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Abstract

In the context of recommender systems, collaborative filtering is the method
of predicting the ratings of a set of items given by a set of users based on
partial knowledge of the ratings. Commonly, items and users are represented
via vectors, and to predict ratings, approaches such as vector inner-product
(aka matrix factorization) or more advanced nonlinear functions are applied.
In this paper, while we adopt the common vectorial representation, we con-
sider a general model in which the ratings are smooth functions of the item
representations. Smoothness ensures similar items with nearby vectors will
also get similar ratings as we expect from a human rater. We represent
user smooth scoring functions in a so-called frequency domain and learn
their representations alongside item representations using 1) an iterative op-
timization approach that maps items and users alternatively, and 2) a feed-
forward neural network consisting of interpretable layers. We also address
the challenge of the distribution shift from observed to unobserved ratings
(aka missing-not-at-random) with insights from the frequency domain. We
evaluate the predictive power of our method and its robustness in missed-
not-at-random settings on four popular benchmarks. Despite its simplicity
and interpretability, our method yields a remarkable performance compared
to the state-of-the-art1.

Keywords: Collaborative filtering, frequency domain, missing not at
random, recommender systems, representation learning

1All codes are publicly available at: https://github.com/alishiraliGit/
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1. Introduction

Nowadays, recommender systems (RS) are among the most effective tools
used by large-scale companies for maintaining their current and attracting
new customers. It is interesting to mention that 80 percent of watched movies
on Netflix [9] and 60 percent of video clicks on Youtube [4] are linked with
recommendations. However, the world of RS is well extended beyond the
video industry.

Recommender systems are generally categorized into three groups [40]:
content-based RS, collaborative filtering (CF), and hybrid RS. In content-
based methods, recommendations are made based on the similarity of items
or users. Here, the similarity of two items or two users is measured by
their content, i.e. any static information or prior knowledge about users and
items. On the other side, CF, which is the focus of this paper, relies on
historical interactions to generate recommendations. In hybrid RS, besides
the historical data, the RS has access to some side information from users or
items [25]. Cross domain collaborate filtering (CDCF) as a hybrid method
is also recommended to alleviate the sparsity problem in the recommender
systems [37, 38, 39]. CDCF solves the sparsity problem by transferring rating
knowledge from auxiliary domains. In this work, we consider the general
setting of the CF in which no side information is available.

CF methods themselves consist of two well-established categories: latent
feature models and graph feature models [7]. Latent feature models in gen-
eral learn an explicit latent vector per each user and item, and predict the
rating solely as a function of these latent features. For example, matrix fac-
torization (MF) is a well-known and widely applied latent feature method
that predicts the ratings as the inner-product of user and item features.
Graph feature models, however, predict the ratings of a set of items based on
their underlying similarity graph. This graph might be the similarity graph
of items [13, 17] or the bipartite user-item graph [42, 33]. Self-supervised
methods are also proposed to augment graph feature models [35, 36].

Due to their interpretability and scalability, latent feature methods are
promising approaches. However, these benefits usually come at the expense
of neglecting local graph structure of the data. Although most recent ad-
vances in CF methods come from improvements in graph feature models,
it is still important to design better latent feature models; indeed, many
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of the advanced CF methods with impressive performance are obtained by
incorporating graph features into latent feature models and the true po-
tential of latent feature models is not yet reached [7, 11, 3]. For example,
the local low-rank matrix approximation method (LLORMA) [15] relaxes
the low-rank assumption of MF using graph features. Generally, we expect
improvements in latent feature methods by incorporating them in graph fea-
ture augmented methods. Moreover, recent studies indicate that through
extensive fine-tuning of latent feature models within the matrix factoriza-
tion family, nearly every other method can be challenged, underscoring the
capability of these models [20].

In this work, we present a new frequency-domain viewpoint on the latent
feature approach. More precisely, we assign each user a scoring function that
takes an item (or its representation) as the input and outputs the rating of
the user for that particular item. We first show many of the well-known
latent feature methods fit into this model as special cases for scoring func-
tions that are not necessarily optimal. Next, we look into the CF problem
as interpolating/extrapolating these unknown scoring functions based on a
few samples. As the sample consistency is not even nearly enough for inter-
polating/extrapolating the scoring functions, we restrict the space of feasible
functions to be smooth as well as bandlimited around the zero-frequency
(the bandwidth shall be determined). We believe this is a natural choice
that makes the recovery problem feasible and motivate it in Section 2.

Estimating (recovering) the scoring functions is a non-convex optimiza-
tion problem. In Section 3, we propose two techniques to effectively solve this
problem. While the first approach uses conventional alternating approaches
for the minimization (Section 3.1), the second approach makes use of deep
neural networks (Section 3.2).

Recently, deep learning has found its way to RS, and specifically CF
methods [40]. Deep networks are able to learn non-linear representations with
powerful optimization tools, and their efficient implementations have made
them promising CF approaches. We propose the SmoothRecNet architecture
which is a feed-forward network and has the advantage of interpretability.
Here, interpretability implies that a system operator could predict the effect
of various manipulations on the output in advance [41].

A well-documented challenge in data-driven RS systems is the non-uniform
spread of the available observed scores; this challenge is commonly referred
to as the missing-not-at-random (MNAR) problem. Indeed, users frequently
tend to report feedback in positive cases or considerably negative cases. An-
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other cause is that the data itself is collected by another recommender system
which is automatically biased towards favorable items [19, 16]. It is shown
that in this case, samples in the dataset are no longer independent and this
can affect the evaluation of newly proposed recommenders [26].

There are two popular ways of addressing the MNAR problem. A direct
way is to treat the recommendation problem as missing-data imputation of
the rating matrix based on the joint likelihood of the missing data and the
ratings [12]. This usually leads to sophisticated methods. Alternatively,
inverse propensity scoring (IPS) has been shown to effectively debias the
training and evaluation on MNAR data [22, 34]. In IPS, each term of the
empirical risk corresponding to an observed rating will be normalized by the
inverse of the observation probability (aka propensity). Fortunately, IPS can
be directly applied to our latent feature model. We further propose two other
debiasing methods specifically designed for our model which unlike IPS does
not require explicit propensity scores.

To validate the proposed methods, we present multiple experiments in Sec-
tion 5, which all confirm the motivating ideas behind the design of the meth-
ods, as well as their performances.

In short, our main contributions could be summarized as motivating,
formulating, and solving the rating prediction problem as a smooth signal
recovery in the frequency domain. This approach offers several advantages
over other latent feature models with a similar level of complexity:

• The formulation notably relies on a minimal assumption, i.e., the smooth-
ness of human behavior, enhancing the framework’s robustness and
applicability to different fields.

• New algorithms are developed to solve the formulated problem. These
solutions are empirically evaluated on extensively used benchmarks.

• The solution is characterized by its simplicity and interpretability. For
instance, recommendations can be explained in terms of the inner-
product frequency-domain representations of users and items. Such
simple solutions with near-optimal performance are always favored in
machine learning.

• The formulation is flexible, enabling it to address well-documented
challenges of data-driven recommender systems (RS). For instance, we
demonstrate that by controlling the bandwidth of representations, we
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can tune the complexity of user and item representations, making it
easier to adapt to asymmetry. Additionally, we show that the distribu-
tion shift from training to test data can be addressed in new ways, by
utilizing frequency-domain representations and insights from the fre-
quency domain. We believe that this frequency representations offer a
fresh perspective on the prevalent challenges in recommender systems.

1.1. Related works

The applied methods in CF are versatile and it is difficult to review all
of them. Below, we briefly discuss a number of more related methods to
our work and what makes our method different from them. A mathematical
comparison of the latent feature methods with our model is made in Section 2.

• MF and its variants. MF was originally proposed for taking advan-
tage of the inner-product of latent features. The probabilistic version
of MF (PMF) [18] further assumes ratings as independent Gaussian
random variables. For each rating, the inner-product of latent fea-
tures determines the mean, and all ratings are assumed to have a sim-
ilar variance. The maximum likelihood inference in PMF simplifies to
the minimization of the mean-squared error of MF predictions with
Tikhonov (L2) regularization. Another improvement to MF was the
introduction of row and column bias terms that model systematic bi-
ases associated with users and items. This method is commonly known
as BiasedMF [14].

• Deep latent feature methods. Neural collaborative filtering (NCF) [11]
and neural network matrix factorization (NNMF) [7] and are two neural
network extensions over MF. Both methods predict ratings using deep
neural networks acting on latent features. Our second approach in this
work (SmoothRecNet), similarly learns representations for items and
users and evaluates the inner-products for the rating prediction. How-
ever, the learned representations in our method are based on frequency
domain interpretations with controllable complexities. Further, we in-
clude an implicit clustering in our network, which significantly improves
the performance.

• Autoencoder-based models. Autoencoder methods can be seen as mod-
els combining aspects of both graph features and latent feature models
[28, 24]. They take as input all observed ratings (relations) for a user
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(entity), allowing the network to implicitly model the graph features,
which in this case are similarities among items [7]. We do not study
autoencoder-based models here as our focus is on latent feature meth-
ods.

