6 shows the data matrix recovery performance of the
aforementioned methods in terms of the SNR and NMSE cri-
teria at various noise levels under SR = 0.8. Fig. 7 also shows
the same results for different values of the sampling rate with
εn = 0.01. As we can see, learning the graph of the proposed
signal model (estimating L and A matrices) and simultane-
ously recovering the signal, improves the performance of the
X-subproblem and increases the reconstruction quality of the
corrupted samples. This improvement is of course more evident
at higher sampling rates and lower noise levels.

4) Additional Tests: Fig. 8, demonstrates the effect of the
number of time snapshots T on the performance of the utilized

6https://CRAN.R-project.org/package=softImpute
7http://gu.ee.tsinghua.edu.cn/codes/Timevarying_GS_Reconstruction.zip
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Fig. 6. SNR and NMSE curves of data matrix (X) reconstruction in the
synthetic model, at different values of εn for SR = 0.8.

Fig. 7. SNR and NMSE curves of data matrix (X) reconstruction in the
synthetic model, at different values of SR for εn = 0.01.

Fig. 8. Performance of the Laplacian (L) estimation algorithms in terms of
the ratio T/N , where noisy and incomplete measurements of synthetic data
are used (SR = 0.8 and εn = 0.01).

algorithms for learning the Laplacian matrix from noisy and
incomplete data, where N = 100 is fixed and T varies be-
tween 0.1N to 100N . The performance is measured in terms of
F-score and relative error. Fig. 9 also depicts the performance
results for inference of the state transition matrix (A). It is
evident that the proposed STSRGL algorithm, has superior
performance (specifically in terms of relative error), in both
undirected and directed graph learning from data with different
number of time snapshots. Moreover, is implied from Fig. 10,
that the complexity of the proposed method in terms of CUP
run-time, is comparable to the benchmark algorithms used in
our simulations. In fact, the proposed STSRGL L-sub and the
STSRGL A-sub methods (which are respectively, implemen-
tations of the subproblems for learning the Laplacian / state
transition matrix) are roughly the least complex methods.

Finally, the quality performance of the proposed STSRGL
algorithm with respect to the hyper-parameters, i.e., the param-
eters α0/T , α1, and τ , are shown in Figs. 11 to 13.

Fig. 9. Performance of the state transition matrix (A) estimation algorithms
in terms of the ratio T/N , where noisy and incomplete measurements of
synthetic data are used (SR = 0.8 and εn = 0.01).

Fig. 10. CPU time (complexity) of the estimations algorithms versus the
ratio T/N , for inference of the Laplacian matrix L (left), and the state
transition matrix (right). Noisy and incomplete measurements of synthetic
data are used (SR = 0.8 and εn = 0.01).

Fig. 11. Performance result of the proposed STSRGL method for Laplacian
(L) estimation in terms of the parameter α0 (the ratio α0/T ).

Fig. 12. Performance result of the proposed STSRGL method for the
estimation of the state transition matrix (A), in terms of the parameter α1.

B. Real Data

In this part, we present the simulation results of the proposed
algorithm on real spatio-temporal data (signals). The spatio-
temporal signals are a class of time-varying graph signals in
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Fig. 13. Performance result of the proposed STSRGL method for Laplacian
estimation (A) in terms of the parameter τ .

Fig. 14. SNR and NMSE performance of the algorithms in reconstructing
the US temperature data matrix (X) at different values of εn for SR = 0.8.

which we have a sequence of measurements over time for each
vertex of the graph (corresponding to a geographical or a spatial
point). We then, normalize the data matrix as described in
the previous section by subtracting the mean value from each
row and normalizing the rows. The observation matrix is then
constructed via Y =M
 (X+N) with M and N generated
randomly. Since the ground-truth value of the Laplacian or the
state transition matrix is unknown in this scenario, we only
provide the results of graph signal recovery methods. We use
the same algorithms applied in Section V.A.3, to compare and
measure the performance of the proposed algorithm, and finally
report the results in terms of SNR and NMSE.

