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Abstract—In this paper, within the radar context, we explore
the development of decision-making approaches capable of effec-
tively rejecting mismatched signals within Gaussian interference
with an unfamiliar covariance matrix. To achieve this, we employ
the least absolute shrinkage and selection operator (LASSO)
optimization as a sparse recovery framework, solved efficiently
using the alternating direction method of multipliers (ADMM),
to amplify the precision in estimating the target angle of arrival
(AOA). The outcomes of this estimation procedure serve as the
foundation for the detection frameworks, whether the one-step
detector (OSD) or the two-step detector (TSD) approaches that
rely on the generalized likelihood ratio test (GLRT) and adaptive
matched filter (AMF). Importantly, these decision-making pro-
tocols provide a descent balance between detection performance
(for matching signals) and rejecting undesired signals. During the
analysis phase, we evaluate the effectiveness of our introduced
detectors in comparison to the existing selective counterparts.
The findings indicate that our proposed detectors surpass their
counterparts in rejecting undesired signals, while sustaining a
commendable level of detection performance for matching sig-
nals. Additionally, unlike most alternative methods, our proposed
detectors demonstrate an acceptable level of execution time.

Keywords: Alternating direction method of multipliers
(ADMM), angle of arrival (AOA), one-step detector (OSD), two-
step detector (TSD).

I. INTRODUCTION

IN recent years, the radar field has witnessed a growing
interest in developing adaptive detection systems to tackle

mismatched signals [1–32]. In real-world scenarios, environ-
mental and equipment factors can cause the reflected signal
from a target to deviate from the main beam’s expected
direction. Such deviations significantly degrade detection per-
formance and increase the likelihood of inaccurate estimates of
the target’s directional parameters. Mismatched signals often
stem from a variety of non-idealities, including the presence
of coherent jammers, resilient targets in sidelobes, imperfect
modeling of the main lobe’s steering vector, multipath prop-
agation, and uncertainties in array calibration [7]. Traditional
adaptive detection algorithms, particularly those relying on the
assumption of perfect alignment between nominal and actual
steering vectors [16–22], display varying degrees of sensitivity
when confronted with such mismatched signals. They can be
categorized based on their directivity, which is defined as the
ability to detect or suppress mismatched signals [23]:

One category consists of robust decision approaches, de-
signed to deliver excellent detection performance in the pres-
ence of off-grid conditions caused by angle and/or Doppler
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quantization. Such conditions can result in the actual steering
vector misaligning with the nominal one. Subspace detectors,
such as those proposed in [33–37], can be placed in this
category.

Another category includes selective decision frameworks,
which excel at rejecting signals whose characteristics differ
from those of the target signal. By focusing on identifying and
discarding mismatched signals, these frameworks effectively
minimize false alarms, as demonstrated in [2, 4, 19, 38].

In practical scenarios, selective detectors are particularly
useful for managing crowded environments or countering
electronic countermeasures, such as coherent jammers [39].
Meanwhile, robust architectures are well-suited for covering
wide angular regions with a limited number of filters (pointing
directions) or detecting mismatched signals within the main
beam. It is important to note that while enhanced selectivity is
advantageous, it often comes at the cost of matched detection
performance. Conversely, robust architectures maintain strong
matched detection capabilities [20, 40–60]. In this context,
the adaptive matched filter (AMF) [18] exemplifies a robust
receiver. On the other hand, Kelly’s detector is classified as
a moderately selective receiver [61]. Additional examples of
selective receivers include the adaptive coherence estimator
(ACE) [9], also known as the adaptive normalized matched
filter, as well as the adaptive beamformer orthogonal rejection
test (ABORT) and whitened-ABORT (W-ABORT) detectors
[51–53], and the Rao detector [20].

Therefore, the need for a decision scheme adaptable to
different scenarios has led to the development of tunable
detectors. These detectors can adjust their focus through well-
defined design parameters, offering a balanced compromise
between matched detection proficiency and the rejection of
undesired signals. This establishes a notable paradigm in
adaptive signal processing. Various design approaches, such as
the combination of decision statistics of existing detectors and
subspace detection techniques, are considered for the creation
of these tunable architectures. Each approach presents distinct
advantages in achieving the delicate balance between focus
and detection accuracy. For example, the two-stage approach,
which employs two decision schemes with contrasting focus
behaviors in sequence, emerges as a powerful tool in the
design of tunable architectures [7–14]. It offers a complex
balance between directivity control and matched detection
performance across various operational thresholds.

