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Sparsity and Infinite Divisibility
Arash Amini and Michael Unser, Fellow, IEEE.

Abstract—We adopt an innovation-driven framework and
investigate the sparse/compressible distributions obtained by
linearly measuring or expanding continuous-domain stochastic
models. Starting from first principles, we show that all such
distributions are necessarily infinitely divisible. This property
is satisfied by many distributions used in statistical learning
such as Gaussian, Laplace, and a wide range of fat-tailed
distributions such as Student’s-t and α-stable laws. However, it
excludes some popular distributions used in compressed sensing
such as the Bernoulli-Gaussian distribution and distributions
that decay like exp

(
− O(|x|p)

)
for 1 < p < 2. We further

explore the implications of infinite divisibility on distributions
and conclude that tail decay and unimodality are preserved by
all linear functionals of the same continuous-domain process.
We explain how these results help in distinguishing suitable
variational techniques for statistically solving inverse problems
such as denoising.

Index Terms—Decay gap, infinite-divisibility, Lévy-Khinchine
representation, Lévy process, sparse stochastic process.

I. INTRODUCTION

GAUSSIAN processes are by far the most studied stochas-
tic models. There are many advantages in favor of

Gaussian models, such as simplicity of statistical analysis
(e.g., in inference problems), stability of the Gaussian distri-
bution (i.e., closedness under linear combinations), and unified
parameterization of all marginal distributions. Yet, one of
the downsides of Gaussian distributions is that they fail to
properly represent sparse or compressible data, which is a
good incentive for the study of alternative models.

The identification of compressible distributions (whose
high-dimensional i.i.d. realizations likely consist of a small
number of large elements that capture most of the energy of
the sequence) is an active field of research where established
findings indicate that rapidly decaying distributions such as
Gaussian and Laplace are not compressible. Meanwhile, fat-
tailed distributions are potential candidates for distributions
with compressibility [1], [2]. For instance, mixture models are
common representatives of the compressible distributions in
the literature: one might think of a mixture of two zero-mean
Gaussian laws with considerably different variances, where
the outcome of the one with the smaller variance forms the
insignificant or compressible part. The so-called Bernoulli-
Gaussian distribution is an extreme case where one of the
variances is zero.
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To understand physical phenomena, we need to establish
mathematical models that are calibrated with a finite number
of measurements. These measurements are usually described
by discrete stochastic models. Nevertheless, there are two
fundamentally different modeling approaches.

1) Assume a discrete-domain model right from the start.
2) Initially adopt a continuous-domain model and discretize

it later to describe the measurements.

We refer to the two as the discrete and the discretized models,
respectively. One way to formalize stochastic processes is
through an innovation model. In words, we assume that the
stochastic objects are linked to discrete/continuous-domain
innovation processes by means of linear operators. In this
paper, we study innovation-driven discretized models. The
framework was recently introduced in [3], [4] under the name
“Sparse Stochastic Processes”.

A. Motivation

In many applications, the signals of interest possess
sparse/compressible representations in some transform do-
mains, although the observations are rarely sparse them-
selves. For analyzing such signals, it is befitting to establish
sparse/compressible signal models. One way to incorporate
sparsity into the model is to assume a sparsity-inducing prob-
ability distribution for the signal. Although the statistics of the
signal are often known in the observation domain, the common
trend is to assume a sparse/compressible distribution on the
coefficients of a sparse representation. The typical example
is to assume independent and identically distributed (i.i.d.)
coefficients in a transform domain with Bernoulli-Gaussian
law [5].

Our approach in this paper is to assume a continuous-
domain innovation-driven model for the signal, where the
statistics are imposed on the innovation process. The
continuous-domain models are known to explain physical
phenomena more accurately. In addition, as we will show in
this paper, the innovation-driven models allow for specifying
the statistics in any transform domain. This advantage is better
understood when compared to the conventional Bernoulli-
Gaussian discrete model. In the latter case, any transforma-
tion of the signal involves linear combinations of Bernoulli-
Gaussian random variables. In general, such distributions
are found by n-fold convolution of the constituent density
functions. However, in the case of innovation-driven models
there is a direct way of expressing all such statistics based
on the distribution of the innovation process. Particularly, it
turns out that the statistics of the innovation process determine
whether the process of interest has a sparse/compressible
representation.
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Let us assume that the structure of the process is such that
it has a sparse/compressible representation in a given domain
(e.g., a continuous-domain wavelet transform). In order to
represent a realization of the process based on a finite number
of measurements, it is favorable to estimate the sparse wavelet
coefficients. However, we need the probability laws of the
coefficients in order to estimate them. In other words, unlike
the previous scenario in which we assume the statistics of the
sparse representation, we need now to derive them.

The knowledge about the distribution of the coefficients
in the sparse representation can also be exploited in signal-
recovery problems (e.g., inverse problems) by devising sta-
tistical techniques such as maximum a posteriori (MAP) and
minimum mean-square error (MMSE) methods. The common
implementation of such statistical techniques is to reformulate
them as variational problems in which we minimize a cost that
involves the prior or posterior probability density functions
(pdf). Thus, the shape of the pdf plays a significant role in the
minimization procedure and, therefore, the recovery method.

In this paper, we maintain awareness of the analog perspec-
tive of the model while studying the sparse/compressible distri-
butions that arise from innovation-driven models. Such models
serve as common ground for the conventional continuous-
domain and the modern sparsity-based models. In particular,
we investigate the implications of these models in minimiza-
tion problems linked with statistical recovery methods.

B. Contribution

To study innovation-driven processes, we introduce innova-
tion processes formally. The approach towards these processes
is based on observations through analysis functions rather than
through conventional pointwise samples. It allows us to deduce
the statistics of any linear functional of the innovation process
(or observations through some arbitrary test functions). As
starting point, we show in Proposition 1 that the observa-
tion of an innovation process through a rectangular window
characterizes the whole process. The result can also be used
to characterize innovation-driven processes, by mapping the
observations onto the innovation process itself. The practical
advantage is that this formulation lends itself to the derivation
of statistics in any linear transform domain.

At first glance, it would seem that there is no obvious
distinction between the discrete and discretized versions of
innovation models. Nevertheless, we shall show in Theorems
2 and 3 that the discretized models are strictly embedded
in the discrete family. The reason for this is that every
probability distribution associated with linear measurements of
a continuous-domain innovation model is necessarily infinitely
divisible (id), while there is no such restriction on discrete-
domain models. The key property is that infinite divisibility,
which is classically associated with Lévy processes [6], is
preserved by linear transformations.

To highlight the implications of the discretized model, we
focus on the tail behavior of probability density functions in
Theorem 5. It is well-known that, among the family of id
laws, Gaussian distributions have the fastest decay. Since the
degree of sparsity/compressibility of a distribution is in inverse
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Fig. 1. Schematic of the stochastic framework.

relation with its decay rate [1], all non-Gaussian members
of the id family are sparser than the Gaussians. Therefore,
distributions with super-Gaussian decay (e.g., distributions
with finite support such as the uniform distribution) cannot be
id. As we shall show in Theorem 7, there is even a gap between
the Gaussian rate of decay and the rest of the id family, in the
sense that the non-Gaussian id pdfs cannot decay faster than
e−O(|x| log |x|).

Besides the tail behavior, we study the unimodality and
moment indeterminacy of id laws in Theorems 9 and 11. We
shall show that linear transformations preserve these properties
along with infinite divisibility.

C. Outline

We address continuous-domain models in Section II. This
includes the definition and characterization of innovation
processes. In Section III, we deduce the infinite-divisibility
property as a major consequence of adopting an innovation-
based model. This property helps us characterize the set of
admissible probability distributions. In Section IV, we cover
some key properties that are shared among infinitely divisible
distributions obtained from the model, such as unimodality
and the state of decay of the tail.