• Spectral CF on graphs. A recent trend in CF is to investigate the
bipartite user-item graph [42, 33] or the user-or-item graph [13] for
modeling user-item interactions. These methods use a new spectral
convolution filter directly acting in the spectral domain. Although we
do not use such graphs, our proposed method benefits from the same
key idea: to impose smoothness and to directly learn representations
in the frequency domain.

2. Model

Although no two users or items are exactly the same, it is oftentimes
possible to fairly represent them with a low-dimensional feature set.

To represent items as vectors, we use the d-dimensional space Rd (latent
item space), where d shall be tuned according to the desired complexity of
the representations. Let xi ∈ Rd denote the vector associated to item i, and
let X ⊂ Rd be the set of all such xis.

In general, the rating of a user u to an item i, besides the pair (u, i), can
depend on factors such as time or the chronological order with which the user
rates the items. Here, we simply assume a time and ordering-independent
scoring function. For each user u,

hu : X → [smin, smax] (1)

denotes the scoring function that outputs the rating to any input item. Here,
smin and smax limit the worst and best possible ratings for an item which
depend on the feedback collection system (e.g., smin = 1 and smax = 5).

We show the set of rated and unrated items by the user u with I+u and
I−u , respectively; this implies that I+u ∪ I+u = I for all u, where I is the
set of all items. Similarly, by U+

i and U−
i we denote the set of users who

provided or did not provide a rating for item i, respectively; again, we shall
have U+

i ∪ U−
i = U for all i, where U is the set of all users.

With these notations, each observed rating can be expressed as a triplet
(u, i, sui), later called samples, where sui indicates the value of the rating.
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We further denote the set of all available ratings as

D = {(u, i, sui) | u ∈ U , i ∈ I+u }
= {(u, i, sui) | i ∈ I, u ∈ U+

i }. (2)

If item representations {xi}i are known, the problem of rating prediction
can be reduced to the recovery of the scoring function hu(·), given {xi}i∈I+

u
.

But in general, estimating the scoring functions could be formulated as min-
imizing the loss

L({xi}i∈I , {hu}u∈U) =
∑

(u,i,sui)∈D

(sui − hu(xi))
2 +

∑
u∈U

ϕ(hu) +
∑
i∈I

ψ(xi) (3)

where ϕ : H → R+ and ψ : X → R+ are proper regularization terms and
H is the space of all allowed functions. Even with the assumption of known
item representations, we need to minimize L over a function space based
on finitely many samples. Without any restrictions on H, L potentially has
infinitely many solutions. In this work, we restrictH to the smooth functions.
We will later motivate this selection.

In the sequel, we first show how well-established latent feature methods
fit into the current framework (Section 2.1). Then, we motivate the choice of
smooth scoring functions (Section 2.2) by a comparison to MF. Although MF
is far from state-of-the-art models, we found this comparison insightful. We
will then mathematically formulate smooth scoring functions (Section 2.3)
and close this section by introducing the optimization problem to recover
scoring functions per user (Section 2.4). Algorithms to effectively solve this
problem will be the focus of Section 3.

2.1. Scoring functions of other latent feature models

MF and its variants. In the simple yet effective MF method, the users and
items are represented in the same vector space X . Let yu ∈ X and xi ∈ X
represent user u and item i, respectively. Then, the score of u to i is assumed
to have the form

hMF
u (xi) = yT

uxi, (4)

where T stands for the transpose operator. A natural extension to this
function is to consider per user and per item bias terms to provide more
flexibility for incorporating individual discrepancies in the model. MF with

7



added bias is sometimes known as BiasedMF [14] in the literature. In this
case, the scoring function of user u follows

hBiasedMF
u (xi) = yT

uxi + µ+ bu + bi, (5)

where µ, bu, and bi are bias terms that are unknown parameters to the
learner. A probabilistic view of MF (PMF) [18] assumes independent Gaus-
sian priors over ratings. In this case, the maximum likelihood estimation of
latent features is equivalent to the regularized mean-squared error minimiza-
tion where the regularization terms in Equation 3 are ϕ(yu) = λ∥yu∥2 and
ψ(xi) = γ∥xi∥2.

Neural network matrix factorization (NNMF). In NNMF [7], the inner-product
in MF is replaced by a multi-layer feed-forward neural network. The scoring
function of user u in this model follows

hNNMF
u (xi) = fθ(yu ◦ xi, µ, bu, bi), (6)

where ◦ is the elementwise product and fθ(·) is a feed-forward neural network
with parameters θ. Note that NNMF is equivalent to MF if fθ(·) is the sum
operator.

MF with feed-forward multilayer perceptron (MLP). MLP [7], similar to NNMF,
the inner-product in MF is replaced with a feed-forward network. Unlike
NNMF that acts on yu ◦xi, MLP gets concatenated yu and xi as the input:

hMLP
u (xi) = σout(w

T
outϕL(ϕL−1(· · ·ϕ1(z1)))), (7)

where z1 =

[
xi

yu

]
, ϕl(zl) = σl(Wlzl + b1), and σl(·) is the activation func-

tion of the lth layer. MLP was originally proposed to predict the implicit
feedback using σout(z) = sigmoid(z) and minimizing the cross entropy. In
our experiments, we revisit MLP to predict ratings using σout(z) = z and
minimizing the mean-squared error. Note that in this method, xi and yu are
not required to lie in the same vector space.

Neural collaborative filtering (NCF). In this method, MF and MLP learn
separate embeddings, and NCF [11] combines the two models by another
layer acting on the concatenation of their last hidden layer. Mathematically,

hNCF
u (x

(1)
i ,x

(2)
i ) = σ

(
wT

[
x
(1)
i ◦ y

(1)
i

zMLP

])
, (8)
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where

zMLP = ϕL(ϕL−1(· · ·ϕ1(

[
x
(2)
i

y
(2)
u

]
))). (9)

2.2. Smooth scoring functions: Motivation

The benchmark matrix factorization (MF) technique is a special case cov-
ered by Equation 3; however, it has three main shortcomings: 1) it provides
a unimodal scoring, 2) it tends to recommend popular items to everyone, and
3) its performance degrades in cases where the number of items and users
differ significantly (asymmetry). We shall show that these shortcomings are
special to MF (and its variants) and shouldn’t be attributed to the loss mini-
mization framework of Equation 3. In fact, they could be naturally overcome
by considering a more general smooth scoring function. This claim will be
justified by our experiments (Section 5) on well-studied datasets such as the
asymmetric Joke dataset [8]. Below, without going deeply through the algo-
rithms and details of the experiments, we provide some results to motivate
the proposed idea.

2.2.1. Unimodality vs. multimodality

As µ, bu, and bi are constant in Equation 5, the scores are modeled linearly
in the MF (and in general, BiasedMF) technique. Therefore, HMF (class of
all hMF functions) consists of monotonic functions with single modes on the
edges when we limit the space of X . The background in plots of the first row
in Figure 1 show a sample function of HMF in 2D. In this figure, items are
shown by points with colors determining the actual ratings; different plots
correspond to different methods and different training-test data.

Unimodality of the scoring function forces the modeled user to have only
one type of interest, which is oftentimes not true. As an example, in a film
rating scenario (items are films), unimodal scoring functions cannot model a
user interested in both horror and comedy genres.

In contrast, our proposed class of more general smooth functions (Hsmooth)
addresses this issue by using multimodal basis. An example function of
Hsmooth calculated at X = [0, 1)2 is shown in the background in plots of
the second row in Figure 1. We observe that the estimated smooth scoring
function has four modes in this example.
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x1

x2

(a) MF (training)

x1

x2

(b) MF (test)

x1

x2

(c) Smooth scoring (training)

item 1

item 2

x2

x1

(d) Smooth scoring (test)

Figure 1: For a fixed user, the above plots show the actual and predicted scores for a subset
of items. In each plot, points (small circles) correspond to 2D representation of the items
and their colors reflect the actual scores of the user. The background color-maps represent
the predicted scores for each item representation; Figures in the first row, (a) and (b),
show the output of MF, centered around (0, 0) for the sake of presentation. The output on
training and test data are depicted separately. The blue arrow shows the estimated user
representation in the MF method, i.e., yu in Equation 5; Figures in the second row, (c)
and (d), correspond to the proposed smooth scoring rule; The same training, validation,
and test split are used for both methods.

2.2.2. Popular vs. personalized recommendation

The scoring function in Equation 5 increases by scaling (up or down)
the item representation vector xi. This implies that if i is a popular item
among most users, its estimated vector xi is likely to be large in amplitude
and well-aligned to most user representations (yus). The large amplitude
of xi usually dominate the recommendation process overshadowing the in-
person differences. Further, due to unimodality, MF pushes popular items
in one direction and close to each other, which is not favorable as popular
items might represent very different topics. In our proposed method, popular
items are not necessarily aligned in one direction, which allows for personal
preferences to have greater impact.
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2.2.3. Adapting to asymmetric data

In many real recommender systems, the number of users is much higher
than the number of items. As an example, consider a telecommunication op-
erator with millions of subscribers in contrast to few hundred SMS/call/internet
packages. Recall that in the MF method, users and items shall be represented
in the same vector space; in the asymmetric user/item cases, the dimension
of the latter vector space is either insufficient for one side (e.g., items) or
highly redundant for the other side (e.g., users). As we explain in Section 3,
our proposed method has the advantage of using separate vector spaces for
users and items with controllable dimensions.