A. Contributions

In this paper, we present novel adaptive radar detection
structures designed to enhance selectivity while maintaining
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robust detection capabilities in the presence of Gaussian inter-
ference with unknown covariance. In our paper, we combine
the least absolute shrinkage and selection operator (LASSO)
optimization [62] as a sparsity-promoting algorithm, efficiently
solved using the alternating direction method of multipliers
(ADMM), with statistical hypothesis testing techniques such
as the generalized likelihood ratio test (GLRT) [19] and
the adaptive matched filter (AMF) [18]. The motivation for
utilizing sparsity arises from the intrinsic nature of radar
environments and the complexities of target detection in
challenging scenarios. In radar applications, the number of
targets within a given range bin is usually much smaller
than the total number of potential azimuth bins, making the
problem inherently sparse. By leveraging this sparsity, we can
achieve more precise and computationally efficient results.
To further enhance the removal of undesired non-zero entries
that reflect the presence of spurious targets, the procedure is
complemented by the Bayesian information criterion (BIC) for
model-order selection [63]. The output vector estimated using
BIC enhances precision and efficiency in achieving sparsity
in the recovery process while simultaneously reducing the
computational workload.

The estimation outcomes derived after the BIC process
form the foundation for the development of two radar de-
tector classes. The first class integrates our sparse recovery
algorithm with traditional statistical hypothesis testing radar
detection schemes using a logical AND operation, introducing
the two-step detector (TSD). The second class modifies the
formulation of statistical methods, adopting a one-step detector
(OSD) approach to enhance hypothesis testing. Both detector
classes, rooted in the fusion of sparse reconstruction with
statistical detection theory, result in highly selective and adap-
tive radar architectures. They exhibit superior performance
in mismatched scenarios, demonstrating enhanced selectivity
and maximum detection probability compared to conventional
statistical algorithms. Additionally, they maintain appropriate
execution times while preserving the potential for effective
detection in matched scenarios.

Notaion: We follow the convention of using boldface
letters for vectors (e.g., a in lowercase) and matrices (e.g.,
A in uppercase). Transposition and conjugate transposition
operations are denoted by (.)T and (.)†, respectively. I and
0 represent the identity and all 0 matrices, respectively, with
their dimensions inferred from the context. The set of M ×N
matrices with complex-valued entries is denoted as CM×N .
The Euclidean norm of vector a and the Frobenius norm of
matrix A are given by ∥a∥2 and ∥A∥F , respectively.

II. METHODOLOGY

Imagine a search radar system that employs a uniform linear
array with N spatial channels and directs its beam toward
a specific azimuth direction. The system gathers data from
multiple range cells and assesses whether the data obtained
from a particular range bin contains a mainbeam target. If a
target is detected, the angle of arrival (AOA) and range are
estimated. Typically, in the conventional detection procedure,
each range cell is checked individually, and it is presumed that

the actual target AOA corresponds to the nominal steering
angle (i.e., the steering vector for the boresight). In this
scenario, we are dealing with the detection problem for a
specific range bin. The data received from radar signals for
this bin is gathered into a one-dimensional vector, denoted as
y ∈ CN×1. This problem can be framed using the hypothesis
test described below:

H1 : y = xa(θp) + ν,

H0 : y = ν. (1)

The variable x ∈ C accounts for the transmitting antenna
gain, the radar cross-section (RCS) of the target (which
fluctuates slowly), and two-way path loss. The interference
component, denoted by the complex Gaussian random vector
ν, encapsulates the total effect of clutter and noise with an
unknown positive-definite covariance matrix R. The parameter
θp represents the nominal AOA of the target, which coincides
with the beam-pointing direction. The nominal spatial steering
vector is represented by:

a(θp) =
[
1, ej2π(d/λ) sin(θp), ..., ej(N−1)2π(d/λ) sin(θp)

]T
,

where d is the inter-element spacing, and λ is the operating
wavelength. When H1 is declared, the range associated with
y and θp are returned as target parameter estimates. However,
due to various factors, the ideal condition of a perfect match
between the received echoes and the nominal steering vector
may not be met in practice. Hence, it would be more rea-
sonable to pursue the following alternative instead of problem
(1):

H1 : y = xa(θt) + ν,

H0 : y = ν, (2)

where the variable θt represents the actual AOA of the struc-
tured data received from an object within the monitored area.
This angle may differ from the assumed pointing direction
θp. This model is more realistic than the previous one, as
it accounts for scenarios where the organized aspect of the
gathered data may originate from non-target objects. For
instance, a coherent jammer could emit a signal that enters
through the sidelobes and injects false data into the radar
processor.

