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Abstract—In this paper, the problem of rank minimization
of a matrix under affine constraints is addressed. The state
of the art algorithms can recover matrices with a rank much
less than what is sufficient for the uniqueness of the solution of
this optimization problem. We propose an algorithm based on
a smooth approximation of the rank function, which practically
improves recoverable limits on the rank. In this method, termed
SRF standing for Smoothed Rank Function, the rank function
is replaced with a continuous and differentiable approximation.
It starts with a rough approximation, and the quality of the
approximation improves as the algorithm proceeds.

On the theoretical side, benefiting from the spherical section
property, we will show that the sequence of minimizers of ap-
proximating functions converges to the minimum rank solution.
On the experimental side, it will be shown that SRF can recover
matrices which are unique solutions of the rank minimization
problem and yet not recoverable by nuclear norm minimization.
Furthermore, it will be demonstrated that, in completing partially
observed matrices, the accuracy of SRF is considerably and
consistently better than some famous algorithms. In addition,
SRF achieves a reduction in the computational cost by one order
of magnitude when the number of revealed entries is close to the
minimum number of parameters that uniquely represent a low
rank matrix.

Index Terms—Affine Rank Minimization, Compressive Sens-
ing, Matrix Completion (MC), Nuclear Norm Minimization
(NNM), Rank Approximation, Spherical Section Property (SSP).

I. INTRODUCTION

THERE are many applications in signal processing and
control theory which involve finding a matrix with mini-

mum rank subject to linear constraints [1]. This task is usually
referred to as the affine rank minimization (RM) and includes
Matrix Completion (MC) as a special case. In the latter, we
are interested in reconstructing a low rank matrix from a
subset of its entries. If the location of known entries follow
certain random laws and the rank of the matrix is sufficiently
small, one can uniquely recover the matrix with overwhelming
probability [1]–[3].
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One of the celebrated applications of affine rank minimiza-
tion (or matrix completion) is Collaborative Filtering [2]. This
technique is applied when a system tries to recommend goods
to customers/users based on the available feedbacks of all
the customers. In fact, the system learns the user preferences
through the feedbacks and identifies similarities between them.
As the number of factors affecting the user interests is much
less than the total number of customers and products, the
matrix whose (i, j) entry represents the rating of the i-th user
for the j-th product is expected to be low-rank. This could be
efficiently used by the matrix completion techniques to predict
the users’ ratings for unrated items.

Applications of rank minimization in control theory include
System Identification [4] and low-order realization of linear
systems [5]. In the former, the goal is to find an LTI system
with minimum order that fits the available joint input-output
observations of a multiple-input multiple-output system [6].

In Wireless Sensor Networks (WSN), due to limited en-
ergy resources and transmitting power, the sensors are able
to communicate only with their neighboring sensors. These
communications (e.g., received powers) determine the pairwise
distances between sensors, which partially reveals the matrix
of all pairwise distances. To localize the sensors in the
network, one needs to estimate their distances from predefined
anchor points which in turn requires completion of the distance
matrix through the Multi-Dimensional Scaling technique [7].
Interestingly, the rank of the pairwise distance matrix is small
compared to its dimension [4].

Other areas to which affine rank minimization is applied in-
clude Machine Learning [8], Quantum State Tomography [9],
Spectrum Sensing [10], and Spatial Covariance matrix com-
pletion [4], [11]. The spatial covariance matrix is essential in
estimating the directions of arrival of sources impinging on an
array of antenna using for example MUSIC [12] or ESPRIT
algorithms [13].

The main difficulty of the rank minimization problem is
due to the fact that the rank function is discontinuous and
non-differentiable. Indeed, the optimization problem is NP-
hard, and all available optimizers have doubly exponential
complexity [14]. In [15], Fazel proposed to replace the rank
of the matrix with its nuclear norm, which is defined as the
sum of all singular values (SV). This modification is known
to be the tightest convex relaxation of the rank minimization
problem [4] and can be implemented using a Semi Definite
Program (SDP) [1]. Using similar techniques as in compressed
sensing, it is recently shown that under mild conditions and
with overwhelming probability, the nuclear norm minimization
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(NNM) technique achieves the same solution as the original
rank minimization approach [16]–[18].

Other approaches towards rank minimization consist of
either alternative solvers instead of SDP in NNM or approx-
imating the rank function using other forms rather than the
nuclear norm. The FPCA method belongs to the first category
and uses fixed point and Bergman iterative algorithm to solve
NNM [19]. Among the examples of the second category, one
can name Accelerated Proximal Gradient (APG) [20] and sin-
gular value thresholding (SVT) [21]. Further, OptSpace, only
applicable to the MC problem, is based on the trimming rows
and columns of the incomplete matrix followed by truncation
of some singular values of the trimmed matrix [22]. It is
also possible to generalize the greedy methods of compres-
sive sensing to the rank minimization problem; for instance,
ADMiRA [23] generalizes the CoSaMP [24].