2.2.4. Smooth functions for smooth behavior

As explained earlier, we limit the function space H in Equation 3 to be a
subset of smooth functions. This means that the scores of any user u to items
i1 and i2 with close representations shall be similar. For instance, items 1 and
2 shown by blue circles in Figure 1d have rather close representations, and
we expect their actual ratings (point colors) to be close too. The bandwidth
in the class of low-frequency smooth functions Hsmooth (defined in the next
subsection) controls the similarity of the scores in terms of the similarity of
item representations.

2.3. Smooth scoring functions: Formulation

Before we introduce low-frequency smooth functions, we first study 1D ban-
dlimited signals and their extensions to multi-dimensional functions. Then,
we restate L in Equation 3 for this class of functions.

2.3.1. Frequency-domain representation of 1D bandlimited functions

Let s[n], n = 0, 1, . . . , N−1 be a 1D discrete-domain signal with length N
(possibly complex-valued). We say that the bandwidth of s is M (M < N

2
)

if for some complex-valued coefficients {am}Mm=−M we have

s[n] =
M∑

m=−M

ame
j 2π
N

mn, ∀ 0 ≤ n < N, (10)

where j stands for
√
−1. We can view Equation 10 as linearly relating 2M+1

Fourier coefficients {am}Mm=−M to signal samples s[n]. In case we know 2M+1
distinct samples from s, we can uniquely recover {am}Mm=−M (the resulting
linear system of equations is always invertible). It is useful to interpret
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Equation 10 as a discretization of a continuous trigonometric function at
x = n

N
:

h(x) =
M∑

m=−M

ame
j2πmx, a ∈ C2M+1, x ∈ [0, 1). (11)

As h is periodic with period T = 1, we have limited the input range to
x ∈ [0, 1). Similar to the discrete-domain signal, we call the continuous-
domain function h(x) in Equation 11 bandlimited with bandwidth M . With
this generalized definition, we can again recover the function h(x) (or its
Fourier coefficient vector a) by having r ≥ 2M + 1 samples in the range
[0, 1); however, we are no longer restricted to uniformly spaced samples (or
samples on a grid in higher dimensions).

2.3.2. From smooth behavior to bandlimited functions

It is well-known that the rate of variations in a function is directly related
to its bandwidth. In particular, smooth functions with limited variations
can be fairly approximated with low-frequency bandlimited signals. But to
make this approximation possible we need two further steps: First, while a
bandlimited function as in Equation 11 is smooth and its smoothness can
be controlled via M , it is further periodic which is not necessarily the case
for the intended scoring functions. Nevertheless, if we assume the scoring
functions are defined on a closed domain X ∈ Rd, then, they can be extended
to periodic forms. For the sake of simplicity, we shift and scale the actual
domain to coincide with X = [0, 1)d. Second, a naive periodic extension of a
generic smooth function defined over X = [0, 1)d does not necessarily result in
a smooth periodic function. Figure 2a illustrates the boundary discontinuities
formed in this way. Alternatively, as suggested in Figure 2b, we can first
mirror the signal (make it even) and then replicate it to form a periodic
function with double the period. As the original function is smooth, this
latter periodic extension is also smooth. The same concept is applicable to
higher dimensions. Figure 2c illustrates the 2D case. Here we have mirrored
the function with respect to each axis and the origin. We then replicate the
mirrored function with the period of 2. The resulting function is periodic
along both axes and has the desired smooth behavior in the whole domain,
so can be fairly approximated by bandlimited functions.
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(a)
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Original Scaled, shifted, replicated
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!
…

Mirrored

1 20

…
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(b)

x1

x2

(c)

Figure 2: Transforming an arbitrary finite length smooth functions to a periodic smooth
function. (a) 1D example. If the original function is scaled to [0, 1) and replicated, it will
not necessarily become smooth. (b) If the 1D signal is mirrored before replication, the
outcome is both smooth and periodic. (c) 2D example. With 2D mirroring and replication,
we can achieve a periodic and smooth function; the original signal over [0, 1)2 (quadrant
I) is mirrored with respect to the x2 axis (vertical) in quadrant II, with respect to the x1

axis (horizontal) in quadrant IV and with respect to both x1 and x2 axes in quadrant III.
The mirrored signal is then replicated to achieve a periodic smooth signal.

2.3.3. Frequency-domain representation of multi-dimensional real-valued mir-
rored periodic functions

The mirrored and replicated function explained in Section 2.3.2 is even
with respect to all of its inputs. In other words,

h(x) = h(x1, x2, ..., xd) = h(±x1,±x2, ...,±xd) (12)

for all possible selections of the signs. For such a real-valued even func-
tion that has period 2 in each axis, assuming h has the bandwidth of M ,
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Equation 11 can be simplified to

h(x) =
M∑

m1=0

· · ·
M∑

md=0

Am1,··· ,md

( d∏
q=1

cos(πmqxq)
)

(13)

that consists of only the cosine products. Here, x ∈ [0, 1)d and A is a d-
dimensional real-valued tensor. Given x, for all (M + 1)d possible d-tuples
(m1, . . . ,md) of {0, 1, . . . ,M} sorted in the lexicographic order, we calculate∏d

q=1 cos(πmqxq) terms in Equation 13 and stack them in form of a vector

v ∈ R(M+1)d . Clearly, v is a function of x and should be denoted as v(x).
Further, let a ∈ R(M+1)d be the vectorized form of A by following the same
lexicographic order for the indices of the elements of A. We call a the Fourier
coefficient vector of h. This allows us to rewrite Equation 13 as

h(x) = vT (x)a. (14)

2.3.4. Recovery of multi-dimensional functions

For recovering h from non-uniform samples in multi-dimensions, assume
we have r samples {si}ri=1 of h at {xi ∈ [0, 1)d}ri=1. Let us define the (M +
1)d × r matrix V as

V = [v(x1),v(x2), . . . ,v(xr)]. (15)

Note that V is a function of {xi}ri=1; however, to simplify the notations we
usually drop this dependency.

By adopting such smooth score functions h, we shall have si = h(xi) =
vT (xi)a. Thus, the Fourier coefficient vector can be related to the samples
as

s = V Ta. (16)

Here s is the column vector of r observed si values. In contrast to the 1D case,
it is not clear if (M + 1)d samples are always sufficient for unique recovery
of a in d dimensions when d > 1. Indeed, we need as many samples to make
sure that the rank of V equals or exceeds (M +1)d. When this happens, we
can first recover a based on Equation 16 and then, calculate the output of
h for any given input from Equation 14. Putting these together, the scoring
function h can be recovered as

h(x) = vT (x)(V T )†s, (17)

where † is the pseudo-inverse operator.
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2.4. Per user recovery of the scoring function

Because the scoring functions of different users are not the same, we have
to recover hu (equivalently, au) for each user u. By rewriting Equation 3
based on Equation 14, we have

Lsmooth({xi}i∈I , {au}u∈U) =
∑

(u,i,sui)∈D

(
sui − vT (xi)au

)2
+ λ

∑
u∈U

∥au∥2, (18)

where we used the L2 regularizer λ
∑

u∈U ∥au∥2 to make the estimation less
prone to overfitting when the number of rated items by a user is not large
enough. Now, the optimization problem becomes:

min
{xi}i∈I
{au}u∈U

Lsmooth

s.t. xi ∈ [0, 1)d, ∀i ∈ I. (19)

Lsmooth in Equation 18 is separable in terms of each user’s contribution to
the loss. For each user u, if we order all {sui | i ∈ I+u } in a column vector su
and use the same ordering to form Vu from {v(xi)}i∈I+

u
as in Equation 15,

then, Equation 18 can be rewritten as

Lsmooth({xi}i∈I , {au}u∈U) =
∑
u∈U

(
∥su − V T

u au∥2 + λ∥au∥2
)
. (20)

We should recall that Vu implicitly depends on item representations that are
rated by user u ({xi}i∈I+

u
).

An important property of the loss function in Equation 20 is that if item
representations {xi}i∈I are known, Lsmooth becomes separable with respect
to au; for instance, if λ is small, the optimal Fourier coefficient vectors could
be obtained as au ≈ (V T

u )†su. This property allows us to alternatively tune
item representations and Fourier coefficient vectors, as will be explained later
in Section 3.

3. Algorithms

The loss function in Equation 20 defines a non-convex minimization prob-
lem. Even when item representations are fixed, solving the simpler problem
V T

u au = su could be problematic due to ill-conditioning of the linear system
of equations, especially when the user u has a few recorded ratings.
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To reliably estimate the Fourier coefficient vectors {au}u∈U , to be also
called user representations, we group similar users into a number of clus-
ters and use a single representative for each cluster (virtually increasing the
number of available ratings). We show these representatives by {ak}k∈C and
call them cluster (frequency-domain) representations or cluster Fourier coef-
ficient vectors.