One possible approach to handle the aforementioned situ-
ations is to sequentially test various azimuth positions of the
mainbeam. In this scenario, a secondary dataset yk ∈ CN×1

(k = 1, ...,K) is assumed to be available that does not contain
any useful signal component, but has the same spectral proper-
ties as the interference in y (i.e., a homogeneous environment).
Based on this assumption, some classic decision rules such as
Kelly’s GLRT [19] and AMF [18] can be utilized to ensure
highly matched detection performances. To be specific, the
decision schemes for Kelly’s GLRT and AMF for an angular
position θ can be expressed as

ΠGLRT =

∣∣a†(θ)R̂−1y
∣∣2(

a†(θ)R̂−1a(θ)
)
(K + y†R̂−1y)

H1
>
<
H0

κGLRT, (3)
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ΠAMF =

∣∣a†(θ)R̂−1y
∣∣2

a†(θ)R̂−1a(θ)

H1
>
<
H0

κAMF. (4)

The variable R̂ = 1
K

K∑
k=1

yky
†
k represents the sample co-

variance matrix obtained from the training data, while κGLRT

and κAMF are thresholds established to achieve a specific
probability of false alarm (Pfa).
Kelly’s GLRT and the AMF techniques maintain the con-
stant false alarm rate (CFAR) property with regards to the
interference covariance matrix. While they exhibit exceptional
performance for matched signals, their ability to discriminate
azimuth and reject unmatched signals is limited. This means
that a target originating from a direction other than the
intended pointing direction may produce several detections.

To overcome this limitation, we develop four new algo-
rithms in this manuscript with adjustable architectures that
leverage sparse reconstruction techniques to improve selectiv-
ity. More specifically, we divide the angular region covering
the mainbeam and relevant sidelobes of the antenna into M
azimuth bins with equal spacing ∆θ. Each azimuth bin has a
center angle θl, where l ranges from 1 to M . We represent the
echoes received from a specific range cell using the following
model [7]:

y =

M∑
l=1

xla(θl) + ν = Ax+ ν, (5)

where A = [a(θ1), . . . ,a(θM )] ∈ CN×M represents the
dictionary matrix, and x = [x1, . . . , xM ]T ∈ CM×1 is the
vector containing the responses corresponding to potential
targets.

Emphasizing the importance of two specific points is cru-
cial. Primarily, the vector x in equation (5) assumes a sparse
configuration, wherein only a single entry corresponds to the
AOA of the target, with all other entries assuming null values.
Subsequently, ∆θ emerges as a pivotal tuning parameter,
governing both angular estimation resolution and the caliber
of estimation. Increasing the value of N (∆θ) combined with
decreasing the coherence of the dictionary result in better
estimates within the sparse recovery framework, as expounded
in the ensuing discourse. Furthermore, under the aforemen-
tioned prerequisites, the inner-product between contiguous
columns of A decreases, thereby mitigating the spread of
target energy across successive azimuth bins. Nevertheless,
augmented values of ∆θ concomitantly reduce the angular
resolution pertinent to AOA estimation. Hence, the determi-
nation of a suitable range for ∆θ necessitates meticulous
scrutiny to establish an optimal trade-off between the precision
of the estimates and their reliability, while also considering
the specific use case of the radar system and its operating
requirements [7].

In the subsequent section, we describe the sparse recovery
algorithm employed for the estimation of x, presupposing the
accessibility of data for the interference covariance matrix
assessment, and adhering to the constraint N < M to attain
an overdetermined model.

III. SPARSE RECOVERY ALGORITHM

In this section, we describe the specific sparse recovery
algorithm used for estimating x, which involves solving the
LASSO optimization problem. The motivation for leveraging
sparsity to estimate x stems from the inherent characteristics
of radar scenes and the challenges associated with target
detection in complex environments. In most radar applications,
the number of targets in a given range bin is typically small
compared to the number of potential azimuth bins, meaning
that x is naturally sparse. By exploiting this sparsity, we can
achieve more accurate and efficient estimation of x. Sparsity
enables the algorithm to focus on the most significant target
responses while ignoring irrelevant or spurious signals, leading
to improved selectivity and robustness. This is particularly
important in crowded or complex environments where tradi-
tional methods may struggle to resolve closely spaced targets
or accurately estimate their parameters.

To solve the LASSO optimization problem efficiently,
we employ the alternating direction method of multipliers
(ADMM) [64, 65], a widely used numerical technique de-
signed to address convex optimization problems with con-
vex constraints and objective functions. ADMM decomposes
the original problem into smaller, efficiently solvable sub-
problems, combining the decomposability of the dual ascent
method with the superior convergence properties of the method
of multipliers. This makes ADMM a powerful and flexible
approach for sparse recovery.