II. STOCHASTIC FRAMEWORK

The notations in this paper are consistent with the previous
works [3], [4]. We denote the continuous-domain stochastic
process which models a real/complex-valued physical phe-
nomenon by s(x) for x ∈ Rd. We assume that the process is
the result of applying a linear operator on a continuous-domain
innovation process. The innovation process is represented by
w. The model presupposes the existence of a pair of operators
L−1 and L with LL−1 = I (identity operator) that transform w
to s and vice versa, respectively. The former is known as the
shaping operator L−1 and the latter as the whitening operator
L.

To discretize the continuous-domain process or to project
it onto a Riesz basis (transform domain), we consider gen-
eralized sampling through sampling kernels (or dual frame)
ψ1, . . . , ψK . The constraint on the kernels is that φi = L−1∗ψi
should have a finite Lp norm for certain values of p, where
L−1∗ refers to the adjoint of L−1. We show in Figure 1 the
schematic of our stochastic model.
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A. Characteristic Functionals

Since the considered processes are not necessarily Gaus-
sian, the first and second-order statistics (such as mean and
covariance) are not sufficient to fully characterize them. The
alternative used here is the so-called characteristic functional.
It is conceptually the same as the characteristic function but it
is associated with random processes rather than random vari-
ables [7]. For an arbitrary random process z, the characteristic
functional P̂z is defined as

P̂z(ψ) = E
{

e j〈z,ψ〉}, (1)

where ψ is a suitable test function and

Zψ = 〈z, ψ〉 =

∫
Rd
z(x)ψ(x)dx (2)

is a real/complex-valued random variable which is a linear
functional of z. Note that the characteristic functional is
indexed by test functions rather than scalars.

The specification of the input domain of a characteristic
functional is part of its definition. For a process z, we denote
the set of all valid test functions by Ξz . It is required that this
set is a function space. This implies that linear combinations of
elements in Ξz belong to Ξz . Hence, if ψ1, . . . , ψK ∈ Ξz and
ω1, . . . , ωK is a set of real variables, then

∑K
k=1 ωkψk ∈ Ξz

and

P̂z

( K∑
k=1

ωkψk
)

= E
{

e j
∑K
k=1 ωkZψk

}
=

∫
RK

p
Zψ1

:ZψK
(x1, . . . , xK)e j

∑K
k=1

ωkxk

K∏
k=1

dxk

= F
{
p
Zψ1

:ZψK

}
(ω1, . . . , ωK), (3)

where F{·} represents the Fourier transform operator and
p
Zψ1

:ZψK
is the joint pdf of the linear observations of the

process z: Zψ1 , . . . , ZψK . Therefore, all finite-dimensional
pdfs can be derived from the characteristic functional. The
function spaces Ξ used in this paper are the intersection of
two Lp spaces (functions with finite p-norm).

The main interest of characteristic functionals is that they
provide a concise and rigorous way of defining stochastic
processes. In brief, a functional P̂z for which P̂z(0) = 1

and P̂z

(∑K
k=1 ωkψk

)
is a valid characteristic function for

all ψk ∈ Ξz corresponds to a unique random process z. More
details about this fact are provided in Appendix A.

B. Innovation Process

The innovation process (a.k.a. white noise) is a random
object composed of i.i.d. constituents. A discrete-domain inno-
vation process is simply a sequence of i.i.d. random variables
that is completely characterized by its pdf, which can be
arbitrary. By contrast, a continuous-domain innovation process
is defined by its observations through test functions.

Definition 1. The process w is a continuous-domain innova-
tion process if

1) (Stationarity) for any test function ϕ ∈ Ξw and arbitrary
τ 1, τ 2 ∈ Rd, the two random variables 〈w,ϕ(· − τ 1)〉
and 〈w,ϕ(· − τ 2)〉 have identical distributions.

2) (Independent atoms) for test functions ϕ1, ϕ2 ∈ Ξw with
disjoint supports such that ϕ1(x)ϕ2(x) ≡ 0, the random
variables 〈w,ϕ1〉 and 〈w,ϕ1〉 are independent.

The independent-atom property implies that, for ϕ1, ϕ2 ∈
Ξw with disjoint supports, we should have that

P̂w(ϕ1 + ϕ2) = P̂w(ϕ1)P̂w(ϕ2). (4)

In Section III, we give a full characterization of continuous-
domain innovation processes using the Gelfand-Vilenkin ap-
proach.

It is known that two Gaussian random variables are in-
dependent if and only if they are uncorrelated. Thus, for
Gaussian innovation processes, it is common to express the
independent-atom property based on two orthogonal test func-
tions (

∫
ϕ1(x)ϕ2(x)dx = 0) without considering their sup-

ports. The characteristic functional of a Gaussian innovation
process with symmetric distribution is given by [8]

P̂wg (ϕ) = e−
1
2σ

2
g‖ϕ‖22 . (5)

This functional is well-defined for ϕ ∈ L2. It satisfies the
requirements of Definition 1 owing to the fact that ‖ϕ(· −
τ )‖2 = ‖ϕ‖2 and ‖ϕ1 +ϕ2‖22 = ‖ϕ1‖22 + ‖ϕ2‖22 + 2〈ϕ1, ϕ2〉.

C. Linear Operators

The linear operator L in Figure 1 is the continuous-domain
analog of the sparsifying matrix used in compressed sensing.
Conversely, the inverse operator L−1 mixes the independent
components of the innovation process to form specific correla-
tion patterns. In order to formally define the application of L−1

on w, one might think of studying the effect of the operator
on the realizations. Here, we concentrate on the characteristic
functionals. The key to our study is the concept of adjoint
operator which enables us to write

Sψ = 〈s, ψ〉 = 〈L−1w,ψ〉 = 〈w,L−1∗ψ〉 = Wφ, (6)

where L−1∗ is the adjoint operator of L−1 and φ = L−1∗ψ.
Hence, the characteristic functional of the process s can be
expressed as

P̂s(ψ) = P̂w(L−1∗ψ) = P̂w(φ). (7)

This definition implies that the domain of P̂s is made up
of those test functions ψ for which φ = L−1∗ψ ∈ Ξw. For
existence considerations and the proper interpretation of s as
a generalized process over tempered distributions (S ′

), it is
important that the domains of both P̂w and P̂s include the
Schwartz function space S (see Appendix A). This constrains
L−1∗ to form a mapping from the Schwartz space to a subset
of Ξw. In this paper we assume that the operator L−1 satisfies
the required admissibility properties. More details regarding
the specification of suitable inverse operators can be found in
[3], [9].

It is worth mentioning that L needs not be uniquely in-
vertible to have an acceptable shaping operator L−1. The
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real requirement is that L has a finite-dimensional null space
and L−1 is a right inverse of L that continuously maps S
into Ξw [9]. Ordinary differential operators with constant
coefficients are among examples of L that admit suitable right-
inverses [10], [11]. For such operators, L−1 is an integral
operator. The formalism also extends to the cases where the
underlying system is unstable, which requires the imposition of
suitable linear boundary conditions in order to enforce unicity.
Linearity is of fundamental importance to the formulation and
is embedded in the definition of s via the use of the adjoint
operator L−1∗.

D. Discretization

We use the term discretization for observations of the
continuous-time process s through test functions (sampling
kernels). We now explain two objectives of discretization.

1) Let us consider the expansion of the realizations of s
in a Riesz basis, namely, {ψ̃i}. The coefficients in the
expansion are found as the inner products of s with the
dual basis {ψi} as in

sψ̃ =
∑
i

〈s, ψi〉ψ̃i. (8)

This suggests that the statistics of s would be encap-
sulated in the coefficients 〈s, ψi〉. In this scenario, the
task of finding the coefficients and their statistics in a
transform domain is referred to as discretization.

2) We are practically limited to sense physical phenomena
through a finite number of measurements. The stochastic
models that describe such phenomena are usually char-
acterized by a set of parameters, and the measurements
can be used to estimate these parameters. For instance,
one might think of the optimal set of parameters as the
one that best explains the statistics of the measurements.
In many applications, the measurements are point sam-
ples or, more generally, linear samples of the physical
phenomena by means of sampling kernels ψ1, . . . , ψK .
In this context, the discretization procedure translates
into linearly measuring the process. It might also involve
an additive noise term.