In this work, we introduce an iterative method that is based
on approximating the rank function. However, in contrast to
previous methods, the approximation is continuous and differ-
entiable, and is made finer in each iteration. Asymptotically,
the approximation will coincide with the rank function. It will
be shown that this approach finds solutions which are not
obtainable by NNM, while they are unique rank minimizers.
Our method is inspired by the work of Mohimani et al [25]

which uses smoothed `0-norm1 to obtain sparse solutions of
underdetermined system of linear equations. To generalize the
method of [25] to the RM problem, we need to derive the
gradient of the approximated rank function in closed form.
This is, in fact, one of the contributions of this paper. We
further establish analytical guarantees on the performance.

A few preliminary results of this work have been presented
in the conference paper [26]. While [26] was only devoted
to the matrix completion problem, the current paper focuses
on the more general problem of affine rank minimization.
Furthermore, here, we present mathematical and experimen-
tal convergence analysis, and consider more comprehensive
numerical evaluation scenarios.

The reminder of this paper is organized as follows. In
Section II, the affine RM problem is formulated, and in
Section III, the SRF algorithm is introduced. Section IV is
devoted to analyze the convergence properties of the SRF
algorithm. Finally, in Section V, some experimental results
of our algorithm are provided, and it will be compared
empirically against a few well known algorithms, followed
by conclusions.

II. PROBLEM FORMULATION

The affine rank minimization problem generally is formu-
lated as

min
X

rank(X) subject to A(X) = b, (1)

where X ∈ Rn1×n2 is the decision variable, A : Rn1×n2 →
Rm is a known linear operator, and b ∈ Rm is the observed
measurement vector. The special case of matrix completion

1`0-norm, not mathematically a vector norm, denotes the number of non-
zero elements of a vector.

corresponds to the setting

min
X

rank(X) subject to [X]ij = [M]ij ∀(i, j) ∈ Ω, (2)

where X is as in (1), M ∈ Rn1×n2 is the matrix whose entries
are partially observed, Ω ⊂ {1, 2, ..., n1}×{1, 2, ..., n2} is the
set of the indexes of the observed entries of M, and [X]ij
is the (i, j)-th entry of X. Indeed, the constraints [X]ij =
[M]ij ,∀(i, j) ∈ Ω is an affine mapping which keeps some of
the entries and discards others.

In the nuclear norm minimization, the rank function is
replaced with the nuclear norm of the decision variable,
leading to

min
X
‖X‖∗ subject to A(X) = b, (3)

where ‖X‖∗ ,
∑r
i=1 σi(X) is the nuclear norm, in which

r is the rank of the matrix X, and σi(X) is the i-th largest
singular value of the matrix X. There is a strong parallelism
between this rank minimization and `0-norm minimization in
compressive sensing [1]. In particular, minimizing the rank
is equivalent to minimizing the number of non-zero singular
values. Hence, (1) can be reformulated as

min
X
‖σ(X)‖0 subject to A(X) = b, (4)

where σ(X) = (σ1(X), ..., σn(X))T is the vector of all singu-
lar values, ‖ · ‖0 denotes the `0-norm, and n = min(n1, n2).2

Likewise, the nuclear norm is the `1-norm of the singular value
vector where `1-norm of a vector, denoted by ‖ · ‖1, is the
sum of the absolute values of its elements. This suggests the
alternative form of

min
X
‖σ(X)‖1 subject to A(X) = b (5)

for (3). Based on this strong parallels, many results in com-
pressive sensing theory (see for example [27]–[30]) have been
adopted in the rank minimization problem [1], [16], [17], [31].

III. THE PROPOSED ALGORITHM

A. The main idea

Our approach to solve the rank minimization problem is
to approximate the rank with a continuous and differentiable
function, and then to use a gradient descent algorithm to
minimize it. The approximation is such that the error can
be made arbitrarily small. Note that nuclear norm is not
differentiable [32] and its approximation error depends on the
singular values of the matrix and cannot be controlled.

Instead of using a fixed approximation, we use a family
Gδ : Rn1×n2 → R+ of approximations, where the index δ is
a measure of approximation error and reflects the accuracy.
The smaller δ, the closer behavior of Gδ to the rank. For
instance, G0 stands for the errorless approximation; i.e., G0

coincides with the rank function. We constrain the family to
be continuous with respect to δ. This helps in achieving the
rank minimizer (G0) by gradually decreasing δ. Besides, to
facilitate finding the minimizers of the relaxed problem, we

2Note that just r entries of σ(X) are non-zero where r is the rank of the
matrix X.
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require the Gδ’s for δ > 0 to be differentiable with respect to
the input matrix.

In order to introduce suitable Gδ families, we specify
certain families of one-dimensional functions that approximate
Kronecker delta function.