It is well-known that grouping users or items into clusters is effective in
collaborative filtering [31, 30]; here, we propose a clustering method designed
specifically for the recovery of smooth scoring functions. In this approach,
we modify Equation 20 as

Lsmooth
∗ ({xi}i∈I , {ak}k∈C, c) =

∑
u∈U

∥su − V T
u ac(u)∥2 + λ

∑
k∈C

∥ak∥2, (21)

where C is the set of clusters, c : U → C is the mapping of the users into
clusters, and the subscript ∗ is added to distinguish between the clustered
and non-clustered (Equation 20) loss functions. It is easy to see that the
non-clustered loss function defined in Equation 20 is a special case of the
clustered loss function defined in Equation 22, by assuming each user as
a separate cluster (c(u) = u). Note that again Vu in Lsmooth

∗ implicitly
depends both on item representations and the items rated by each user. In
addition, the regularization parameter λ shall be tuned via cross-validation.
The optimization problem corresponding to this clustered loss function is

min
{xi}i∈I
{ak}k∈C

c(·)

Lsmooth
∗

s.t. xi ∈ [0, 1)d, ∀i ∈ I. (22)

In the sequel, we introduce two approaches for solving the optimiza-
tion problem of Equation 22. First, we propose an alternating optimization
method with a similar formulation as in the alternating least-squares (ALS)
method previously applied to MF [14]. There, we introduce k-representation,
a clustering method inspired by k-means. Second, we propose a shallow
feed-forward neural network named SmoothRecNet, which concurrently learns
item representations, groups users into soft clusters, and learns cluster rep-
resentations. Finally, we discuss how to integrate a user-based model to
the problem, as represented in our current formulation, with an item-based
approach.
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3.1. Alternating optimization

Alternating optimization is an iterative technique in which the variables
of the loss function are divided into a number of groups and at each iteration,
the loss function is minimized over the variables in one of the groups while
the rest are assumed fixed. Thereafter, the variable group cyclically alters
within consecutive iterations. In this regard, we break down the optimization
problem of Equation 22 into the following steps:

• Update item representations : By keeping the clusters and cluster Fourier
coefficient vectors fixed, we minimize Lsmooth

∗ w.r.t. item representa-
tions {xi}i∈I . The details are covered in Section 3.1.1.

• Update clusters and cluster Fourier coefficient vectors : For fixed item
representations and consequently fixed {Vu}u∈U , we find clusters, i.e.,
the mapping c(·) with associated cluster Fourier coefficient vectors {ak}k∈C,
that minimize Lsmooth

∗ . The details are provided in Section 3.1.2.

3.1.1. Updating item representations

The first part of the alternating optimization is to minimize Lsmooth
∗ w.r.t.

item representations {xi}i∈I for a fixed c(·) and {ak}k∈C. To simplify the
equations, we separate Lsmooth

∗ of Equation 21 as a sum over items:

Lsmooth
∗ ({xi}i∈I , {ak}k∈C, c) =∑
i∈I

( ∑
u∈U+

i

lsmooth
∗ (xi,ac(u), sui)

)
+ λ

∑
k∈C

∥ak∥2, (23)

where
lsmooth
∗ (x,a, s) =

(
s− vT (x)a

)2
. (24)

This lets us update item representations independently. We use L-BFGS-B
algorithm [2, 43] from the scipy python package as the optimization algo-
rithm. The L-BFGS-B is an approximation of the BFGS algorithm from the
family of quasi-newton methods with limited memory. This algorithm uses
only the first derivative and has a suitable performance even in non-smooth
optimizations. It can further handle simple box constraints like xi ∈ [0, 1)d.
In this technique, we need to calculate the gradient of lsmooth

∗ w.r.t. xi. It is
evident that ∇xj

lsmooth
∗ (xi,ac(u), sui) is zero for all j ̸= i. For q = 1, 2, . . . , d
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we have

∂
∂xi,q

lsmooth
∗ (xi,ac(u), sui) =

2
(
sui − vT (xi)ac(u)

) (M+1)d∑
n=1

πac(u),n vn(xi)m(n, q) tan
(
πm(n, q)xi,q

)
, (25)

where m(n, q) is mq in the nth d-tuple (m1, . . . ,md) after lexicographic sort-
ing (see Section 2.3.3). An efficient implementation of this equation with
matrix multiplications is provided in our open-source python package.2

Pre-search. Before using L-BFGS-B, we make use of the current function
evaluations to update item representations. Consider we are in the tth iter-
ation and the values of {v(x(t−1)

i )}i∈I and {a(t−1)
u = a

(t−1)

c(t−1)(u)
}u∈U from the

previous iteration are available. For every i ∈ I, define

i+ = argmin
j∈I

∑
u∈U+

i

lsmooth
∗ (xj,au, su,i). (26)

Based on the representation of item i+ for item i, let us define

x
(t− 1

2
)

i = x
(t−1)

i+ . (27)

Then we use x
(t− 1

2
)

i as the input to L-BFGS-B and run a few iterations to get

x
(t)
i . This pre-search makes the optimization process less prone to stagnation

in local minima.

3.1.2. Updating clusters and cluster Fourier coefficient vectors

We propose k-representation (Algorithm 1) to find clusters and their rep-
resentations iteratively. In short, we first draw initial cluster representa-
tions {ak}k∈C from a Gaussian distribution. Then, we assign each user to
the cluster that minimizes the user’s contribution to the total loss. After
assigning users to clusters, we update each cluster representation ak, using

ak = (VkV
T
k + λI)−1Vksk. (28)

Here sk is a column vector obtained by stacking column vectors {su}u:c(u)=k,
and Vk is the concatenation of {Vu}u:c(u)=k in the second dimension. Hence,

2https://github.com/alishiraliGit/collaborative-filtering-in-the-frequency-domain
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Algorithm 1 k-representation

input:
item representations {xi}i∈I
observed ratings D
number of clusters |C|
initialization variance of cluster representations σ2

L2 penalty parameter λ.
output:
user to cluster mapping c : U → C = {1, . . . , |C|}
cluster representations {ak}k∈C

procedure k-representation
for all u ∈ U do calculate Vu from {xi}i∈I+

u

for all k ∈ C do draw a
(0)
k from N (0, σ2)

repeat
for all u ∈ U do c(t+1)(u)← argmink∥su − V T

u a
(t)
k ∥2

for all k ∈ C do calculate V
(t+1)
k by concatenating {Vu}u:c(t+1)(u)=k

for all k ∈ C do update a
(t+1)
k via Equation 28 given V

(t+1)
k

until convergence
return {a(end)

k }k∈C and c(end)(.)
end procedure

ak is the solution to the over-determined linear system of equations sk =
V T

k ak with L2 regularization.
We repeat this procedure multiple times to reach a stationary point. Sim-

ilar to the k-means clustering algorithm, we cannot establish any theoretical
guarantee for the convergence of k-representation to the global minimizer;
nevertheless, the overall loss is decreased in each iteration. We shall evaluate
the performance of the method in Section 5 on both synthetic and real data.

Boosted k-representation. By introducing both the clustering and L2 regu-
larization in Equation 28, we have improved the robustness of the inverse
problem. However, increasing the number of clusters is still a potential is-
sue in estimating the cluster Fourier coefficient vectors. Here, we propose to
learn an ensemble of weak binary clusterings instead of learning all clusters
together (Algorithm 2). The idea is to find the residuals of the predicted
ratings for each user and fit a new clustering to the residuals. Due to the
linearity of the predictions, the final representation for user u, au, will be the

19



Algorithm 2 boosted k-representation

input:
as in Algorithm 1 + number of weak clusterings (L)

output:
user representations {au}u∈U

procedure boosted k-representation
for all u ∈ U do au ← 0, , s

(0)
u ← su

for l = 1 : L do
{a(l)

k }k∈{0,1}, c(l)(·) ← k-rep. with 2 clusters and {s(l−1)
u } as ratings

for u ∈ U do
a
(l)
u ← a

(l)

c(l)(u)

s
(l)
u ← s

(l−1)
u − V T

u a
(l)
u

au ← au + a
(l)
u

end for
end for
return {au}u∈U

end procedure

sum of cluster representations of the weak clusters obtained so far to which
u belongs.

3.1.3. Time complexity of the alternating optimization

In updating item representations, for each item i, accessing an element of
the gradient ∇xi

lsmooth
∗ requires (M + 1)d operations. The time complexity

of a single iteration of the BFGS method is dominated by the operations
needed to update the inverse Hessian matrix and the matrix-vector products,
which typically take O(d2) operations in a d-dimensional space. In practice,
however, we run L-BFGS-B only for a few iterations per alternation and for
a couple of alternations; therefore, the overall time complexity of updating
item representations is O

(
(M + 1)d|I|d2

)
.