In spite of different objectives, all discretizations are cen-
tered on the random variables sψi = 〈s, ψi〉. The definition
of s restricts the kernels ψi to satisfy φi = L−1∗ψi ∈ Ξw.
This guarantees the inclusion of the random variables sψi in
the established framework by the way of the characteristic
functional.

Our results in this paper do not depend on the choice of
sampling kernels used in discretization, as long as they are
admissible. However, certain kernels are preferable for the
purpose of sparse representation. For the sake of simplicity,
let us consider a hypothetical setting in which the sψi are
i.i.d. If the distribution is also compressible, then we are
dealing with a linear transform domain with compressible i.i.d.
coefficients, which is an ideal scenario for compressed sensing.
In most cases, however, such a linear transformation does not
exist. Instead, one may think of a linear transformation which
best uncouples the coefficients. For instance, it is shown in

[10] that, if L is a differential operator, then the generalized
differences of uniform point samples of s have finite-length
dependencies. Note that the generalized differences are linear
functionals of the process and can be written in the form
〈s, ψi〉. In turn, the functions φi = L−1∗ψi are exponential
splines associated with the differential operator L and are of
finite support [12]. The relaxation of the i.i.d. property to
finite-length dependencies is still useful because the sequence
can be written as the union of a finite (but more than one)
number of i.i.d. subsequences.

III. INFINITE DIVISIBILITY

The main property of the measurements that we are going
to explore is the infinite divisibility stated in Definition 2.

Definition 2. A random variable X (or its distribution) is
said to be infinitely divisible if, for all positive integers n,
we can write X as the sum of n independent and identically
distributed (i.i.d.) random variables.

It is easy to check that the sum of n independent Gaussian
random variables with mean µ

n and variance σ2

n is a Gaus-
sian random variable with mean µ and variance σ2. Thus,
all Gaussian random variables are infinitely divisible. The
same argument can be extended to other stable distributions.
Nevertheless, the stable distributions are only a small part of
the id family. The complete family is characterized by the
celebrated Lévy-Khinchine representation theorem in Section
III-B.

In the following, we first show that the discretizations of
an innovation process through rectangular test functions are
infinitely divisible. Then, we characterize all id laws. This in
turn characterizes the innovation processes. The final result of
this section is that infinite divisibility is a general property that
is shared by all linear measurements and is not restricted to
rectangular test functions.

A. Observations with Rectangular Windows
To measure a process through a given test function, we

should first make sure that the test function belongs to the
associated function space. For the innovation process w,
this requires the knowledge of the space Ξw. Although we
postpone the exact identification of Ξw to Section III-D, we
can already use the result that Ξw is the intersection of some
Lp spaces, which certainly contains the intersection of all Lp
spaces.

We first examine the unit rectangular test function rect(x)
that takes the value 1 for x ∈ [0, 1[d and 0 otherwise. Since
this function is bounded and has finite support, it belongs to⋂
p≥0 Lp(Rd).

Lemma 1. The random variable 〈w, rect〉, where w is an
innovation process as specified in Definition 1, is infinitely
divisible.

Proof. A distinguishing property of the rectangular function
is its refinablity given by

rect(x) =

n−1∑
i=0

rect(nx1 − i, x2, · · · , xd), (9)
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where x = (x1, . . . , xd) and n is any positive integer. This
implies that

X = 〈w, rect〉

=

n−1∑
i=0

〈w(x) , rect(nx1 − i, x2, · · · , xd)〉︸ ︷︷ ︸
Xi

. (10)

Note that the test functions rect(nx1− i, x2, . . . , xd) for i =
0, . . . , (n− 1) differ only by the shift parameter i. Moreover,
they have disjoint supports. Hence, due to the stationarity and
independent-atom property of the innovation process w, the
random variables Xi are i.i.d. Consequently, for arbitrary n,
we have a representation of X as the sum of n i.i.d. random
variables, thus X is infinitely divisible.

B. Characterization of id Distributions

The concept of infinite divisibility was introduced and stud-
ied in the late 1920’s and early 1930’s by Finetti, Kolmogorov,
and Lévy. The complete characterization of id distributions is
given by the Lévy-Khinchine representation theorem.

Theorem 1 (Lévy-Khinchine [6]). The random variable X
is infinitely divisible if and only if its characteristic function
has the form p̂X(ω) = exp

(
f(ω)

)
with

f(ω) = jθω − σ2

2
ω2

+

∫
R\{0}

(
ejaω − 1− jaω1|a|<1(a)

)
dV (a), (11)

where 1h(a)<1(a) = 1 for {a |h(a) < 1} and 0 otherwise,
θ, σ are constants, and V (the Lévy measure) is a positive
measure that satisfies∫

R\{0}
min(1, a2)dV (a) <∞. (12)

The function f in (11) is usually referred to as the Lévy
exponent. Its finiteness implies that the characteristic function
of an id random variable does not vanish. It is interesting
to point out how three important properties of characteristic
functions impact the Lévy exponent.

1) Normalization: p̂X(0) =
∫
R pX(x)dx = 1. This implies

that f(0) = 0, which is consistent with (11).
2) Since the characteristic function is the Fourier transform

of a nonnegative distribution, we have that |p̂X(ω)| ≤
p̂X(0). This is equivalent to <{f(ω)} ≤ 0, with equality
at ω = 0.

3) Continuity: p̂ is the Fourier transform of a non-negative
integrable distribution. Thus, it is continuous. This trans-
lates into f = log p̂ being continuous as well.

Theorem 1 indicates that id distributions are uniquely char-
acterized by the triplet (θ, σ, V ). For instance, a Gaussian
distribution with mean µg and variance σ2

g corresponds to
the triplet (µg, σg, V ≡ 0). In fact, the term associated with
the constant σ is usually regarded as the Gaussian term; this
becomes even more evident in the Lévy-Itō decomposition of
Lévy processes.

When the Lévy measure is symmetric, with V (I) = V (−I)
for all measurable sets I , then the Lévy exponent admits the
simplified form

f(ω) = jθω − σ2

2
ω2 −

∫
R\{0}

(
1− cos(aω)

)
dV (a). (13)

By Theorem 1 and Lemma 1, it follows that the character-
istic function of 〈w, rect〉 takes the generic form

p̂〈w,rect〉(ω) = P̂w(ω rect) = ef(ω), (14)

where f is a valid Lévy exponent.

C. Discretizations with general Windows

So far, we have considered rectangular windows. Next, we
study the implications of rectangular windows on more general
test functions.

By employing the independent-atom and stationarity prop-
erties of the innovation process and the refinement formula

rect(x) =
∑

k∈{0,...,n−1}d
rect(nx− k), (15)

we conclude that

P̂w

(
ω rect(nx− k)

)
=
(
P̂w(ω rect)

) 1

nd = e
f(ω)

nd . (16)

This allows us to further identify the value of P̂w for the
general class of piecewise-constant functions of the form ϕ =∑
akrect(nx− k) such as

P̂w

(
ω
∑
k∈AK

ak rect(nx− k)
)

=
∏
k∈AK

P̂w

(
ωak rect(nx− k)

)
= e

1

nd

∑
k∈AK

f(ωak)
, (17)

where AK = {−K, . . . ,K}d and ak ∈ R are arbitrary coeffi-
cients. In other words, the characterization of 〈w, rect〉 results
in the identification of P̂w over the set of d-dimensional
piecewise-constant signals of finite support with corners at
rational grid points.

These step functions can also be used to approximate other
test functions; by increasing n and K, we make the step
functions finer and wider in support, respectively.