Based on the characteristics mentioned above, a sparsity-
promoting probability density function is utilized to enforce a
sparsity constraint on x:

f(x) =
1

C

M∏
k=1

exp{−2µ|xk|}, (6)

where µ represents the Lagrange multiplier, and C is a
normalizing constant that can be disregarded without affecting
the outcome. Our sparse recovery approach is based on the
maximum a posteriori (MAP) strategy. As a result, if y and
R are given, the estimation of x can be expressed as:

x̂ = argmax
x

f(y | x;R)f(x), (7)

where

f(y | x;R) =
1

πM det(R)
exp

{
−
∥∥∥R− 1

2 (y −Ax)
∥∥∥2
2

}
(8)

represents the conditional probability density function (pdf) of
y given x. With some simplifications, it is possible to show
that (7) is equivalent to

x̂ = argmin
x

Γ(x,R), (9)

Γ(x,R) =
1

2

∥∥∥R− 1
2 (y −Ax)

∥∥∥2
2
+ µ∥x∥1. (10)

Prior to addressing the problem outlined above, our attention
is drawn to the interference covariance matrix R, which is
generally unknown in practice. To overcome this, the radar
system collects training samples near the test cell that ac-
curately represent the interference affecting the cell under
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test. Subsequently, in the following steps, we estimate R
using the sample covariance matrix (SCM) based on secondary
data, namely R̂. As a result, after substituting R with the
corresponding estimate and making adjustments to the two
variables z = R̂− 1

2y and Ψ = R̂− 1
2A, the problem (10) is

transformed into:

x̂ = argmin
x

1
2 ∥z−Ψx∥22 + µ∥x∥1. (11)

To solve problem (11), we propose an algorithm based on
the ADMM. By introducing the auxiliary variable w, problem
(11) is transformed into:

x̂, ŵ = argmin
x,w

1
2 ∥z−Ψx∥22 + µ∥w∥1,

s.t. x = w. (12)

Based on ADMM, the associated augmented Lagrangian (AL)
function is defined as:

LΨ
ρ (x,w, r) = 1

2 ∥z−Ψx∥22 + µ∥w∥1
+ ρRe

{
rH(x−w)

}
+ ρ

2 ∥x−w∥22 , (13)

where r represents the Lagrange multiplier, and ρ is the
penalty parameter. The optimization process involves minimiz-
ing LΨ

ρ (x,w, r) with respect to the primal variables x and w,
and updating r to maximize the dual objective. These steps
result in a series of subproblems. Consequently, the scaled
form of ADMM is expressed as:

x(t+1) = argmin
x

1
2 ∥z−Ψx∥22 +

ρ
2

∥∥x−w(t)+r(t)
∥∥2
2
, (14)

w(t+1) = argmin
w

µ
ρ ∥w∥1 +

1
2

∥∥x(t+1)−w+r(t)
∥∥2
2
, (15)

r(t+1) = r(t) + x(t+1) −w(t+1). (16)

The quadratic functions in (14) can be minimized efficiently
by utilizing the first derivative. For the ℓ1-norm in (15), the
solution is found using the soft-thresholding function Sδ(v) =
sgn(v) ·max(|v| − δ; 0). Consequently, the solutions for each
of the optimization problems in (14)-(16) can be derived from
the following equations:

x(t+1) =
(
I+ 1

ρΨ
HΨ

)−1( 1
ρΨ

Hz+ (w(t) − r(t))
)
, (17)

w(t+1) = Sµ
ρ

(
x(t+1) + r(t)

)
, (18)

r(t+1) = r(t) + x(t+1) −w(t+1). (19)

Although (17) presents a closed-form solution, the computa-
tion of the inverse matrix is impractical for large sizes. So, we
can further simplify (17) based on the matrix inversion lemma(

I+ 1
ρΨ

HΨ
)−1

= I− 1
ρΨ

H
(
I + 1

ρΨΨH
)−1

Ψ. (20)

IV. BIC-BASED MODEL-ORDER SELECTION

Although the LASSO optimization solution x̃, solved using
ADMM, may include more nonzero entries than the actual
number of targets, its sparsity can be refined using the
Bayesian information criterion (BIC) [63]. To estimate the
number of targets, a hypothesized model order h (the number

of significant nonzero entries) is considered. For each h, the
BIC is defined as

BIC(h) = 2 ∥z−Ψx̃(h)∥22 + 3h ln(2N),

where x̃(h) is obtained by retaining the h largest entries of
x̃ (in magnitude) and setting the rest to zero. The coefficient
3 reflects the number of real-valued parameters estimated per
target. For instance, each target is characterized by a complex
amplitude (two real parameters) and an additional parameter
such as angle, resulting in three real parameters per target.

The value of h is constrained to lie within the range
{1, . . . , hmax}, where hmax represents the maximum anticipated
number of targets. The optimal model order ĥ is determined
by minimizing the BIC: ĥ = argminh BIC(h). Using this
ĥ, the refined estimate of x̃ is obtained as x̂ = x̃(ĥ), where
only the ĥ largest entries are retained.

In this paper, we refer to the combination of BIC and
ADMM as BADMM.