For finding the clusters, assigning user u to a cluster requires solving
argmink∥su − V T

u a
(t)
k ∥2. If there are nu training data per user u, this min-

imization requires O
(
nu(M + 1)d|C|

)
operations. Hence, updating the clus-

ters for all users requires O
(
(M + 1)d|C| |D|

)
operations, where |D| is the

size of training data. After assigning users to clusters, the matrix inver-
sion in Equation 28 for updating cluster representations is the computa-
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tional bottleneck, which needs O
(
(M + 1)3d

)
operations for a vanilla solver.

Thus, overall, updating clusters and cluster representations has a complexity
of O

(
(M+1)d|C| |D|+(M+1)3d|C|

)
. If boosted with L weak binary learners,

this complexity reduces to O
(
(M + 1)d|D|+ (M + 1)3dL

)
.

As our experiments on real-world datasets show, small values of d are
often sufficient to represent the item space. Therefore, the exponential de-
pendence on d is less of a concern.

3.2. SmoothRecNet: A shallow feed-forward network for learning smooth
scoring functions

Recent advances in deep learning have made neural networks great tools
even for traditional well-known algebraic calculations. Specifically, neural
networks can be optimized effectively with various methods and efficient
implementations that boost the training. Further, some useful techniques
such as batch normalization, drop-out, etc., are available to avoid overfitting.
In this section, we reformulate Lsmooth

∗ of Equation 21 to be based on soft
clusters instead of hard clusters and design an architecture that learns item
and user representations concurrently while predicting ratings.

3.2.1. Soft clustering

The vector-valued assignment function c : U → R|C| determines to what
extent a user belongs to each cluster; therefore, it can be interpreted as a
soft clustering. The output of c(·) for the user u is a vector such that its
kth element, shown by ck(u), indicates u’s association to cluster k. We refrain
from constraining the norm of c and let it scale appropriately for different
users. Using this vector-valued assignment function, we modify the loss in
Equation 21 as

Lsmooth
soft ({xi}i∈I , {ak}k∈C, c) =∑
u∈U

∥∥su −∑
k∈C

ck(u) V
T
u ak

∥∥2
+ λ

∑
k∈C

∥ak∥2. (29)

Figure 3 shows an architecture inspired by Equation 29. It consists of
three trainable layers (namely X-layer, soft-clustering-layer, and user-layer).
The observed ratings are supplied per item. Each neuron at the input-layer
(item-one-hot-layer) corresponds to an item, and the input vectors shall be
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of one-hot form3. Next, we have the X-layer, which is a dense layer with
d units. We interpret the weights from unit i of the input layer to the X-
layer as xi. Before the V-layer there are few non-trainable layers functioning
as

∏d
q=1 cos(πmqxq), so we see v(xi) at the output of the V-layer

4. The layer
after the V-layer is the last hidden layer with n1 neurons which we call the
soft-clustering-layer. We interpret the weights going from the V-layer to
unit k of the soft-clustering-layer as ak, i.e., the Fourier coefficient vector of
the kth soft cluster. Then, the value of each unit in the soft-clustering-layer
will be vT (xi)ak, which is the predicted rating for that cluster. Finally, the
output-layer or equivalently the user-layer is a dense layer with |U| units.
Weights going from the soft-clustering-layer to unit u of the user-layer deter-
mine c(u). We shall justify this interpretation using a synthetic dataset in
Section 5.

The drop-out layer (not depicted) after the V-layer has an important
role in preventing the network from overfitting. The drop-out technique is
justifiable because the observed ratings usually contain a lot of uncertainty
in real applications; for instance, a user might rate the same item differently
when asked twice. The drop-out layer prevents the model from overfitting by
stopping the network from relying too much on a specific part of the input
data.

3.2.2. Adding non-linearity

One way to increase the capacity of our model is to let the user scor-
ing functions depend non-linearly on the predicted cluster ratings. For this
purpose, we rewrite Equation 29 as

Lsmooth
nonlinear({xi}i∈I , {ak}k∈C, c) =∑
(u,i,sui)∈D

(
sui − gu({vT (xi)ak}k∈C)

)2
+ λ

∑
k∈C

∥ak∥2, (30)

where gu : R|C| → R is any function that combines the predicted ratings of
|C| clusters to predict the rating of user u. In Figure 3, we have proposed

3Note that extending the input-layer with further neurons enables us to model side
information; nevertheless, we ignore any side information for now.

4Autograd engines do not require explicit layers and structures as we have provided
in Figure 3. But to make our approach implementable within all popular deep learning
frameworks, we have demonstrated our design based on typically available layers.
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Figure 3: A neural network inspired by Equation 29. The names of the layers are written
on top. The value below a layer name shows the number of neurons in that layer. Given
the one-hot representation of an item i, we first extract its representation, xi, in the X-
layer. Then, we use additional layers (red and green boxes) to construct the product of
cosine terms in the definition of v(xi). The V-layer outputs v(xi) and the outputs of the
following layer act as soft-clustering results. Finally, the predicted ratings for all users
appear in the user-layer. The blue box in the right part of the figure shows the non-linear
extension of user representations explained in Section 3.2.2.

the implementation of gu(·) using two additional hidden layers in the right
panel with tanh activation function. We usually set n1 = n3 matching the
number of soft clusters in the data. Let W2 and W3 be the weights of these
two dense hidden layers, mathematically, gu(·) can be written as

gu({vT
i ak}k∈C) =

∑
q∈C̃

c̃q(u) g̃q(W2,W3, {vT
i ak}k∈C), (31)

where |C̃| = n3. In this equation, we interpret C̃ as the set of super-clusters

that non-linearly combine the output of clusters in C. Then, c̃ : U → R|C̃| will
be the (soft) assignment function of the users to super-clusters. With this
formulation, one can still interpret the weights going from the last hidden
layer to the user-layer as the inclusion of those users in super-clusters.

3.3. Combining user-based and item-based predictors

So far we have assumed that items are mapped to a vector space, and users
have scoring functions (user-based method). However, it is also possible to
consider to consider it the other way around: items score users (item-based
method). A simple way of combining user-based and item-based methods
is to do a linear regression of the predictions made by both methods to the
observed ratings. This linearity preserves the interpretability of the represen-
tations and simplicity of our approach. The validation part of the data will
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serve for estimating the coefficients of the regression. We observed that com-
bining user-based and item-based methods significantly improves the quality
of predictions.

4. Mitigating the effect of missing-not-at-random observations

Observed ratings are often collected using another RS called the logging
RS. Since the logging RS aims at recommending favorable items, we expect
the available ratings to be no longer randomly observed and oftentimes with
a higher average compared to unobserved ratings [26]. In addition, even
when the logging RS had no intention of offering favorable items, users have
a tendency to provide feedback only for items they liked. The combination of
these two phenomena result in distribution mismatch between the available
and unavailable ratings, which is called in the literature as data with missing-
not-at-random (MNAR) [16].

In this section, we address the challenge of missing-not-at-random ob-
servations in three different ways. First, we shall explain how the popular
method of inverse propensity scoring can be applied to our method. Pow-
ered by the simplicity of our formulation, we then propose an effective bias
correction method that can be applied without any further training and ex-
plicit propensity scores. Finally, we shall briefly discuss how we can leverage
frequency-domain intuitions to obtain a frequency-aware regularization as a
mean of filtering. Before further explaining the methods, we explicitly define
the model.

Model. Let O = {(u, i) | u ∈ U , i ∈ I+u } be the set of user-item pairs with
observed ratings. Define observation matrix O ∈ {0, 1}|U|×|I| with Oui = 1
if and only if (u, i) ∈ O. Oui is a random variable with propensity score
Pui = Pr(Oui = 1) = E[Oui]. Generally, Pui depends on the rating sui itself
and side information zu and zi from user u and item i that was available
to the logging RS. Depending on our knowledge about the logging RS, two
settings can be distinguished: i) in the experimental setting, the mechanism
of the logging RS and consequently propensity scores are known, while ii)
in the observational setting, propensity scores should be estimated. Unless
otherwise stated, we assume the observational setting. Note that in the
absence of side information, we need to estimate Pui as a function of sui.
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4.1. Inverse propensity scoring (IPS)

Given a set of true and estimated ratings {sui} and {ŝui}, respectively,
we are interested in the total loss over all possible user-item ratings:

L∗({ŝui}) =
∑

u∈U ,i∈I

l(sui, ŝui). (32)

Here l(·, ·) is the specific form of the loss (e.g., the squared error (sui− ŝui)2).
Unfortunately, L∗ cannot be evaluated as observing sui for (u, i) /∈ O requires
further experimentation. Instead, we can hope the total loss on a holdout
subset Dtest from the observed data is a fair representative:

Ltest({ŝui}) =
∑

(u,i,sui)∈Dtest

l(sui, ŝui) =
∑

u∈U ,i∈I

Oui Tui l(sui, ŝui). (33)

Here, Tui is a binary random variable indicating whether the rating from
user u to item i is included in the test set given this rating is observed. We

assume this inclusion is completely random: Tui
i.i.d.∼ Bernoulli(q). We shall

now discuss how Oui is distributed. Under missing completely at random

assumption Oui
i.i.d.∼ Bernoulli(p). In this case, E[Ltest({ŝui})] = pqL∗({ŝui});

therefore, Ltest is a scaled version of L∗ in expectation5, and can be used as
a reliable measure of prediction performance6.