Proposition 1. For a given test function ϕ ∈ Ξw, where Ξw =
Lp1 ∩ Lp2 and |ϕ|pi is Riemann-integrable, we have that

∀ ω : P̂w(ωϕ) = exp
(∫

Rd
f
(
ωϕ(τ )

)
dτ
)
. (18)

Proof. The key idea is that, due to Riemann integrability
of |ϕ|pi , it is possible to find a sequence of step functions
{ϕn}n∈N such that |ϕn| ≤ |ϕ| and limn→∞ ϕn = ϕ. For
each realization of w like wr we have that

〈wr, ϕ〉 = lim
n→∞

〈wr, ϕn〉. (19)

Therefore, the random variables Wϕn = 〈w,ϕn〉 converge to
the random variable Wϕ = 〈w,ϕ〉, almost surely. According to
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Lévy’s continuity theorem, a similar convergence result holds
for the characteristic functions

p̂Wϕ
(ω) = E

{
ejωWϕ

}
= lim
n→∞

E
{

ejωWϕn
}

= lim
n→∞

p̂Wϕn
(ω). (20)

Note that p̂Wφ
(ω) = P̂w(ωφ) and, for step functions ϕn, we

already know the validity of (18) from (17), so that

P̂w(ωϕn) = exp
(∫

Rd
f
(
ωϕn(τ )

)
dτ
)
. (21)

Hence,

P̂w(ωϕ) = lim
n→∞

exp
(∫

Rd
f
(
ωϕn(τ )

)
dτ
)

= exp
(

lim
n→∞

∫
Rd
f
(
ωϕn(τ )

)
dτ
)
. (22)

The proof is completed by

lim
n→∞

∫
Rd
f
(
ωϕn(τ )

)
dτ =

∫
Rd
f
(
ω lim
n→∞

ϕn(τ )︸ ︷︷ ︸
ϕ(τ )

)
dτ , (23)

where we invoke the continuity of f and Lebesgue’s domi-
nated convergence theorem to justify the interchange of limits.
This requires the upperbound of Lemma 3 (Section III-D) on
|f(ω)| which implies an upperbound on

∫
Rd f

(
ωϕn(τ )

)
dτ in

terms of some Lp norms of ϕn, and consequently, of ϕ.

One can check that (18) is consistent with previous as-
sumptions regarding the rectangular window. In particular, the
characteristic function of X = 〈w, rect〉 predicted by (18)
matches p̂X(ω) = exp

(
f(ω)

)
. Moreover, by setting ω = 1 in

(18), we can interpret the result of Proposition 1 in terms of
the characteristic functional by

P̂w(ϕ) = exp
(∫

Rd
f
(
ϕ(τ )

)
dτ
)
. (24)

This form is multiplicative for disjointly supported test func-
tions ϕ1, ϕ2, which guarantees the independent-atom property
of the process. Conversely, Gelfand and Vilenkin proved in [8]
that (24) is a valid characteristic functional over the space of
smooth and compactly supported functions if and only if f is
a valid Lévy exponent. In this work, we shall investigate the
extent to which we can expand the class of test functions.

D. Characteristic Functional over Ξw

Bydefining a characteristic functional over some function
space Ξ, we imply that the probability measure of the process
is supported on the dual of Ξ (Appendix A). To highlight this
point, let Ξ̂ be a strict subspace of Ξ. The definition of the
characteristic functional over Ξ induces a definition over Ξ̂.
The latter definition results in an extension of the probability
space to the algebraic dual of Ξ̂, typically via the inclusion
of new sets with probability measure zero. Therefore, it is
desirable to base the definition of the characteristic functional
on the largest-possible space, so as to maximally constrain the
support of the probability measure.

Definition 3. The Lévy measure V is said to be (p1, p2)-
bounded for 0 ≤ p1 ≤ p2 ≤ 2 if∫

R\{0}
min(|a|p1 , |a|p2)dV (a) <∞. (25)

The concept of (p1, p2)-boundedness is to refine the (0, 2)-
boundedness imposed by (12) in order to better represent the
properties of a given Lévy measure. As Lemma 2 indicates, a
(p1, p2)-bounded measure is automatically (0, 2)-bounded.

Lemma 2. If 0 ≤ q1 ≤ p1 ≤ p2 ≤ q2 ≤ 2, then, (p1, p2)-
boundedness of a measure V implies its (q1, q2)-boundedness.

Proof. By separately studying the cases of |a| ≤ 1 and |a| > 1,
we can check that

min(|a|q1 , |a|q2) ≤ min(|a|p1 , |a|p2). (26)

This yields ∫
R\{0}

min(|a|p1 , |a|p2)dV (a)

≤
∫
R\{0}

min(|a|q1 , |a|q2)dV (a) <∞. (27)

The particular instance of Lemma 2 for q1 = 0 and
q2 = 2 suggests that (p1, p2)-boundedness is a more restrictive
property than the classical constraint (12).

In order to specify Ξw, we need to take into account
the properties of the Lévy triplet (θ, σ, V ). The concept of
(p1, p2)-boundedness describes some properties of the Lévy
measure V , such as the decay of its tail. We further refine this
concept in Definition 4 by including the two other elements
of the triplet.

Definition 4. We say that the pair (pmin, pmax), where 0 ≤
pmin ≤ pmax ≤ 2, bounds the Lévy triplet (θ, σ, V ) if

1) V is (pmin, pmax)-bounded (see Definition 3),
2) 1 ∈ [pmin, pmax] in case θ 6= 0 or V is asymmetric (no

constraint when θ = 0 and V is symmetric), and
3) pmax = 2 for σ 6= 0 (no constraint for σ = 0).

Similar to (p1, p2)-boundedness, it is easy to check that
(0, 2) bounds all Lévy triplets. Furthermore, if (pmin, pmax)
bounds a given triplet, then all pairs of (qmin, qmax) such that
0 ≤ qmin ≤ pmin ≤ pmax ≤ qmax ≤ 2 bound the triplet as
well.

The significance of Definition 4 is in identifying the Lp
spaces whose intersection results in a valid function space Ξw
for the domain of the characteristic functional. We show in
Theorem 2 that, if (pmin, pmax) bounds the Lévy triplet, then

Ξw = Lpmin
(Rd) ∩ Lpmax

(Rd) (28)

is a suitable function space as the input domain of the char-
acteristic functional of the innovation process. By convention,
the limit case L0 denotes the space of bounded and compactly
supported functions.

For 0 ≤ qmin ≤ pmin ≤ pmax ≤ qmax ≤ 2, we have that
Lqmin

∩ Lqmax
⊆ Lpmin

∩ Lpmax
. Thus, the tighter bounding

pair (pmin, pmax) on the Lévy triplet allows for a larger
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function space Ξw. Concretely, this means that by finding tight
bounding pairs for the Lévy triplet we get a better description
of the properties of the innovation process.

In Theorem 2, we prove that the function space Ξw defined
in (28) is a suitable domain for the characteristic functional of
(24). Lemma 3, whose proof is given in Appendix B, is our
main tool for establishing this fact.

Lemma 3. Let V be a (p1, p2)-bounded Lévy measure and
define

g(ω) =

∫
R\{0}

(
ejaω − 1− jaω1|a|<1(a)

)
dV (a). (29)

We have that ∣∣g(ω)
∣∣ ≤ κ1|ω|m + κ2|ω|M , (30)

where κ1 and κ2 are nonnegative constants. Here, (m,M) =
(p1, p2) if V is symmetric, and m = min(1, p1) and M =
max(1, p2) otherwise.

Theorem 2. Let f be a Lévy exponent characterized by the
triplet (b, σ, V ) and let (pmin, pmax) be a pair that bounds the
triplet. Then, the characteristic functional

P̂w(ϕ) = exp
(∫

Rd
f
(
ϕ(τ )

)
dτ
)

is finite (well-defined) over Ξw = Lpmin(Rd) ∩ Lpmax(Rd).

Proof. Using the Lévy-Khintchine representation (11), we
rewrite the exponent of the characteristic functional as∫

Rd
f
(
ϕ(τ )

)
dτ = j θ

∫
Rd
ϕ(τ )dτ︸ ︷︷ ︸
T1

− σ2

2

∫
Rd
ϕ2(τ )dτ︸ ︷︷ ︸
T2

+

∫
Rd
g
(
ϕ(τ )

)
dτ︸ ︷︷ ︸

T3

. (31)

We establish finiteness for each of the terms contributing in
(31).
• If θ = 0, then T1 = 0. For θ 6= 0, Definition 4 implies

that 1 ∈ [pmin, pmax] or ϕ ∈ L1(Rd). The inequality
|T1| ≤ |θ| · ‖ϕ‖1 confirms that T1 is finite.