1) US Temperature Data: The US temperature dataset8

includes the average daily measurements of the temperature
recorded from 45 US states over 16 years (from 2000 to 2015).
From this dataset, we choose the first 450 columns which forms
a 45× 450 sub-matrix; we then, normalize the data matrix by
subtracting the mean value from each row and normalizing
the rows. The corrupted measurements are obtained as before.
The NMSE and SNR performance results of signal recovery
from corrupted measurements are shown in Figs. 14 and 15 at
different noise levels and sampling rates, respectively. These
figures demonstrate the efficiency of the proposed algorithm for
spatio-temporal signal recovery compared to several state-of-
the-art methods.

2) PM2.5 Concentration Data: Here, we experiment on the
air pollution index data for PM2.5 concentration in the state of
California9. The air pollution dataset contains measurements by

8http://www.esrl.noaa.gov/psd
9https://www.epa.gov/outdoor-air-quality-data

Fig. 15. SNR and NMSE performance of the algorithms in reconstructing
the US temperature data matrix (X) at different values of SR for εn = 0.01.

Fig. 16. SNR and NMSE performance of the algorithms in reconstructing
the PM2.5 data matrix (X) at different values of εn for SR = 0.8.

Fig. 17. SNR and NMSE performance of the algorithms in reconstructing
the PM2.5 data matrix (X) at different values of SR for εn = 0.01.

93 stations (in California) within 300 days starting from January
1, 2015. Hence, the data matrix is of dimension 93× 300.

As shown in Figs. 16 and 17, the STSRGL algorithm out-
performs the state-of-the-art methods for real spatio-temporal
signal recovery. It has efficient performance in estimating the
state transition matrix that models the dynamic behavior of the
signal, compared to choosing A= 0, or A= I, in STSRGL X-
sub method. Consequently, simultaneous inference of graphs
and signals has improved the reconstruction quality of corrupted
samples of the data matrix.

VI. CONCLUSION

In this paper, we proposed a method to learn a graph-based
model from noisy and incomplete data. We incorporated a
multi-relational graphical model exploiting both directed and
undirected structures. Our model is a spatio-temporal vector
auto-regressive (VAR) model in which the excitation process
is defined over a Gaussian Markov random field (GMRF), and
the state transition matrix is also an arbitrary matrix. We applied
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a maximum-a-posteriori estimation method for joint inference
of the underlying graphical model and the signal. We pro-
posed an algorithm to solve the optimization problem using the
block successive upperbound minimization (BSUM) method.
We provided proof of convergence for the proposed method and
also analyzed the conditions for the uniqueness of the solution.
We finally examined the performance of the proposed method
on synthetic and real data. The simulation results confirm the
effectiveness of the proposed method for joint signal and graph
inference of spatio-temporal or time-varying graph signals.

APPENDIX A
PROOF OF PROPOSITION 1

Proof: Using E=X−AXD, and the properties of the
Kronecker product [54], we have:

Tr
(
L(w)EE�)= vec(E)�(I�T ⊗ L(w))�vec(E). (27)

Moreover, vec(E) can be restated as Hvec(X) where H=
InT −D� ⊗A. Similarly, we may write

‖YM −M
X‖2F = ‖vec(YM )‖22 + ‖vec(M
X)‖22
− 2vec(YM )�vec(M
X). (28)

Finally, using vec(M
X) = Diag(vec(M))vec(X) and
vec(YM )�vec(M
X) = vec(YM )�vec(X), we obtain

fX(X) =
1

σ2
n

vec(X)� (Diag(vec(M))vec(X)− 2vec(YM ))

+ vec(X)�H�(IT ⊗ L(w))Hvec(X) + const

= vec(X)�Gvec(X)− 2b�vec(X) + const, (29)

where G, H and b are given in (15).
Now, since L(w)1/2 exists, for any x ∈ R

nT we have

x�Gx=
1

σ2
n

‖Diag(vec(M))x‖22 +
∥∥∥(I⊗ L(w)1/2)Hx

∥∥∥
2

2
,

which is always non-negative. Thus, G is positive semi-definite
(and symmetric) with all real non-negative eigenvalues. Hence,
the function (13) is always convex with respect to X.