V. SPARSE AMPLITUDE ESTIMATION FOR IMPROVED

DECISION SCHEMES

We now delve into the intricate domain of decision strategy
formulation, harnessing the sparse amplitude estimate. To
elaborate, if the value of x̂m, which represents a part of
x related to the expected steering angle, is larger than the
threshold |x̂m| > 0, the system confidently concludes the
situation as H1. However, given the impact of estimation
errors, the sparse amplitude estimate may lack precision, and
certain non-zero elements might not accurately signify the
positions of genuine targets. To tackle this challenge, two
distinct architectural approaches are elucidated in the ensuing
subsections.

A. Two-stage decision architectures

The so-called two-stage architecture refers to the detectors
in which the two decision schemes are interwoven in a cas-
cading manner [6, 7, 15]. Designated as the two-step detectors
(TSD), this methodology involves a logical AND operation
between the outcomes of sparse reconstruction technique and
the established CFAR detectors, as explained below:

TSD-AMF:{
H0 : |x̂m| = 0 or ΠAMF,m < κAMF

H1 : |x̂m| > 0 and ΠAMF,m > κAMF,

TSD-GLRT:{
H0 : |x̂m| = 0 or ΠGLRT,m < κGLRT

H1 : |x̂m| > 0 and ΠGLRT,m > κGLRT,

Here, the integer m stands for the index corresponding to the
nominal pointing direction. The decision statistics, ΠAMF,m

and ΠGLRT,m, associated with the AMF and Kelly’s GLRT,
respectively, are determined through the utilization of the
nominal steering vector a(θm). Simultaneously, the detection
thresholds for the AMF and Kelly’s GLRT are represented by
κAMF and κGLRT, respectively.
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It is crucial to emphasize that the effective Pfa for TSD-
AMF and TSD-GLRT are expressed as:

Pfa,TSD-AMF = P (|x̂m| > 0,ΠAMF,m > κAMF|H0)

≤ P (ΠAMF,m > κAMF|H0),

Pfa,TSD-GLRT = P (|x̂m| > 0,ΠGLRT,m > κGLRT|H0)

≤ P (ΠGLRT,m > κGLRT|H0).

Consequently, the TSD-AMF and TSD-GLRT are com-
monly categorized as bounded CFAR techniques, given that
AMF and Kelly’s GLRT serve as CFAR detectors.

B. Likelihood-based decision architectures

An alternative method for developing detectors that effec-
tively regulates the false alarm rate involves making specific
adjustments to the GLRT. In this approach, certain parameters
are treated as unknown and are estimated using the maximum
likelihood method, while other parameters are substituted with
appropriate estimates. In this scenario, the sparse amplitude
estimates obtained from the previously outlined estimation
procedure can be leveraged.

To be more specific, consider the integer m indexing the
nominal steering direction. In this context, the likelihood ratio
test (LRT) is defined as

ΠLRT,m =
f(y,y1, . . . ,yK ;xm,R, H1)

f(y,y1, . . . ,yK ;R, H0)

H1
>
<
H0

κ, (21)

where

f(y,y1, . . . ,yK ;xm,R, H1) =

(
exp

(
−Tr(R−1T1)

)
πNdet(R)

)(K+1)

and

f(y,y1, . . . ,yK ;R, H0) =

(
exp

(
−Tr(R−1T0)

)
πNdet(R)

)(K+1)

represent the joint pdfs of the vectors y,y1, . . . ,yK under
H1 and H0, respectively, if

T1 =

(
y − xma(θm)

)(
y − xma(θm)

)†
+KR̂

K + 1
, (22)

T0 =
yy† +KR̂

K + 1
. (23)

Equation (21) demonstrates that the LRT for determining
the standard angular position relies on two key factors: the
target amplitude xm and the interference covariance matrix
R. By substituting xm with the estimate produced by our
proposed sparse-recovery method (BADMM) and replacing
the interference covariance matrix with the sample covariance
matrix obtained from training data, we effectively create a
one-step detector (OSD) that combines the sparse recovery
algorithm and LRT. Similar to the previous subsection, we
utilize the AMF and GLRT as our LRT-based techniques to
construct one-step detectors.