With missing not at random data, in general sui can affect Oui and
E[Ltest({ŝui})] will be a distorted version of L∗({ŝui}). However, given ac-
curate non-zero propensity scores, there is still a simple fix called inverse
propensity scoring (IPS):

LIPS,test({ŝui}) =
∑

(u,i,sui)∈Dtest

1
Pui
l(sui, ŝui). (34)

5There is a subtlety taking the expectation here. In fact, estimated ratings depend on
the part of data that are observed, and one might expect to see the randomness of Oui

to exist in ŝui as well. This could be true if the same set of ratings was used for training
and test. To see this, note that the summand in Ltest is only nonzero if Tui = 1. But this
means that the data is included in the test, thus, Oui ⊥⊥ ŝui|Tui = 1.

6It is common to interpret the performance on the test data as the true performance.
However, there is always a possibility of information leak from the test set after many
evaluations on the same set, known as adaptation. This is beyond the scope of our study
and is extensively discussed in other works [6, 26].
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It is straightforward to see that the IPS estimator is simply a scaled version
of L∗7:

E[LIPS,test({ŝui})] = E
[ ∑
u∈U ,i∈I

Oui

Pui
Tuil(sui, ŝui)

]
=

∑
u∈U ,i∈I

E[Oui]
Pui

q l(sui, ŝui) = qL∗({ŝui}). (35)

Thus far, we defined the IPS estimator on the test data. We can similarly
weight the training data by the inverse propensity scores and reduce the
effect of not-at-random missing data on the obtained predictor. Particularly,
neglecting the regularization terms, IPS can be similarly applied to all of
the loss functions previously defined. For example, IPS-corrected version of
Lsmooth in Equation 18 is given by

Lsmooth,IPS({xi}i∈I , {au}u∈U) =
∑

(u,i,sui)∈D

1
Pui

(
sui − vT (xi)au

)2
. (36)

IPS is known to suffer from high variance. Techniques like propensity
clipping [27], doubly-robust estimation [5], and self-normaliztion [29] can be
applied to further improve the IPS.

4.2. Test-time bias correction

IPS provides a way to correct any loss function through reweighting of
the samples. If applied during training, it can indirectly correct the obtained
predictor. But the simplicity of our formulation allows a more direct way to
correct the obtained predictor without retraining it which unlike IPS does
not require explicit propensity scores. We call the proposed method test-time
bias correction and explain it below.

We shall correct the bias per user. Hence, for a fixed user u, we drop
all subscripts u to simplify the notation. Assume that the ratings of user u
follow the mentioned smooth form of Equation 14 with the bandwidth M∗

and Fourier coefficient vector a∗, except for an additive noise:

si = vT
M∗(xi)a

∗ + ni. (37)

We assume nis are independent and identically distributed (i.i.d.) with a
zero mean and variance σ2

n.

7In fact, normalizing the IPS estimator by a factor of q results in an unbiased estimator.
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For fixed item representations {xi}i∈I , we want to recover a∗ from ob-
served ratings. To do so, we use smooth functions of bandwidth M and
minimize the contribution of the user in Lsmooth of Equation 18:

l(a) =
∑
i∈I+

(vT
M(xi)a− vT

M∗(xi)a
∗ − ni)

2 + ∥Ca∥2. (38)

Here C is a diagonal weight matrix8. We further assume M is sufficiently
large, i.e., M ≥ M∗. By adding zero elements to a∗ for higher frequencies,
we can use vM instead of vM∗ in Equation 37. For simplicity, we still show
the zero-padded a∗ as a∗ and drop the subscript M from vM . With these
conventions, we can simplify Equation 38 as

l(a) =
∑
i∈I+

(vT (xi)∆a− ni)
2 + ∥Ca∥2, (39)

where ∆a = a − a∗. Since l(a) is smooth and convex in a, we can find its
minimizer using ∇al = 0.Define K̂+ =

∑
i∈I+ v(xi)v

T (xi). If the regular-

ization term is sufficiently large so that (K̂+ +C) is not singular, it is easy
to verify that â below solves the first-order condition:

â = (K̂+ +C)−1K̂+a∗ + (K̂+ +C)−1
( ∑

i∈I+

v(xi)ni

)
. (40)

In a standard ridge regression setting, the second term of the right-hand-side
called the noise term, is centered around zero and often neglected. But this
might not be the case when I+ is not a random subset of I. Particularly,
for larger sis we expect to have larger nis. This implies that the noise term
might add an unwanted bias to our estimation. Next, we first formalize this
intuition by modeling the first-order effect of si on the observation probabil-
ity. Then, we explain how to estimate the model parameters and correct â
by subtracting the estimated noise term.

4.2.1. Missing data model

In a missing completely at random setting, Pi = Pr(Oi = 1) = p0 for all
items. But in a missing not at random setting, Pi can depend on si. We

8C is the identity matrix in Equation 18 but in general we can use different weights
for each component of a.
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study the first-order approximation

Pi ≈ p0(1 + α∗(si − µ∗)), (41)

where µ∗ = 1
|I|

∑
i∈I si and α

∗ ≪ 1 by assumption. Next, we discuss how to
estimate µ∗ and α∗.

4.2.2. Estimating missing data model parameters

We estimate µ∗ by approximating si ≈ vT (xi)â for unobserved items i ∈
I−:

µ̂ =
1

|I|

( ∑
i∈I+

si +
∑
i∈I−

vT (xi)â
)
. (42)

To estimate α∗, we maximize the likelihood

pα({si}i∈I) =
∏
i∈I+

p0
(
1 + α(si − µ̂)

) ∏
i∈I−

(
1− p0

(
1 + α(si − µ̂)

))
, (43)

w.r.t. α. However, {si}i∈I− are not observed. So, we plug in si ≈ vT (xi)â
for i ∈ I− and find

α̂ = argmax
α

pα({si}i∈I+ , {vT (xi)â}i∈I−). (44)

This maximization can be solved efficiently. In fact, pα is a polynomial in α
with |I| roots. Let R+ = { 1

µ̂−si
}i∈I+ be the roots corresponding to I+ terms

and R− = { 1−p0
p0(si−µ̂)

}I− be the roots corresponding to I− terms. These two

sets together form all of the roots R = R+∪R− of pα.We are only interested
in the feasible region where p0

(
1 + α(si − µ̂)

)
and 1− p0

(
1 + α(si − µ̂)

)
are

positive for all i. Thus, for r ∈ R+, if r > 0, we are interested in α < r, and
if r < 0, we only need to search α > r. One can see that similar conditions
hold for r ∈ R−. Overall, our search space is limited to

A = (max
r∈R
{r | r < 0},min

r∈R
{r | r > 0}). (45)

In other words, we need to search only the range between the two roots
closest to the origin from left and right. Since pα is a real-rooted polynomial
and no other root is in this interval, pα has a single mode in A and we can
use simple algorithms like golden section search to find its maximizer.
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4.2.3. Bias correction

Note that the expected value of the noise term in Equation 40 follows

E
[
(K̂ +C)−1

∑
i∈I+

v(xi)ni

]
= (K̂ +C)−1

∑
i∈I

v(xi)E[niOi] (46)

Now, we can leverage the estimated missing data model to find E[niOi]:

E[niOi] = E
[
niE[Oi|ni]

]
= E

[
ni(1 + α̂(si − µ̂))

]
(47)

= E
[
ni(1 + α̂(v(xi)

Ta∗ + ni − µ̂))
]
= α̂σ2

n. (48)

The last missing piece is σ2
n. We can approximate it by σ̂2

n = 1
|I+|

∑
i∈I+(si−

vT (xi)â)
2. Putting these all together, we can subtract the expected noise

term from â and obtain a bias-corrected estimation:

âbc = â− α̂σ̂2
n(K̂ +C)−1

(∑
i∈I

v(xi)
)

(49)

It should be noted that all the parameters in Equation 49 are estimated from
the observed data. In practice, we minimize the empirical loss and obtain â.
Then, at the test time, we use Equation 49 to correct for the induced bias.

4.3. Frequency-aware regularization

An advantage of our framework is the possibility to have frequency do-
main interpretation from variables. For example, we might expect a user’s
general interest in romance movies to appear in lower frequencies, while
his/her specific interest in contemporary vs. historical romance to exist in
higher frequencies. Since user behavior is smooth, it is often easier to recover
strong lower-frequency coefficients than higher-frequency ones. Therefore,
we penalize higher-frequency coefficients with a larger regularization term.
This can be seen as an indirect way of low-pass filtering.

Let a be a user or a cluster Fourier coefficient vector. Remember a is the
vectorized form of the d-dimensional tensor A by following a lexicographic
order (Equation 13). Therefore, we can rewrite the L2 regularization of a as

λ∥a∥2 =
M∑

m1=0

· · ·
M∑

md=0

λA2
m1,··· ,md

. (50)
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Table 1: Summary of the datasets.