• Similarly, σ = 0 yields T2 = 0; thus, we assume σ 6=
0. Under this assumption, Definition 4 necessitates that
pmax = 2 or ϕ ∈ L2(Rd). The finiteness of T2 is obtained
by the inequality |T2| ≤ σ2

2 ‖ϕ‖22.
• We prove the finiteness of T3 by applying Lemma 3. Note

that the pair (pmin, pmax) also satisfies the requirements
of Lemma 3. This provides us with ϕ ∈ Lpmin

(Rd) ∩
Lpmax

(Rd) and

|T3| ≤ κ1‖ϕ‖pmin
pmin

+ κ2‖ϕ‖pmax
pmax

. (32)

E. Infinite Divisibility of All Discretizations

Our last contribution in this section is to show that all the
measurements Wϕ = 〈w,ϕ〉 are infinitely divisible.

Theorem 3. Let (θ, σ, V ) be a Lévy triplet representing the
Lévy exponent f and let Ξw and w be the corresponding
function space and innovation process as defined in Theorem
2, respectively. For a given ϕ ∈ Ξw, define µϕ to be the
measure describing the amplitude distribution of ϕ. Then, the
random variable Xϕ = 〈w,ϕ〉 is infinitely divisible with the
Lévy exponent

fϕ(ω) =

∫
Rd
f
(
ωϕ(τ )

)
dτ , (33)

which can be represented by the triplet (θϕ, σϕ, Vϕ), where σϕ = σ‖ϕ‖2 (0, if σ = 0),

Vϕ(I) =
∫
aτ∈I dV (a)dµϕ(τ) (0 /∈ I ⊂ R) .

(34)

Furthermore, except for ϕ ≡ 0, Vϕ is (p1, p2)-bounded if and
only if V is (p1, p2)-bounded.

To facilitate reading of the paper, the proof is postponed
to Appendix C. The main message in Theorem 3 is that all
linear observations of an innovation-driven process (subject to
the admissibility condition ϕ = L−1∗ψ ∈ Ξw) are infinitely
divisible with roughly similar Lévy measures.

IV. PROPERTIES OF INFINITELY DIVISIBLE
DISTRIBUTIONS

In this section, we study properties of the id family such as
decay and unimodality of the probability density functions. We
also investigate their consequence on transform-domain statis-
tics. Our approach is based on expressing various properties
of the pdf in terms of the associated Lévy measure. As dis-
cussed in Section III, certain high-level properties of the Lévy
measures are shared among different linear measurements of
an innovation-driven process. The links between the Lévy
measures and pdfs help us in establishing the implications
that this has on the probability laws.

Remark 1. Let X be an infinitely divisible random variable
with Lévy triplet (θ, σ, V ), and N be a Gaussian random
variable independent of X with mean µg and variance σ2

g .
Then, the random variable X + N is also infinitely divisible
with the Lévy triplet

(
θ+µg,

√
σ2 + σ2

g , V
)
. This can be easily

verified by stating the independence of X and N in the form
p̂X+N (ω) = p̂X(ω)p̂N (ω). The main consequence is that the
existence of an additive Gaussian noise does not change those
properties of X that are related to its Lévy measure.

A. Decay Rate

The id property is typically associated with slowly decaying
pdfs. More specifically, it will be proved that Gaussian laws
have the fastest rate of decay among id distributions. Thus, all
distributions with super-Gaussian decay are necessarily non-
id. However, a sub-Gaussian decay does not necessarily imply
infinite divisibility. As we shall demonstrate, there is a decay-
gap between the Gaussians and the rest of the id family.

We start our investigation by recalling a standard result in
the theory of id laws.
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Theorem 4 (25.3 in [6]). Let V be the Lévy measure of an
infinitely divisible random variable X . Then, for all locally
bounded functions g : R 7→ R such that

g(x+ y) ≤ g(x)g(y), ∀ x, y ∈ R, (35)

we have that

EX{g(x)} <∞ ⇐⇒
∫
|a|≥1

g(a)dV (a) <∞. (36)

The functions g satisfying (35) are called submultiplicative.
They include all functions of the form g(x) = (1 + |x|)δ1

(
1 +

ln(1 + |x|)
)δ2
eδ3|x|

δ4 , where δ1,2,3 ≥ 0 and 0 < δ4 ≤ 1.
In particular, Theorem 4 can be applied to investigate the
existence of moments.

Lemma 4. Let X be an id random variable with Lévy measure
V . Then, for all p ≥ 0,

E{|X|p} <∞ ⇐⇒
∫
|a|≥1

|a|pdV (a) <∞. (37)

Proof. The function g(x) = |x|p does not satisfy the require-
ment of Theorem 4. Therefore, we continue with

E{|X|p} <∞ ⇐⇒ E{1 + |X|p} <∞
⇐⇒ E{(1 + |X|)p} <∞, (38)

where we used the inequalities

1 + |x|p ≤ (1 + |x|)p ≤ 2p−1(1 + |x|p).
Now, the function g(x) = (1 + |x|)p fulfills the requirement
of Theorem 4. Thus,

E{|X|p} <∞ ⇐⇒
∫
|a|≥1

(1 + |a|)pdV (a) <∞

⇐⇒
∫
|a|≥1

|a|pdV (a) <∞. (39)

Theorem 5. Let w be an innovation process and let X and
Xϕ be 〈w, rect〉 and 〈w,ϕ〉, respectively, where 0 6= ϕ ∈
Ξw ∩ Lp ∩ Lmax(2,p). Then, we have that

E{|X|p} <∞ ⇐⇒ E{|Xϕ|p} <∞. (40)

In a nutshell, Theorem 4 and Lemma 4 imply that the pdf
and the Lévy measure of an id distribution have the same
rate of decay of their tails. Theorem 5 states that X and Xϕ

are equivalent random variables in the sense of existence of
moments. The additional restriction ϕ ∈ Lp ∩ Lmax(2,p) is to
ensure that the amplitude distribution measure µϕ has finite pth
or both pth and second-order moments. The proof of Theorem
5 is postponed to appendix D.

Our next step is to show that the linear observations of an
innovation process through test functions in

⋂
p Lp all have

the same fat-tail behavior.

Lemma 5. Let Ξw be the domain of the characteristic
functional of an innovation process w. If the distribution of
Xϕ̄ = 〈w, ϕ̄〉 for a given ϕ̄ ∈ ⋂p Lp \ {0} is fat-tailed with
lim|x|→∞ |x|p P(|Xϕ̄| > |x|) ∈ ]0,∞[ for some p > 0, then,

the distribution of 〈w,ϕ〉 for all ϕ ∈ ⋂p Lp \ {0} is fat-
tailed with the same decay rate |x|−p. Moreover, the addition
of Gaussian noise to the measurement does not change the
fat-tail property.

Proof. First note that, due to Theorem 3, all the random
variables 〈w,ϕ〉 are infinitely divisible. Let X , Xϕ̄, and Xϕ

denote the random variables 〈w, rect〉, 〈w, ϕ̄〉, and 〈w,ϕ〉,
respectively. Then, the condition 0 < lim|x|→∞ |x|p P(|Xϕ̄| >
|x|) < ∞ (fat-tail property of Xϕ̄) indicates that E{|Xϕ̄|r}
is finite for all 0 < r < p and is infinite for r ≥ p. Re-
calling Theorem 5, we conclude that E{|X|r} and, therefore,
E{|Xϕ|r}, are finite for 0 < r < p and infinite for r ≥ p.
Thus, Xϕ is also fat-tailed with the same decay rate |x|−p.

The effect of an additive Gaussian noise is cast in the
Gaussian parameter σ of the Lévy triplet. Lemma 4 shows
that the fat-tail property is solely determined by the Lévy
measure.