1) OSD-BADMM-AMF: For the OSD-BADMM-AMF
method we have

ΠOSD-BADMM-AMF,m

=−
(
y − x̂ma(θm)

)†
R̂−1(y − x̂ma(θm)) + y†R̂−1y

=−
(
a†(θm)R−1a(θm)

)(
x̂m − a†(θm)R−1y

a†(θm)R−1a(θm)

)2

+
|a†(θm)R−1y|2

a†(θm)R−1a(θm)
. (24)

By employing the unconstrained maximum likelihood (ML)
estimate of xm:

x̂ML,m =
a†(θm)R̂−1y

a†(θm)R̂−1a(θm)
, (25)

we obtain

ΠOSD-BADMM-AMF,m

= ΠAMF,m − (a†(θm)R̂−1a(θm))|x̂m − x̂ML,m|2

= ΠAMF,m ·
(
1− |x̂m − x̂ML,m|2

|x̂ML,m|2

)
, (26)

where ΠAMF,m represents the decision statistic derived using
the steering vector a(θm). The distinguishing factor between
the decision metrics of OSD-ADMM-AMF and its AMF
counterpart lies solely in the multiplier expression denoted
by
(
1− |x̂m−x̂ML,m|2

|x̂ML,m|2

)
. In scenarios characterized by well-

aligned or slightly mismatched signals, and with a high
signal-to-interference-plus-noise ratio (SINR), both x̂m and
x̂ML,m typically represent the true amplitude of the signal
returned from the target. Consequently, OSD-ADMM-AMF
exhibits a behavior similar to AMF under these conditions.
However, when dealing with highly mismatched signals, x̂m

equals zero, causing ΠOSD-ADMM-AMF,m to reflect this descent.
This behavior contrasts with ΠAMF,m, which may still exhibit
large values in such situations. This insightful observation
underscores the significant potential of OSD-ADMM-AMF
to outperform AMF in effectively discerning and eliminating
undesired signals.

2) OSD-BADMM-GLRT: Based on Kelly’s GLRT method,
we can achieve the succinct form of

max
R

ΠLRT,m =

(
det(T0)

det(T1)

)K+1

=

(
K + y†R̂−1y

K +
(
y − xma(θm)

)†
R̂−1

(
y − xma(θm)

)
)K+1

.

(27)

By substituting the sparse estimate x̂m of xm and employing
the first line of equation (24), we formulate the following
decision rule:(

K + y†R̂−1y

K + y†R̂−1y −ΠOSD-BADMM-AMF,m

)
H1
>
<
H0

κ. (28)

Then, by subtracting the denominator from the numerator on
both sides of the inequality, and subsequently adding the nu-
merator of the new fraction to its corresponding denominator,
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Algorithm 1 TSD-BADMM & OSD-BADMM
Require: κAMF, κGLRT, κOSD-BADMM-AMF, κOSD-BADMM-GLRT .
Ensure: Hj : the presence of j targets, with j = 0, 1

1: Compute x̂ with BADMM.
2: TSD-BADMM-AMF:{

H0 : |x̂m| = 0 or ΠAMF,m < κAMF

H1 : |x̂m| > 0 and ΠAMF,m > κAMF

3: TSD-BADMM-GLRT:{
H0 : |x̂m| = 0 or ΠGLRT,m < κGLRT

H1 : |x̂m| > 0 and ΠGLRT,m > κGLRT

4: Compute ΠOSD-BADMM-AMF,m by employing x̂ML and x̂ as indi-
cated in Equation (26).

5: OSD-BADMM-AMF:

ΠOSD-BADMM-AMF,m

H1
>
<
H0

κOSD-BADMM-AMF

6: Compute ΠOSD-BADMM-GLRT,m by employing x̂ML and x̂ as indi-
cated in Equation (30).

7: OSD-BADMM-GLRT:

ΠOSD-BADMM-GLRT,m

H1
>
<
H0

κOSD-BADMM-GLRT

the resulting expression on the left side simplifies to

ΠOSD-BADMM-GLRT,m =
ΠOSD-BADMM-AMF,m

K + y†R̂−1y
. (29)

Designating x̂ML,m as the unconstrained maximum likelihood
(ML) estimate for xm, the OSD-BADMM-GLRT statistic
takes the form:

ΠOSD-BADMM-GLRT,m = ΠGLRT,m ·
(
1− |x̂m − x̂ML,m|2

|x̂ML,m|2

)
,

(30)

where ΠGLRT,m, defining the statistical measure of Kelly’s
GLRT, is expressed as:

ΠGLRT,m =
ΠAMF,m

K + y†R̂−1y
. (31)

Algorithm 2 summarizes the suggested decision-making
structures in the form of a pseudo-code.

VI. NUMERICAL CASE STUDIES

In this section, we evaluate the performance of the proposed
methods—TSD-BADMM-AMF, TSD-BADMM-GLRT,
OSD-BADMM-AMF, and OSD-BADMM-GLRT—and
compare them with established decision paradigms. Because
of the unavailability of a closed-form expression for the false
alarm (Pfa) and detection (Pd) probabilities, we resort to the
use of conventional Monte Carlo techniques for evaluating the
methods. For this purpose, we set Pfa = 10−3, which implies
that the number of Monte Carlo iterations shall be 100

Pfa
= 105.