To prove the second statement, let P=H�(IT ⊗ L(w))H.
Then, we have G= 1

σ2
n
Diag(vec(M)) +P, where P is a sym-

metric block-Toeplitz matrix of size nT × nT with L(w) +
A�L(w)A as the main diagonal, −A�L(w) as the upper
diagonal and −L(w)A as the lower diagonal blocks. It is
easy to verify that each row in the sub-matrix Pin:(i+1)n,: is
linearly independent from the rows in all other sub-matrices
Pjn:(j+1)n,: j �= i since they have different supports (the set
of nonzero indices). Now, for G to be of full row rank, it
suffices for each sub-matrix Gin:(i+1)n,: to have full row rank.
Moreover, Gin:(i+1)n,: =Pin:(i+1)n,: +

1
σ2
n
Diag(mi), where

mi = vec(M)in:(i+1)n is the i-th column of M. Hence, a suf-
ficient condition for G to be of full row rank is that each
diagonal block L(w) +A�L(w)A+ 1

σ2
n
Diag(mi) has full

rank, i.e., its minimum eigenvalue is greater than zero. This
happens if mi has at least one non-zero entry (

∑
k Mk,i >

0) and σn <∞ (since ∀v �= 0 ∈Null(L(w)) = {β1, β �= 0},
the term 1/σ2

n v
�Diag(mi)v is strictly positive). Finally, G

will be invertible if it has full (row) rank. In this case, the
function (13) can be uniquely minimized via the following
closed-form solution

X∗ = argmin
vec(X)

vec(X)�Gvec(X)− 2b�vec(X)

= vec−1
(
G−1b

)
. (30)

This concludes the proof.

APPENDIX B
PROOF OF LEMMA 1

Proof: If θ > θmin = λmax(G), then, vec(X−
X0)

�(θI−G)vec(X−X0) is strictly positive for
X �=X0, implying that fS

X(X;X0)≥ fX(X) with
equality achieved only at X=X0. Moreover, we have
DXfX(X0) =DXfS

X(X0;X0). Hence, the function
fS
X(X;X0) given in (16) is a majorization function for fX(X)

which always admits a unique minimizer if θ > λmax(G).
This function can be simplified as follows

fS
X(X;X0) = fX(X) + vec(X−X0)

�(θI−G)vec(X−X0)

= θ
∥∥∥vec(X−X0) +

Gvec(X0)−b
θ

∥∥∥
2

+ const.

Now, it is trivial that the above quadratic function is
strictly convex with a unique minimizer specified by
vec(X0)− 1

θ (Gvec(X0)− b) where Gvec(X0)− b=
vec

(
1
2

∂
∂XfX(X)|X0

)
.

We may also obtain an upper-bound for ‖G‖ as follows

‖G‖= max
‖x‖=1

‖Gx‖

= max
‖x‖=1

∥∥∥ 1
σ2
n
Diag(vec(M))x+H�(I⊗ L(w))Hx

∥∥∥

≤ max
‖x‖=1

1
σ2
n
‖Diag(vec(M))x‖+

∥∥H�(I⊗ L(w))Hx
∥∥

≤ max
‖x‖=1

1
σ2
n
‖x‖+ ‖H‖2 ‖I⊗ L(w)‖ ‖x‖

= 1
σ2
n
+ ‖H‖2 ‖L(w)‖ , (31)

where H= I−D� ⊗A. The second inequality results from
‖M1M2‖ ≤ ‖M1‖ ‖M2‖ and the last equality is also obtained
from ‖M1 ⊗M2‖= ‖M1‖ ‖M2‖. We also have

‖H‖2 = max
‖x‖=1

∥∥x−D� ⊗Ax
∥∥2

≤ max
‖x‖=1

2
(
‖x‖2 +

∥∥D� ⊗Ax
∥∥2

)

= 2
(
1 +

∥∥D� ⊗A
∥∥2

)

= 2
(
1 +

∥∥D�∥∥2 ‖A‖2
)
= 2

(
1 + ‖A‖2

)
, (32)

where the first inequality results from the Cauchy-
Schwarz. Hence, we conclude that ‖G‖2 = λmax(G)≤
1
σ2
n
+ 2 ‖L(w)‖

(
1 + ‖A‖2

)
. Therefore, it only suffices to

choose θ > θ̂min = 1
σ2
n
+ 2 ‖L(w)‖

(
1 + ‖A‖2

)
.