Compressible distributions are closely related to fat-tailed
distributions [1], [2]. In fact, Lemma 5 states that the com-
pressibility of a linear observation is a property that is inherited
from the innovation process and is independent of how it is
measured or expanded.

Illustration 1. Let us consider the recovery of compressible
vectors from noisy linear measurements. For this purpose, let x
be an i.i.d. random vector with a fat-tailed distribution and let
y = Ax+n be the measurements, where A is a known sensing
matrix and n stands for a vector of white Gaussian noise with
variance σ2

n. In our framework, this problem can reflect the
discretization of a continuous-domain process where A and
x correspond to the discretizations of L−1 and the innovation
process, respectively. An example of such discretization can
be found in [13]. For the sake of simplicity, we focus on the
MAP estimator which is known to take the form

x̂ = arg min
x

1

2σ2
n

‖y −Ax‖22 + J(x), (41)

where J(x) = − log pX(x) = −∑i log pX(xi). The common
sparsifying penalty term used in compressed sensing is J(x) =
‖x‖1 =

∑
i |xi| which is obtained for x vectors following a

Laplace distribution. Several authors have pointed out that the
Laplace distribution is by no means sparse or compressible.
Furthermore, the classical least-square estimator outperforms
the MAP estimator under Laplace distributions [10].

For fat-tailed distributions of x, the penalty term J(x)
is of the form

∑
i Ψ(xi) with Ψ(x) = O

(
log |x|

)
, which

is fundamentally different from |x|. Nevertheless, the penalty
term log(·) can be regarded as an `1-`0 relaxation [14] and
is useful in image recovery [15]. Moreover, for fat-tailed
distributions, the MAP estimator is a biased but still fair
approximation of the Bayesian (posterior mean) estimator
[10].

As the rate of decay of the tail of a distribution increases
(faster decay), it becomes less compressible. One of the
properties of the id family is that the Gaussian distributions are
the least-compressible members. In fact, Gaussian distributions
are somewhat isolated members, not only because of their
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α

No id 
distribution

Gaussian

Fat-tailed

Log-normal

Finite-support

Lévy measure

β

Laplace
Hyperbolic
Gumbel

Fig. 2. Identification of id distributions with respect to their tail probabilities
in the form of exp

(
−O

(
|x|α(log |x|)β

))
. Examples include (α = 2, β =

0) for Gaussians; (α = 1, β = 0) for Laplace, hyperbolic and Gumbel
distributions; (α = 0, β = 1) for all the fat-tailed laws; (α = 0, β = 2) for
log-normal distributions; and (α = 1, β = 1) for all id laws with non-zero
but finitely supported Lévy measures. The only id distributions in the shaded
area are Gaussians.

extreme rate of decay, but also due to a gap between their
rate of decay and that of the rest of the family. Theorem 6
paves the road for specifying this gap.

Theorem 6 (26.1 in [6]). Let X be an id random variable
corresponding to a Lévy measure V . Define

c = inf
{
a > 0 : SV ⊆ {x : |x| ≤ a}

}
, (42)

where SV denotes the support set of the Lévy measure V .
We also allow c to take the values 0 and ∞. Then, for the
super-exponential moments, we have that{

0 < α < 1
c : EX

{
eα|x| log |x|} < ∞,

1
c < α : EX

{
eα|x| log |x|} = ∞. (43)

Theorem 7. The only id distributions that decay faster than
e−O(|x| log |x|) are the Gaussians.

Proof. A tail decaying faster than exp
(
− O(|x| log |x|)

)
implies that all super-exponential moments EX

{
eα|x| log |x|}

are finite. By using the result of Theorem 6, this implies that
1
c =∞, where c is defined in (42). Thus, we shall have c = 0,
which confirms that V is supported only at {0}. Besides,
note that {0} is excluded in all the integrals involving V .
Hence, such a V is effectively equivalent to the zero measure.
Evidently, an id distribution with zero Lévy measure is a
Gaussian distribution (see Section III-B).

Illustration 2. Let us consider the pdfs that have a rate
of decay of the form exp

(
− O(|x|κ)

)
. The Gaussian and

Laplace distributions are id examples that correspond to κ = 2
and κ = 1, respectively. However, Theorem 7 states that
the pdfs corresponding to 1 < κ < 2 are not infinitely
divisible (the gap). For a better understanding of this result,
we revisit the MAP estimator of Illustration 1. It is well-known
that, for Gaussian and Laplace distributions of x, the penalty
term J(x) in (41) transforms into O

(
‖x‖22

)
and O

(
‖x‖1

)
,

respectively. A simple consequence of the gap in the decay of

the tail of id distributions is that penalty terms of the form
‖x‖pp for 1 < p < 2 are not allowed. We illustrate this gap in
Figure 2.

B. Unimodality

The modes of a real-valued function are the points at which
the function attains its local maxima or minima. A pdf is
unimodal if it has a unique local maximum and no local
minima. In words, a unimodal pdf is decreasing on the right
side of its mode and increasing on its left side. Unimodality
is useful in optimization problems such as MAP.

Here, we want to show that the unimodality of the pdf is a
property that is inherited from the innovation process. Similar
to the decay of the tail, we investigate the implications of the
Lévy measure on the pdf in terms of unimodality.

Definition 5 ([16]). A measure V is said to be unimodal with
mode a0 if it can be expressed as

V (da) = cδa0(da) + v(a)da, (44)

where c is a nonnegative real number, δa0 is Dirac’s delta
function supported at a0, and v is an increasing function on
]−∞, a0[ and decreasing on ]a0,∞[.

We use Theorem 8 proved in [17] as the main tool for
connecting the unimodality of the pdf to that of the Lévy
measure.

Theorem 8 ([17]). If a Lévy measure V is symmetric and
unimodal with mode 0, all the id random variables identified
by the Lévy triplet (θ, σ, V ) have unimodal pdfs.

Theorem 9. Let w be an innovation process for which the
random variable 〈w, rect〉 admits the Lévy triplet (θ, σ, V ). If
V is symmetric and unimodal with mode 0, then the pdf of
〈w,ϕ〉 for all ϕ ∈ Ξw is unimodal.

Proof. By using Theorem 8, it is sufficient to show that the
Lévy measure Vϕ of 〈w,ϕ〉 is also symmetric and unimodal
with mode 0. To show its symmetry, we recall Theorem 3 and
write Vϕ(−I) for 0 /∈ I ⊂ R as

Vϕ(−I) =

∫
aτ∈−I

dV (a)dµϕ(τ) =

∫
aτ∈I

dV (−a)dµϕ(τ)

=

∫
aτ∈I

dV (a)dµϕ(τ) = Vϕ(I). (45)

Unimodality of V with mode 0 requires the corresponding
delta term of V (dx) to be placed at zero. However, as pointed
out earlier, zero is excluded in all the integrals over V . This
fact, in conjunction with the symmetry of V , suggests that
V (dx) can be effectively written as v(|x|)dx where v is a
decreasing function. Hence, for |ā| ≥ |a| > 0 we can write
that

Vϕ(da) =

∫
τ 6=0

v
(a
τ

)
dµϕ(τ) =

∫
τ 6=0

v
(∣∣a
τ

∣∣)dµϕ(τ)

≥
∫
τ 6=0

v
(∣∣ ā
τ

∣∣)dµϕ(τ) = Vϕ(dā), (46)

which proves the unimodality of Vϕ.



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. ?, NO. ?, ???? 2012 10

C. Moment Indeterminacy

The problem of moments, or Hamburger-moment problem,
is to answer whether the set of moments

m(U)
n =

∫
R
andU(a), n = 0, 1, 2, . . .

uniquely determines the measure U . In case the answer
is negative, the measure is called moment-indeterminate or,
briefly, indeterminate. There are simple necessary or suffi-
cient conditions (namely, Krein’s and Carleman’s conditions,
respectively) for indeterminacy of a measure, while necessary
and sufficient conditions are more complicated to formulate.