Dataset #User #Item #Rating Density Range

Jester 1 48,483 100 3,519,324 0.73 [-10, 10]
Synthetic 50 200 variable variable 1, 2, ..., 5
ML-100k 943 1,682 100,000 0.063 1, 2, ..., 5
ML-1M 6,040 3,706 1,000,209 0.045 1, 2, ..., 5

Yahoo! Music 15,400 1000 311,704 0.020 1, 2, ..., 5
Coat 290 300 6,960 0.08 1, 2, ..., 5

In frequency-aware regularization, instead of equally weighting Am1,··· ,md
s by

a factor of λ, we propose to use a frequency-aware weight of w(m1, · · · ,md).
The optimal choice of w(·) depends on our assumption about the signal
bandwidth, noise model, and optimality criteria. As a proof of concept, we
shall use a simple weighting that exponentially penalizes higher-frequency
terms:

w(m1, · · · ,md) = λγ(
∑d

q=1 mq). (51)

Here, γ ≥ 1 is a hyper-parameter that can be tuned by cross-validation.

5. Experiments

We consider six datasets for evaluating the performance of our proposed
methods; they include the MovieLens-100k (ML-100k) and MovieLens-1M
(ML-1M) datasets [10], the Yahoo! Music (R3) dataset9, the Jester 1 dataset [8],
the coat shopping dataset [23], and a synthetic dataset. The details of each
are provided in Table 1. Next, we briefly introduce the datasets and the
experiments. Details for each experiment and the results will follow in sub-
sequent sections.

As explained in Section 2.2.3, our proposed scoring functions could be
adapted to asymmetric data, where the number of users is much higher than
the number of items (or vice versa). We use Jester 1 as a representative of
asymmetric datasets to justify this argument in Section 5.1.

The synthetic data is created to assess our clustering methods; for this
purpose, a number of cluster representations (Fourier coefficients) are chosen

9Yahoo! Webscope dataset (ydata-ymusic-rating-study-v1 0) available at http://

research.yahoo.com/Academic_Relations
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at random. Then, each user is placed randomly around one of the cluster
representations. We study the performance of different clustering methods
for different levels of clustering difficulty. See Section 5.2 for a detailed dis-
cussion.

We use the MovieLens datasets10 ML-100k and ML-1M as two of the
most common benchmarks for collaborative filtering to compare the error
of our predicted ratings with well-established latent feature methods. We
also assess our approach on the sparser Yahoo! Music dataset. Performance
details are provided in Section 5.3.

Finally, the coat shopping dataset consisting of a missed-not-at-random
training set and a missed-completely-at-random test set is used to evaluate
the proposed debiasing methods. Check Section 5.4 for the details of the
experiment and the results.

5.1. Adapting to asymmetric data

As we explained in Section 2.2.3, the more ratings we have per item or
user, the more accurate is the estimated model for the item or the user.
However, as the MF technique forces the users and items to be in the same
vector space, the complexity of item/user representations is essentially equal.
In contrast, we have control over the complexity of the functions in our
approach by tuning their bandwidth M , while preserving the dimension of
the space d (dimension of item representation).

To demonstrate the effect of changing M , we use the Jester 1 dataset,
which has a large number of ratings per item. Data is split into 80%, 10%,
and 10% partitions, for training, validation, and test, respectively. We did
cross-validation to choose the appropriate regularization coefficient λ.

In this experiment, we used an item-based method where items are as-
sociated with smooth scoring functions (see Section 3.3). For each user, we
used the alternating optimization (Section 3.1) without clustering to obtain
user representations and item Fourier coefficient vectors.11 Although the
clustering method is helpful here, we did not cluster users/items to have a
fair comparison with PMF [18] as the baseline. To train the PMF, we used
the alternating least squares method. We kept d = 2 (the dimension of the
user space) for all methods. In practice, nevertheless, PMF and our method

10https://grouplens.org/datasets/movielens/
11In the item-based setting, we represent users with d-dimensional vectors and find the

item scoring functions.
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Figure 4: Keeping the dimension of user latent space d fixed, the RMSE of predicted
ratings on the test set of Jester 1 dataset is plotted for PMF and our item-based method
(for M = 2 and M = 3). The black dots mark the best performance among the three
methods for each number of users.

use higher dimensional representations; the choice of d = 2 is solely for the
purpose of insightful demonstrations.

Figure 4 shows the performance for M = 2 and M = 3 compared to the
PMF baseline. The performance is reported in terms of the RMSE on the test
data, and the best performance is marked. Two observations can be made
from these numbers: First, the larger the number of users, the better the
results for larger M . Second, by adaptive controlling of M , the performance
of our method does not saturate and its gap with the baseline increases.

5.2. Evaluating k-representation clustering and interpretability of SmoothRec-
Net’s soft clustering

In Section 3.1.2, we proposed the k-representation clustering and its
boosted version. We also interpreted one of the SmoothRecNet’s layers as
a soft clustering mechanism. In this section, we investigate these clustering
methods through experiments on synthetic data. Note that these meth-
ods do not explicitly penalize miss-clustering. Instead, they minimize the
within-cluster reconstruction cost. When clusters are clearly distinguishable,
we anticipate these methods to perform fairly well and show this in the fol-
lowing.
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We use synthetic data to assess clustering methods. We consider 200 items
in a 2D space and draw item representations independently from Uniform(0, 1).
We assume there are 4 clusters and the [cluster] scoring functions have a
bandwidth of M = 3. We draw 16D cluster Fourier coefficient vectors, also
called cluster representations, from N (0, 0.12). Then, we randomly assign
50 users to the clusters. Users are placed within each cluster randomly
around the cluster’s representation in the frequency domain. More precisely,
in cluster k with representation ak, we draw the user representation from
ak +N (0, σ2

within). The within-cluster variance σ
2
within is a parameter that we

tune to control the distinguishability of the clusters. With given user and
item representations, we derive ground-truth ratings. We then, randomly
include a subset of these ratings as observed ratings and control the density
of observed ratings in our experiments.

To measure the matching between the identified clusters and the original
ones, we employ the adjusted rand index (ARI) [32]. For two clusterings with
the same domain U , ARI can be calculated from their contingency matrix
and intuitively shows the rate of agreement between the two clusterings if u
is randomly chosen from U12. ARI takes the maximum value of 1 for identical
clusterings and the minimum value of 0 when the clusterings are perceived as
fully random with respect to each other. ARI has the advantage of comparing
two clusterings even with different numbers of clusters.

To use the ARI metric, we need a hard clustering of users. However, this
is not the case in SmoothRecNet. Therefore, we associate each user in our
user-layer in Figure 3 to the neuron (cluster) in the last hidden unit with the
largest absolute weight. Although this technique violates the main goal of
soft clustering, it provides us with a measure of clustering accuracy.

In the first experiment, we assume that all the clustering methods choose
the correct number of clusters consistent with the true underlying data. For
a density of observed data of 0.1, we vary σ2

within and compare the ARI of
the clustering methods. We measure the distinguishability of the clusters by
the discrimination index, defined as the ratio of between-cluster to within-
cluster standard deviations: 0.1/σwithin. Figure 5a presents the ARI curves
in terms of the discrimination index of the clusters. We observe that the
boosted k-representation performs well when clusters have high discrimina-
tion indices. But its performance degrades when the clusters are cluttered.

12We use the reference implementation from sklearn python package.
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Also, as expected, we obtain inferior results from the soft-clustering layer;
however, since the ARI is meaningfully above zero, our interpretation of soft
clustering is justified.

In the second experiment, for a fixed discrimination index of 10, we vary
the density of observations and compare the methods in terms of their ARI.
Figure 5b, shows ARI versus the density of the rating matrix. While the
k-representation has the best performance at low densities, its performance
drops when the density exceeds a threshold. This might be due to the in-
volved regularization term.

Finally, in Figure 5c, we study the robustness to the error in estimating
the number of clusters. Here, the true number of clusters is kept fixed at
four and the algorithm’s number of clusters is varied. One can see that k-
representation and its boosted version are fairly robust and none of them
dominates the other one in all regions.

5.3. Evaluating the predicted ratings

5.3.1. Data split

For ML-100k, we adhere to the prescribed test sets, each comprising of
20% of the data. We use the 80% data allocated for the training, we use
75% for training and 5% for validation. The validation data is employed for
fine-tuning the hyperparameters. The data split is consistent across all the
methods compared in this section. We report the median root mean-squared
error (RMSE) obtained from each of the five test sets as the final performance
of the method on ML-100k.

For ML-1M and Yahoo! Music, 85%, 5%, and 10% of the data are used
for training, validation, and test, respectively. These numbers are consistent
across all methods.

5.3.2. Model parameters

Proposed methods. The key model parameters used for each of the proposed
methods (alternating optimization and SmoothRecNet) and each dataset are
provided in Table 2. Other parameters can be found in our publicly avail-
able python package13. For the alternating optimization, we experimented
with values of d ranging from 2 to 7 and M from 3 to 7. Additionally, we
tested with 10 and 15 weak learners for boosted k-representation. Regarding

13https://github.com/alishiraliGit/collaborative-filtering-in-the-frequency-domain
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Figure 5: Evaluation of the clustering methods on synthetic data.

the L2 regularization parameter, we considered values of 1, 3, 10, and 30.
For SmoothRecNet, we explored similar options for d and M . We limited
our exploration to just two configurations for the number of hidden layers,
corresponding to either 5 or 10 soft clusters. Training SmoothRecNet on
our largest benchmark, ML-1M, using a single V100 GPU takes less than 30
minutes and requires less than 1 GB of GPU RAM.