The advantage of using θ̂min instead of λmax(G) as lower
bound for θ, is that we can compute θ̂min with O(n3) opera-
tions which is considerably less complex than that of λmax(G)
(which is O(n3T 3) complex).
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APPENDIX C
PROOF OF PROPOSITION 2

Proof: Using vectorial representation, we have fA(A) =
vec(A)�Fvec(A)−2vec(C)�vec(A)+2α1‖vec(A)‖1, with
F=

(
XD(XD)�

)
⊗ L(w) and C= L(w)X(XD)�. Now,

since, L(w)1/2 � 0 exists, we can rewrite the problem of min-
imizing fA(A) as the following LASSO problem

vec(A∗) = argmin
vec(A)

1
2 ‖Rvec(A)− d‖22 + α1‖vec(A)‖1,

where R= (XD)
� ⊗ L(w)1/2 and d= vec(L(w)1/2X).

Then, if we use Lemma 2 in [55], the proof is complete.

APPENDIX D
PROOF OF LEMMA 2

Proof: Define βmin = inf{β ≥ 0 : β‖V‖2F − Tr (L(w)
VXDD�X�V�)> 0 ∀V �= 0 ∈ R

n×n}. On one hand, we
have

Tr(L(w)VXDD�X�V�)

= vec(V)�
[(
XDD�X�)⊗ L(w)

]
vec(V).

On the other hand, β‖V‖2F = vec(V)�βI vec(V). Thus,
β‖V‖2F − Tr

(
L(w)VXDD�X�V�) is positive for all V �=

0, if and only if the matrix βI−
(
XDD�X�)⊗ L(w)�

is positive definite, or equivalently β > βmin = λmax (F)
where F=

(
XDD�X�)⊗ L(w)�. By setting V =A−

A0, we conclude that fS
A(A;A0)> fA(A) ∀A �=A0, and

fS
A(A0;A0) = fA(A0). Moreover, since the additional term

in fS
A(A;A) is quadratic and smooth, we have DAfA(A0) =

DAfS
A(A0;A0). Consequently, fS

A(A;A0) is a majorization
function [45] for fS

A(A). We may write

fS
A(A,A0) =

1
2 ‖ vec(A)− vec(A0)‖22 + α1

β ‖vecA‖1 ,

which implies that fS
A(A,A0) is strictly convex and ad-

mits a unique minimizer. Now, using the Kronecker prop-
erty, we have λmax (F) =λmax(XDD�X�)λmax(L(w)) =
‖XD‖2 ‖L(w)‖. Hence, we may use ‖XD‖2 ‖L(w)‖ as βmin

which takes O(n3) operations to obtain (much simpler than
O(n3T 3) for λmax (F)).

APPENDIX E
PROOF OF PROPOSITION 3

Proof: The convexity of (22) can be deduced using
the convexity of − log det(Φ), the affinity of Φ= L(w) +
J and the affinity of Tr(L(w)K) = 〈w,L∗(K)〉 with re-
spect to w. Let L= L(w). According to the definition of
the Laplacian operator [21], we have L(w) =EDiag(w)E�

where E= [ξ1, . . . , ξn(n−1)/2] ∈ R
n×n(n−1)/2. The vector ξk

for k = i− j + j−1
2 (2n− j), i > j, has −1 at the i-th po-

sition, +1 at the j-th position, and zeros elsewhere. In this
definition, wk =−Lij . It can be easily verified that L(w) is
symmetric. Moreover, since ξ�i 1= 0, ∀i, we have L(w)1=
0, Furthermore, the constraints Li,i ≥ 0 and Li,j ≤ 0, i �= j
are satisfied iff wi ≥ 0. Besides, for any x ∈ R

n we may

write x�L(w)x= x�(
∑

i wiξiξ
�
i )x=

∑
i wi(ξ

�
i x)

2. Conse-
quently, the constraint L(w)� 0 holds iff wi ≥ 0. Therefore,
L(w) + J is (symmetric) positive semi-definite if w ≥ 0. Fur-
thermore, dom(fw) = {w| rank(L(w) + J) = n} due to the
term − log det(L(w) + J). Since rank(J) = 1, w ∈ dom(fw)
iff rank(L(w)) = n− 1. Therefore, it only suffices to define
the feasible set as Ωw = {w|w ≥ 0} to satisfy the Lapla-
cian constraints specified by ΩL. Moreover, fw(w) is lower
bounded by

fw(w) =− log

(
n∏

i=2

λi(L(w))