If at least one of moment of a distribution is infinite, then
the distribution is automatically considered as indeterminate.
Theorem 5 states that 〈w, rect〉 and 〈w,ϕ〉 for ϕ ∈ ⋂p Lp are
equivalent in the sense of existing moments. Thus, if 〈w, rect〉
is indeterminate by means of having infinite moments, the
same applies to all 〈w,ϕ〉. However, when all the moments are
finite, Theorem 5 does not settle the issue of in/determinacy.

Theorem 10 ([18]). An infinitely divisible distribution that
corresponds to an indeterminate Lévy measure is itself inde-
terminate.

Next, we show that the indeterminacy of a Lévy measure
and, consequently, of its associated probability distribution, is
a property that is shared by all linear measurements of an
innovation process.

Theorem 11. If the Lévy measure V of 〈w, rect〉 is indetermi-
nate, where w is an innovation process, then the distribution
of 〈w,ϕ〉 for all 0 6= ϕ ∈ ⋂p Lp is indeterminate.

Proof. By applying Theorem 3, we know that∫
R\{0}

āndVϕ(ā) =

∫
R\{0}

∫
R\{0}

(aτ)ndV (a)dµϕ(τ)

=
(∫

R\{0}
andV (a)︸ ︷︷ ︸
m

(V )
n

)(∫
R\{0}

τndµϕ(τ)︸ ︷︷ ︸
m

(µϕ)
n

)
. (47)

Since ϕ ∈ ⋂p Lp, the moments {m(µϕ)
n }∞n=0 are all finite.

This implies a one-to-one mapping between the moments
{m(V )

n }∞n=0 and {m(Vϕ)
n }∞n=0 for a given ϕ ∈ ⋂

p Lp. In
other words, {m(V )

n }n uniquely determines V if and only if
{m(Vϕ)

n }∞n=0 uniquely determines Vϕ. Hence, indeterminacy
of V translates into indeterminacy of Vϕ, which in turn
establishes the indeterminacy of the distribution of 〈w,ϕ〉
through Theorem 10.

V. CONCLUSION

We considered an innovation-driven continuous-domain
model from which we obtain linear measurements. Our goal
was to identify the sparse/compressible distributions that can
describe the distribution of such measurements. We showed
that a common property of such distributions is infinite divisi-
bility. One of the important implications of this property is the
exclusion of all distributions that decay faster than Gaussians.

Furthermore, we revealed a gap between the decay rate of
Gaussian distributions and other id distributions.

The Lévy-Khinchine representation theorem characterizes
all infinitely divisible distributions by means of a measure
known as the Lévy measure. It was already known that
many properties of infinitely divisible distributions can be
expressed in terms of their Lévy measure. The contribution
of this paper is to show that most of the higher-level prop-
erties of pdfs (finiteness of moments, rate of decay, and
unimodality) are also preserved through linear measurements.
For instance, if a model generates a compressible distribution
in a particular measurement scheme, the distribution of all
possible measurements would be compressible. Furthermore,
this compressibility can be identified a priori through the Lévy
measure associated with the innovation process.
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APPENDIX A
RANDOM PROCESSES VIA CHARACTERISTIC

FUNCTIONALS

A given functional over the space Ξ defines a probability
measure on the algebraic or topological (continuous) dual of
Ξ (the set of realizations) if the functional satisfies certain
conditions. The two main results are the Kolmogorov exten-
sion theorem [19] and the Bochner-Minlos theorem [20]. For
suitable characteristic functionals, the Kolmogorov extension
theorem demonstrates the existence of a random process
supported over the algebraic dual of Ξ, while the Bochner-
Minlos theorem narrows down the support to the continuous
dual of Ξ, provided that the latter space is nuclear.

Theorem 12 (Bochner-Minlos [20]). Let Ξ be a nuclear
space over R and C : Ξ 7→ C be a continuous functional.
If C(0) = 1 and C is semipositive-definite, then C is the
characteristic functional of a unique random process sup-
ported on the continuous dual of Ξ denoted by Ξ

′
. Semipositive

definiteness of C means that, for any positive integer k and
for all z1, . . . , zK ∈ C and ϕ1, . . . , ϕK ∈ Ξ, the value

K∑
k1,k2=1

zk1 z̄k2C(ϕk1 − ϕk2)

is real and nonnegative.

The function space Ξ of the characteristic functionals con-
sidered in this paper is the intersection of Lp spaces. Such
spaces are not nuclear, thus, the Bochner-Minlos theorem
does not apply. However, the Kolmogorov extension theorem
[19] implies that the functional C defines a random process
over the algebraic dual of Ξ represented as Ξ∗. Additionally,
C gives rise to a cylinder set measure (a quasi-measure)
over Ξ

′
(continuous dual). This quasi-measure is equivalent

to a random process as long as finite-dimensional pdfs are
considered. The key observation for our purpose is that the
Schwartz space S of rapidly decreasing functions is a nuclear
space which is included in all Lp spaces. In terms of duals, this
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translates into Ξ
′ ⊂ S ′ ⊂ Ξ∗. The Bochner-Minlos theorem

therefore guarantees that a random process over Ξ∗ is indeed
supported over S ′

(the space of tempered distributions).

APPENDIX B
PROOF OF LEMMA 3

We first decompose g into three components as

g(ω) = j

∫
|a|<1

(
sin(aω)− aω

)
dV (a)︸ ︷︷ ︸

g̊= (ω)

+j

∫
|a|≥1

sin(aω)dV (a)︸ ︷︷ ︸
ǧ= (ω)

−2

∫
R\{0}

sin2
(aω

2

)
dV (a)︸ ︷︷ ︸

g< (ω)

.(48)

Our next step is to upperbound each term separately. For this
purpose, note that | sin(x)| ≤ |x| and | sin(x)| ≤ 1. Hence, for
all a ∈ [0, 1], we conclude that | sin(x)| ≤ min(1, |x|) ≤ |x|a.
In addition, since V is (m,M)-bounded, we have that∫

|a|<1
|a|MdV (a) <∞ ,

∫
|a|≥1

|a|mdV (a) <∞.

1) In case V is symmetric, due to the odd symmetry of
the integrand, we conclude that g̊= ≡ 0. For asymmetric
measures, we continue as

g̊=(ω) = −
∫
|a|<1

aω
(
1− sinc(aω)

)
dV (a), (49)

where sinc(x) = sin(x)
x . We further know that

|sinc(x)| ≤ 1 and 0 ≤ 1 − sinc(x) ≤ |x|. The latter
is obtained by observing that |x| ≥ sin2(x/2), which
confirms that the function |x|2+sin |x|−|x| is increasing
with respect to |x|. The two inequalities for sinc lead to
|1− sinc(x)| ≤ min(2, |x|). Thus, we can bound g̊=(ω)
as

|̊g=(ω)| ≤
∫
|a|<1

|aω| · |1− sinc(aω)|dV (a)

≤
∫
|a|<1

|aω|min(2, |aω|)dV (a)

≤
∫
|a|<1

|aω|MdV (a)

= |ω|M
∫
|a|<1

|a|MdV (a)︸ ︷︷ ︸
<∞

, (50)

where we used min(2, |x|) ≤ |x|M−1, which is justified
by 1 ≤M ≤ 2 for asymmetric Lévy measures.

2) Similar to g̊= , we have that ǧ= ≡ 0 for symmetric Lévy
measures V . We can write that

|ǧ=(ω)| ≤
∫
|a|≥1

|sin(aω)|dV (a)

≤
∫
|a|≥1

|aω|mdV (a)

≤ |ω|m
∫
|a|≥1

|a|mdV (a)︸ ︷︷ ︸
<∞

, (51)

where we used 0 ≤ m ≤ 1 for asymmetric Lévy
measures.

3) We employ a trigonometric rule to simplify g< as

|g<(ω)| = 2

∫
R\{0}

sin2
(aω

2

)
dV (a)

≤ 2

∫
R\{0}

min
(

1,
∣∣∣aω

2

∣∣∣2)dV (a)

≤ 2

∫
R\{0}

min
(∣∣∣aω

2

∣∣∣m, ∣∣∣aω
2

∣∣∣M)dV (a)

≤ 2

( |ω|m
2m

+
|ω|M
2M

)
×∫

R\{0}
min(|a|m, |a|M )dV (a)︸ ︷︷ ︸

<∞

. (52)

Finally, we combine the individual upperbounds using the
triangular inequality, which completes the proof.