We model the interference using an exponentially correlated
complex Gaussian vector, wherein a single correlation
coefficient denoted by ρ dictates its dynamics. Precisely, the
(i, j)th element of the covariance matrix R conforms to the

expression ρ|i−j|, where i, j = 1, . . . , N , and the chosen
value for ρ stands at 0.95.

We conduct a comprehensive analysis of the Pd character-
istics for the proposed methods, covering both matched and
mismatched signal scenarios. The nominal pointing direction
is set at 0◦. For comparison, we include well-known methods
such as the AMF [18], Kelly’s GLRT [19], and the Rao
detector (RAO)1 [20]. Additionally, we compare our proposed
detectors with the BSLIM-based detectors introduced in [7],
which, due to their tunable nature, provide further insight into
the analysis. It is noteworthy that the SINR is defined as

SINR = |x|2 a†(θt)R−1 a(θt). (33)

The tests conducted in this study were performed on a machine
featuring an Intel Core i7 processor operating at 3.5 GHz with
16 GB of RAM. The system was equipped with an NVIDIA
GeForce GTX 3080 graphics card and ran on the Windows 10
operating system. MATLAB R2022a served as the principal
tool for data processing and analysis, employing core MAT-
LAB functions and libraries to implement the algorithms.

A. Mismatched Situation

First, our main objective is to evaluate the likelihood of
detecting the target in a scenario characterized by mismatched
conditions. To simplify this complex scenario, let us consider
the case where the nominal angle of arrival (θp) is consistently
set at 0◦. Thus, when the target’s angle of arrival (θt) aligns
with θp, we expect the detector to achieve the maximum
detection probability. Conversely, as θt deviates from θp, we
anticipate a decrease in the detection probability. Ideally, the
perfect detector showcases maximum selectivity, reaching its
lowest probability value when θp does not equal θt, making it
optimal for our analytical objectives. In this part, our goal is
to assess the effectiveness of our method compared to both
conventional and innovative probability approaches, as we
vary parameters like the number of secondary data samples
and SINR. This evaluation involves observing the detection
probability (Pd) in relation to changes in θt.

It is crucial to highlight that methods incorporating the
two-step detection (characterized by logical multiplication),
consistently yield Pd values either equal to or smaller than
their classical counterparts. Consequently, we anticipate TSD-
BADMM-AMF to demonstrate Pd values equal to or smaller
than the conventional AMF. This also extends to the GLRT,
where TSD-BADMM-GLRT is expected to exhibit Pd values
equal to or smaller than GLRT. In essence, while two-step
detection methods might mimic the classical counterparts in
determining precise target locations, their distinctive advantage
lies in the improved selectivity.

Focusing on the impact of SINR and the number of
secondary data samples, Figures 1 and 2 reveal interesting

1For completeness, the RAO formulation is provided as:

ΠRAO =
|a†(θ)Ŝ−1y|2

a†(θ)Ŝ−1a(θ)
, (32)

where Ŝ = yy† +KR̂.
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patterns. Figure 1 depicts the probability of detection as the
antenna beam changes for varying numbers of secondary data
samples (11, 14, 18) at SINR = 14 dB. We observe a parallel
scenario in Figure 2 for SINR = 18 dB.

A closer look at conventional statistical approaches, such as
AMF and GLRT, reveals that while they achieve high detection
probabilities at θt = 0 under certain secondary data conditions,
they lack selectivity. These methods tend to produce false
detections for other targets in the range (0◦, 0.5◦), which is
problematic since the actual target is at θt = 0◦. As previously
emphasized, an ideal detector should maximize detection prob-
ability at the true target location while significantly reducing it
as the beam deviates, ensuring accuracy and minimizing false
detections. Another conventional method, RAO, also exhibits
unreliability. Varying SINR and the number of secondary data,
it becomes evident that RAO is not an effective detector
in mismatched situations. In contrast, methods combining
compressive sensing and conventional probability techniques,
specifically the fusion of BADMM with AMF and GLRT as
a one-step detector (OSD), demonstrate superior performance
compared to similar combinations involving BSLIM [7] and
other conventional probability methods. Overall, the combina-
tion of BADMM with AMF and GLRT outperforms BSLIM
in terms of selectivity and probability of target presence.
Subsequently, we observe that BSLIM achieves the second-
highest rank in terms of both selectivity and detection prob-
ability. Furthermore, all combination methods of BADMM
and BSLIM as two-step detectors (TSD) exhibit superior
selectivity compared to conventional probability algorithms,
even approaching the practical similarity to OSD-BADMM
methods in Figures 3(b) and 3(c).

In conclusion, one-step detectors utilizing BADMM and
BSLIM demonstrate greater robustness and reliability com-
pared to alternative methods. While two-step detectors may
not excel in precisely pinpointing the target when θt equals
θp, their strength lies in improved performance in detecting
the target’s non-existence when θt ̸= θp.