Baseline methods.. We used PMF [18], BPMF [21], NNMF [7], MLP, and
NCF [11] as the baselines. These are all well-known and widely adopted
latent feature methods that perform closely to the state-of-the-art collabo-
rative filtering methods or even outperform many of the recent methods if
tuned extesnively [20]. Note that MLP and NCF were originally introduced
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Table 2: Model parameters for the proposed methods. Numbers in parentheses show the
different values used for the item-based setting (if any). For SmoothRecNet, we used a
dropout ratio of 0.1 in all settings.

Method Dataset d M Other parameters

Alt. optim.
ML-100k 3 7 boosted k-rep. w/ 10 learners, λ = 30
ML-1M 3 7 boosted k-rep. w/ 15 learners, λ = 1
Yahoo! 2 3 (4) boosted k-rep. w/ 10 learners, λ = 10

SmoothRecNet
ML-100k 5 3 n1 = n3 = 5 (10), n3 = 50 (100)
ML-1M 4 5 n1 = n3 = 10, n2 = 100
Yahoo! 7 (3) 3 (5) n1 = n3 = 5, n2 = 50

for implicit feedback prediction but we modified and optimized them for gen-
eral rating prediction tasks. For PMF, we tuned the dimension of the latent
feature space as 10, 20, and 10014. For all three datasets, we found that a 10-
dimensional space with 0.01 regularization was the best parameter setting.
For BPMF, we used reference parameters, employing a 10-dimensional latent
feature space and setting β to 5 for the prior on the observation noise. We
ran the algorithm for 50 epochs. For MLP and NCF, we conducted tuning
experiments for the embedding size, considering values of 16, 32, 64, and
128. In the case of NCF, we additionally tuned the MF embedding size to
be 4, 8, 16, and 32. For MLP, we set the embedding size to 16, 32, and 64 on
ML-100k, ML-1M, and Yahoo! Music, respectively. For NCF, we found that
the embedding size of 32 was the optimal choice for ML-100k and ML-1M,
while the embedding size of 64 was ideal for Yahoo! Music. Additionally, we
found that the MF embedding size of 8 yielded the best results for NCF.

5.3.3. Performance comparison in rating prediction

We compare the RMSE of prediction on test data of ML-100k, ML-1M,
and Yahoo! Music in Table 3. The performance of our proposed methods is
evaluated after linearly combining user-based and item-based predictors as
explained in Section 3.3.

One can see that SmoothRecNet, despite its simplicity and interpretabil-
ity, outperforms other methods on ML-100k and Yahoo! Music, and closely

14We used a reference implementation for PMF and BPMF from https://www.cs.

toronto.edu/~rsalakhu/BPMF.html
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Table 3: RMSE comparison on ML-100k, ML-1M, and Yahoo! Music.

Method ML-100k ML-1M Yahoo! Music

PMF 0.951 0.877 1.274
BPMF 0.920 0.849 1.296
NNMF 0.948 0.892 1.280
MLP 0.926 0.881 1.224
NCF 0.920 0.870 1.221

Alternating optimization (ours) 0.920 0.865 1.215
SmoothRecNet (ours) 0.914 0.858 1.215

follows BPMF on ML-1M. This comparison is insightful as NNMF, MLP, and
NCF are all neural network extensions to MF. However, we believe that these
extensions might not be consistent with the smoothness of human behavior
which is the basis for the development of our algorithms.

We should mention that our comparison is not comprehensive here. Specif-
ically, graph feature models are excluded from our analysis; for example,
graph convolutional matrix completion (GC-MC) [1] outperforms our method
on ML-100k and ML-1M datasets. We limited our scope to the state-of-the-
art latent feature models which have similar complexity to our method. As
discussed earlier, latent feature models are easy to scale and interpret, and
their performance can be improved by applying standard techniques to aug-
ment them with graph features. Moreover, recent investigations have shown
that by extensive fine-tuning of the baseline latent feature models, one can
surpass nearly all recent methods, making matrix factorization techniques a
challenging baseline to surpass [20].

We would also like to emphasize that our evaluation of predicted rat-
ing errors is intended to demonstrate sufficient predictive capability rather
than competitiveness. In fact, progress in predictive performance has been
relatively slow in recent years, with other aspects of recommender systems
taking center stage. These include the capacity to offer interpretable rec-
ommendations and addressing potential distribution shifts from training to
testing data. Our frequency-domain representations offer an interpretable
and straightforward formulation for recommendation that can tackle some of
these challenges from a fresh perspective.
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5.4. Robustness to missing-not-at-random

The coat shopping dataset [23] is special in the way that it provides both
missed-not-at-random (MNAR) and missed-completely-at-random (MCAR)
data. To collect this dataset, annotators were first asked to explore an online
store and shop coats. Then, they were asked to rate 24 coats they explored
(self-selected and so MNAR) and 16 randomly picked coats (MCAR).

We use the MNAR part of the data to train our algorithms (10% for
validation) and use the MCAR part as the test data. For methods that
use IPS, we use the propensity scores provided by dataset creators. These
scores are obtained from a standard regularized logistic regression using side
information (e.g., gender, coat type, etc.). As the baseline, we compare
against MF corrected by IPS as it was shown to be a promising technique
in the MNAR setting [23]. We use our (user-based) alternating optimization
method with d = 2, m = 3, which uses boosted k-representation with k = 10
for clustering. In terms of complexity, our algorithm and MF are equally
simple. We shall compare various versions of our alternating optimization
method augmented with IPS, test-time bias correction, and frequency-aware
regularization (γ = 1.2).

Table 4 shows RMSE on the MCAR portion of the data. First of all, as
we previously observed, alternating optimization is superior to MF and this
is preserved with IPS as well. Second, the standard methods of MF and our
alternating optimization perform poorly when MNAR is not addressed. This,
once again shows the significance of the distribution shift from observed to
unobserved data in the offline evaluation of recommender systems. Third,
unlike the methods with IPS, our bias correction does not require any explicit
propensity score. It also does not require any retraining. Despite this sim-
plicity, it has been extremely helpful in mitigating the effect of MNAR. Last
but not least, frequency-aware regularization rooted in our intuition from the
frequency domain behavior of the users, although not directly related to the
MNAR effect, is helpful in reducing the effect of distribution shift. Overall,
the flexibility of our formulation allows for various ways to address MNAR
and they all turned out to be effective.

6. Conclusion

In this work, we considered the problem of collaborative filtering by mod-
eling user-to-item scores as smooth functions. We first motivated the use of
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Table 4: MSE on missed-completely-at-random test set of Coat.

Method Coat

MF 1.202
MF with IPS 1.093

Alternating optimization 1.123
Alt. optim. w/ IPS 1.077
Alt. optim. w/ IPS and freq.-aware reg. 1.071
Alt. optim. w/ bias correction 1.070
Alt. optim. w/ bias correction and freq.-aware reg. 1.067

such a class of functions and developed the mathematical background to for-
mulate the problem in this manner. Next, we proposed practical algorithms
to learn user and item representations. The algorithms were capable of im-
plicitly or explicitly clustering the users while learning the representations.
In accordance with previous findings, we showed that this clustering is helpful
in having better predictions.

On the empirical side, we tested our methods on 6 different datasets.
First, we showed our method’s capability of handling asymmetric data where
there are many more users than items (or vice versa). Second, using a syn-
thetic dataset, we showed how the introduced clustering methods work in
practice. We further showed that weights in the proposed neural network
architecture could be attributed to the soft clustering of the users. Third, we
used three benchmark datasets to compare the predictive performance of the
proposed methods with widely adopted latent feature models of similar com-
plexity. Despite the simplicity and interpretability of the proposed methods,
we achieved comparable performance with the best-performing latent feature
models.

Last but not least, we extended our framework to address missed-not-
at-random settings, where the distribution of unobserved ratings possibly
deviates from the observed ones. We showed how the popular technique of
inverse propensity scoring can be incorporated into our method. Powered by
the simplicity of our formulation, we introduced test-time bias correction that
can effectively cancel out the missed-not-at-random effect. We also proposed
frequency-aware regularization as a proof of concept of how frequency domain
interpretation of the representations can be helpful in making learning more
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robust. We demonstrated the effectiveness of all the aforementioned methods
on a dataset that unconventionally had provided a portion of data missed
completely at random.

In sum, the proposed frequency domain representation provides a natural
and flexible way to model users and items. Beyond predictive power, this
space can provide a new lens to the common issues of recommender systems.
For example, the popularity bias can be formalized as the dominance of
lower-frequency terms or the level of personalization can be controlled by
the user based on a single bandwidth parameter. We encourage future works
pursuing these new formalisms and possibly new solutions in the frequency
domain.
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