)
+ 〈w,L∗(K)〉

≥ −(n− 1) log

(
1

n−1

n∑

i=2

λi(L(w))

)
+ 〈w,L∗(K)〉

= (n− 1)
(
log(n− 1)−log Tr(L(w))

)
+〈w,L∗(K)〉

≥ −(n− 1) log

⎛

⎝
n(n−1)/2∑

i=1

wi

⎞

⎠+ rmin

⎛

⎝
n(n−1)/2∑

i=1

wi

⎞

⎠

+ (n− 1) log n−1
2 ,

where the first inequality is due to the Jensen’s inequal-
ity and the last inequality is obtained from ri = [L∗(K)]i ≥
rmin, where rmin =mini ri. If K� 0 or α0 > 0, then ri =
[L∗(K)]i = ξ�i Kξi > 0, and hence, rmin would be positive.
Now, define

h(z) =−(n− 1) log z + rminz + (n− 1) log n−1
2 (33)

for z =
∑

i wi > 0. It can be easily verified that h(z) is
strictly convex with a unique minimizer specified by z∗ = (n−
1)/rmin. Thus, we conclude that fw(w)≥ h(z)≥ h(z∗) and
limz→+∞ h(z) = +∞. Hence, similar to [43], it can be shown
that fw(w) has a unique minimizer for w ≥ 0.

APPENDIX F
PROOF OF LEMMA 3

Proof: Using the definition of the Laplacian operator [21],
we may write

L(w) + J=EDiag(w)E� + J=CDiag(w̃)C�, (34)

where C= [E,1] and w̃ = [w�, 1/n]�. Now, using the
concavity of the log function, a majorization function for
− log det(L(w) + J) can be achieved as:

− log det(L(w) + J)≤ Tr
(
Q0(CDiag(w̃)C�)−1

)

− log det(L(w0) + J)− n, (35)

where Q0 = L(w0) + J, and the equality happens only at w =
w0. Another majorizer for the first term in the right-hand side
of (35) can be obtained using Lemma 4 in [21]:

Tr
(
Q0(CDiag(w̃)C�)−1

)

≤ Tr
(
Q

1/2
0 Q−1

0 CDiag(w̃0)
2Diag(w̃)−1C�Q−1

0 Q
1/2
0

)

= 〈w◦2
0 �w,L∗(Q−1

0 )〉+Tr
(
Q−1

0 J
)
, (36)
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where in the last equation, we used the property Tr(L(w),H)
= 〈w,L∗(H)〉. Define gw(w;w0) = Tr(L(w)K) + 〈w◦2

0 �
w,L∗(Q−1

0 )〉 and

r= L∗(K), q= L∗(Q−1
0 ) = L∗((L(w0) + J)−1).

We can now decompose gw(w;w0) into separable functions of
wi as follows

gw(w;w0) =

n(n−1)/2∑

i=1

gwi
(wi;w0i) = riwi + qi

w0
2
i

wi
, (37)

where ri = [r]i, and qi = [q]i. Consider the function h(x) =
x+ 1

x − 2. It can be easily verified that h(x)≥ 0 for x > 0,
with equality achieved only at x= 1. Moreover, from L(w(j) +
J)� 0 and K� 0, it is implied that qi > 0 and ri ≥ 0 (using
the definition of the L∗ operator [19]). Hence, we may propose
the following majorization function for gwi

(wi;w0i)

gSwi
(wi;w0i) = gwi

(wi;w0i) + τqiw0
2
i h(wi/w0i)

= riwi + τqiw0
2
i

(
wi

w0i

+
w0i + 1/τ

wi
− 2

)
,

where τ > 0 is constant. Together with (35) and (36), we finally
obtain the following majorization function for fw(w)

fS
w(w;w0) =

∑

i

gSwi
(wi;w0i) + Tr(Q−1

0 J)

− log det(L(w0) + J)− n,

which is simplified to (25). One can easily verify that
fS
w(w;w0) satisfies the properties of the majorization function

(see [45]). It is also straightforward to show that the second
partial derivatives of fS

w(w;w0) are all positive, hence, the
function is strictly convex.
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