B. Time Execution

To check the computational complexity of our methods, we
provide the average runtime over 105 iterations of Monte Carlo
simulation. The results reported in Table I clearly demonstrate
that the combination of BADMM with conventional methods,
particularly using OSD and TSD approaches, surpasses other
algorithms in both time execution and complexity. This effi-
ciency stems from the inherent sparsity of the radar scene,
which is effectively obtained by the ADMM-based LASSO
optimization and BIC after that. By focusing on a sparse
vector x, where most entries are zero, the computational
burden is significantly reduced. This sparsity minimizes the
complexity of combining the results with AMF and GLRT, as
many computations involving zero entries can be avoided. In
contrast, traditional methods such as RAO, AMF, and GLRT
operate on a non-sparse (dense) vector x, which requires more
extensive computations.

It is worth to mention that although BSLIM-based algo-
rithms demonstrated better performance in selective target de-

TABLE I: Analyzing execution time (measured in microsec-
onds) with varying numbers of secondary data.

Algorithm K=18 K=25 K=32
RAO 1792.556 1496.038 1510.045
AMF 765.732 803.983 803.985
GLRT 1496.038 1510.045 1624.256

OSD-BADMM-AMF 413.070 413.070 413.070
TSD-BADMM-AMF 413.070 413.070 413.070
OSD-BADMM-GLRT 413.444 413.070 395.805
TSD-BADMM-GLRT 530.025 530.034 530.016

OSD-BSLIM-AMF 834.981 834.980 834.981
TSD-BSLIM-AMF 10545.165 10223.749 10156.448
OSD-BSLIM-GLRT 11087.695 10156.336 10237.138
TSD-BSLIM-GLRT 10217.016 11276.528 10217.399

tection compared to RAO, GLRT, and AMF in previous experi-
ments, they fall significantly behind in terms of execution time.
While BSLIM-based algorithms [66, 67] also utilize sparsity,
they depend on ℓq-norm optimization (0 < q < 1), which
is inherently slower and far more computationally demanding
than ADMM. This is because their algorithm must search for
the optimum q, a process that adds considerable computational
overhead. In contrast, ADMM, one of the fastest algorithms for
sparse recovery, efficiently solves the ℓ1-norm problem using
closed-form solutions and achieves rapid convergence.

This comparative analysis underscores the effectiveness of
BADMM methods in achieving computational efficiency. This
solidifies BADMM as a compelling option for scenarios that
demand quick and reliable computation.

C. Matched Situation

In this section, we investigate our proposed methodologies
under controlled conditions. Assuming the target is located
at θt = 0◦ and the antenna remains stationary, our goal is
to assess detection capabilities across varying SINR levels
and numbers of secondary data samples. Figure 3 provides a
detailed analysis of the performance of traditional techniques,
the tunable approach proposed in [7], and our BADMM-based
OSD and TSD approaches.

The results clearly indicate that OSD-BADMM-AMF and
TSD-BADMM-AMF, even in a matched scenario, can be
considered among the most effective detection algorithms.
Additionally, for a low number of secondary data samples,
the superior performance of OSD-BADMM-AMF becomes
evident as the SINR increases, surpassing other algorithms.
As the number of secondary data samples increases, nearly
all methods strive to become reliable detectors. In summary,
the fusion of BADMM with statistical algorithms not only
does help in handling a mismatched situation but also proves
effective in a matched scenario.

VII. CONCLUSION

In this paper, we introduce two adaptive radar detection
structures designed to enhance selectivity and robust detection
in the presence of Gaussian interference. These structures
utilize LASSO optimization for sparse reconstruction, which
is solved using ADMM, integrated with statistical methods
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Fig. 1: Evaluating Pd performance as θt varies in the mis-
matched scenarios at SINR=14 dB for secondary data counts:
(a) 11, (b) 14, and (c) 18.

such as AMF and GLRT in a joint framework. The proposed
approaches outperform traditional statistical algorithms and
their main tunable competitors in mismatched scenarios, focus-
ing on selectivity and maximizing detection probability, while
also maintaining effective detection in matched scenarios.
Additionally, in terms of execution time and complexity, these
approaches demonstrate superior performance compared to
other competitors.

Future research could focus on extending our proposed
techniques to address more challenging radar scenarios, such
as those involving non-Gaussian interference or heterogeneous
clutter. Furthermore, integrating deep learning approaches,
such as recurrent neural networks (RNNs), into sparse recov-
ery frameworks—for example, by utilizing RNNs to update the
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Fig. 2: Evaluating Pd performance as θt varies in the mis-
matched scenario at SINR=18 dB for secondary data counts:
(a) 11, (b) 14, and (c) 18.

variables of ADMM—holds significant potential for enhancing
detection performance, adaptability, and robustness in dynamic
and complex environments.
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