APPENDIX C
PROOF OF THEOREM 3

Recalling (3) and Theorem 2, we obtain the characteristic
function of Xϕ as

p̂Xϕ(ω) = P̂w(ωϕ) = exp

(∫
Rd
f
(
ωϕ(τ )

)
dτ

)
. (53)

Similar to (31) we can write that∫
Rd
f
(
ωϕ(τ )

)
dτ = jθ1,ϕ ω −

σ2
ϕ

2
ω2 + gϕ(ω), (54)

where 
θ1,ϕ = θ

∫
Rd ϕ(τ )dτ ,

σ2
ϕ = σ2

∫
Rd ϕ

2(τ )dτ ,

gϕ(ω) =
∫
Rd g

(
ωϕ(τ )

)
dτ .

(55)

The upperbound on g imposed by Lemma 3 indicates that
gϕ(ω) is finite for all ω. We simplify gϕ by rewriting it as

gϕ(ω) =

∫
Rd

∫
R\{0}

(
ejaωϕ(τ ) − 1

−jaωϕ(τ )1|a|<1(a)
)

dV (a)dτ

= ḡϕ(ω) + jωθ2,ϕ, (56)

where

ḡϕ(ω) =

∫
Rd

∫
R\{0}

(
ejaωϕ(τ ) − 1

−jaωϕ(τ )1|aϕ(τ )|<1(a)
)

dV (a)dτ (57)

and

θ2,ϕ =

∫
Rd

∫
R\{0}

aϕ(τ )
(
1|aϕ(τ )|<1(a)

−1|a|<1(a)
)

dV (a)dτ . (58)

In (57), the integration parameter τ is used only as the input
argument of ϕ. Consequently, ϕ(τ ) can be replaced with
its amplitude distribution measure µϕ. On the other hand,
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whenever ϕ(τ ) = 0 the integrand in (57) is also zero. Thus,
those values of τ for which ϕ(τ ) = 0 do not contribute in the
integral. In summary, we can rewrite (57) as

ḡϕ(ω) =

∫
R\{0}

∫
R\{0}

(
ejaωτ̄ − 1

− jaωτ̄1|aτ̄ |<1(a)
)

dV (a)dµϕ(τ̄)

=

∫
R\{0}

(
ejāω − 1− jāω1|ā|<1(ā)

)
dVϕ(ā), (59)

where we used the change of variables ā = aτ̄ . Equations (54)-
(59) suggest (θ1,ϕ + θ2,ϕ, σϕ, Vϕ) as the Lévy triplet of Xϕ,
provided that θ2,ϕ is finite and Vϕ satisfies the requirement
(12). Note that the (0, 2)-boundedness of Vϕ (Requirement
(12)) implies the finiteness of ḡϕ through Lemma 3. This
establishes the finiteness of θ2,ϕ, since the finiteness of gϕ
is guaranteed by Theorem 2. Thus, to prove that Xϕ is
infinitely divisible with the suggested Lévy triplet, it suffices
to show that Vϕ is (0, 2)-bounded. Instead, we prove a stronger
statement: if V is (p1, p2)-bounded, then Vϕ is also (p1, p2)-
bounded. Specifically,∫

R\{0}
min(|ā|p1 , |ā|p2)dVϕ(ā)

=

∫
R\{0}

∫
R\{0}

min(|aτ̄ |p1 , |aτ̄ |p2)dV (a)dµϕ(τ̄)

≤
∫
R\{0}

(|τ̄ |p1 + |τ̄ |p2) min(|a|p1 , |a|p2)dV (a)dµϕ(τ̄)

=
(
‖ϕ‖p1p1 + ‖ϕ‖p2p2

) ∫
R\{0}

min(|a|p1 , |a|p2)dV (a)︸ ︷︷ ︸
<∞

. (60)

To complete the proof of Theorem 3, we establish the converse
statement: if Vϕ is (p1, p2)-bounded and ϕ ∈ Ξ \ {0}, then V
is also (p1, p2)-bounded, since∫

R\{0}
min(|a|p1 , |a|p2)dV (a)

≤
∫
R\{0}

∫
R\{0}min(|aτ̄ |p1 , |aτ̄ |p2)dV (a)dµϕ(τ̄)∫
R\{0}min(|τ̄ |p1 , |τ̄ |p2)dµϕ(τ̄)

=

∫
R\{0}min(|ā|p1 , |ā|p2)dVϕ(ā)∫
R\{0}min(|τ̄ |p1 , |τ̄ |p2)dµϕ(τ̄)

. (61)

The numerator in (61) is finite since Vϕ is assumed to be
(p1, p2)-bounded. The integrand in the denominator is also
positive and the integral is nonzero because of ϕ 6≡ 0. The
boundedness of the denominator is readily confirmed by∫

R\{0}
min(|τ̄ |p1 , |τ̄ |p2)dµϕ(τ̄) ≤ min(‖ϕ‖p1p1 , ‖ϕ‖p2p2). (62)

APPENDIX D
PROOF OF THEOREM 5

According to Theorem 3, for all ϕ ∈ Ξw the random
variable 〈w,ϕ〉 is infinitely divisible. Let V and Vϕ denote

the Lévy measures of 〈w, rect〉 and 〈w,ϕ〉, respectively. By
using Lemma 4, we reformulate the claim in Theorem 5 as∫
|a|≥1

|a|pdV (a) <∞ ⇐⇒
∫
|ā|≥1

|ā|pdVϕ(ā) <∞. (63)

We apply Theorem 3 to rewrite the integral against the
measure Vϕ in the form∫

|ā|≥1

|ā|pdVϕ(ā) =

∫
|aτ |≥1

|aτ |pdV (a)dµϕ(τ)

=

∫
R\{0}

|τ |p
(∫
|a|> 1

|τ|

|a|pdV (a)

)
dµϕ(τ). (64)

This yields∫
|ā|≥1

|ā|pdVϕ(ā) ≤
∫
R\{0}

|τ |pdµϕ(τ) ·
∫
|a|≥1

|a|pdV (a)

+

∫
|τ |≥1

|τ |p
∫

1
|τ|≤|a|≤1

|a|pdV (a)dµϕ(τ). (65)

Note that
∫
R\{0} |τ |pdµϕ(τ) = ‖ϕ‖pp and∫

1
|τ|≤|a|≤1

|a|pdV (a) ≤ 1

|τ |p2
∫

1
|τ|≤|a|≤1

|a|2dV (a)

≤ 1

|τ |p2
∫
R\{0}

min(1, |a|2)dV (a)︸ ︷︷ ︸
cV

=
cV
|τ |p2 , (66)

where p2 = min(0, p− 2). Hence,∫
|ā|≥1

|ā|pdVϕ(ā) ≤

‖ϕ‖pp
∫
|a|≥1

|a|pdV (a) + cV ‖ϕ‖max(2,p)
max(2,p). (67)

This proves that∫
|a|≥1

|a|pdV (a) <∞ ⇒
∫
|ā|≥1

|ā|pdVϕ(ā) <∞. (68)

Next, we prove the converse statement. The assumption ϕ 6=
0 necessitates the existence of 0 < T ≤ 1 such that ‖ϕ‖pp,(T ) =∫
|τ |≥T |τ |pdµϕ(τ) is strictly positive. This helps us bound (64)

as∫
|ā|≥1

|ā|pdVϕ(ā) ≥
∫
|τ |≥T

|τ |pdµϕ(τ) ·
∫
|a|≥ 1

T

|a|pdV (a)

= ‖ϕ‖pp,(T )

(∫
|a|≥1

|a|pdV (a)−
∫

1≤|a|≤ 1
T

|a|pdV (a)

)
≥ ‖ϕ‖pp,(T )

(∫
|a|≥1

|a|pdV (a)− cV
|T |p

)
, (69)

which completes the proof.
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