Assumption 1: Let f : R → [0, 1] and define fδ(x) =
f(x/δ) for all δ > 0. The class {fδ} is said to satisfy the
Assumption 1, if

(a) f is real, symmetric unimodal, and analytic,
(b) f(x) = 1⇔ x = 0,
(c) f ′′(0) < 0, and
(d) lim|x|→∞ f(x) = 0.
It follows from Assumption 1 that x = 0 is the unique

mode of all fδ’s. This implies that f ′δ(0) = 0 for δ 6= 0. In
addition, {fδ} converge pointwise to Kronecker delta function
as δ → 0, i.e.,

lim
δ→0

fδ(x) =

{
0 if x 6= 0,

1 if x = 0.
(6)

The class of Gaussian functions, which is of special interest
in this paper, is defined as

fδ(x) = exp(− x2

2δ2
). (7)

It is not difficult to verify the constraints of Assumption 1 for
this class. Other examples include fδ(x) = 1− tanh( x

2

2δ2 ) and
fδ(x) = δ2

x2+δ2 .
To extend the domain of {fδ} to matrices, let define

Fδ(X) = hδ
(
σ(X)

)
=

n∑
i=1

fδ
(
σi(X)

)
, (8)

where n = min(n1, n2), and hδ : Rn → R is defined as
hδ(x) =

∑n
i=1 fδ(xi). Since fδ is an approximate Kronecker

delta function, Fδ(X) yields an estimate of the number of zero
singular values of X. Consequently, it can be concluded that
rank(X) ≈ n− Fδ(X), and the RM problem can be relaxed
to

min
X

(
Gδ(X) = n− Fδ(X)

)
subject to A(X) = b, (9)

or equivalently

max
X

Fδ(X) subject to A(X) = b. (10)

The advantage of maximizing Fδ compared to minimizing
the rank is that Fδ is smooth and we can apply gradient
methods. However, for small values of δ where Gδ is a
relatively good approximate of the rank function, Fδ has many
local maxima, which are likely to trap gradient methods.

To avoid local maxima, we initially apply a large δ. Indeed,
we will show in Theorem 2 that under Assumption 1, Fδ
becomes convex as δ →∞, and (10) will have a unique solu-
tion. Then, we gradually decrease δ to improve the accuracy
of approximation. For each new value of δ, we initialize the
maximization of Fδ with the result of (10) for the previous
value of δ. From the continuity of {fδ} with respect to δ, it is
expected that the solutions of (10) for δi and δi+1 are close,
when δi and δi+1 are close. In this fashion, the chance of

finding a local maximum instead of a global one is decreased.
This approach for optimizing non-convex functions is known
as Graduated Non-Convexity (GNC) [33], and was used in [25]
to minimize functions approximating the `0-norm.

B. Gradient Projection

For each δ in the decreasing sequence, to maximize Fδ with
equality constraints, we use the ‘Gradient Projection’ (GP)
technique [34]. In GP, the search path in each iteration is
obtained by projecting back the ascent (or descent) direction
onto the feasible set [34]. In other words, at each iteration,
one has X ← P

(
X + µj∇Fδ(X)

)
, where P denotes the

orthogonal projection onto the affine set defined by linear
constraints A(X) = b, and µj is the step size of the j-th
iteration. As the feasible set is affine, several methods can be
exploited to implement the projection P . For example, one can
store the QR factorization of the matrix implementation of A
for fast implementation of the back projection, or alternatively,
a least squares problem can be solved at each step [1]. The
closed form solution of the least squares problem can be found
in Appendix A.

To complete the GP step, we should derive the gradient
of the approximating functions with respect to the matrix
X. Surprisingly, although σi(X), i = 1, ..., n and ‖X‖∗ are
not differentiable functions of X [32], the following theorem
shows that one can find functions Fδ = hδ ◦ σ(X) which
are differentiable under the absolutely symmetricity of the hδ .
Before stating the theorem, recall that a function f : Rq →
[−∞,+∞] is called absolutely symmetric [35] if f(x) is
invariant under arbitrary permutations and sign changes of the
components of x.

Theorem 1: Suppose that Fδ : Rn1×n2 → R is rep-
resented as Fδ(X) = hδ

(
σ(X)

)
= hδ ◦ σ(X), where

X ∈ Rn1×n2 with the Singular Value Decomposition (SVD)
X = Udiag(σ1, ..., σn)VT , σ(X) : Rn1×n2 → Rn has the
SVs of the matrix X, n = min(n1, n2), and hδ : Rn → R is
absolutely symmetric. Then the gradient of Fδ(X) at X is

∂Fδ(X)

∂X
= Udiag(θ)VT , (11)

where θ = ∂hδ(y)
∂y |y=σ(X) denotes the gradient of hδ at σ(X).

Informal Proof : In [35, Cor. 2.5], it is shown that if a
function hδ is absolutely symmetric and the matrix X has
σ(X) in the domain of hδ , then the subdifferential3 of Fδ is
given by

∂
(
hδ ◦ σ(X)

)
= {Udiag(θ)VT |θ ∈ ∂hδ

(
σ(X)

)
}. (12)

Since hδ
(
σ(X)

)
=

∑n
i=1 fδ

(
σi(X)

)
is differentiable at

σ(X), ∂hδ
(
σ(X)

)
is a singleton and consequently ∂

(
hδ ◦

σ(X)
)

becomes a singleton. When the subdifferential of
a non-convex function becomes singleton, the function is
intuitively expected to be differentiable with the subgradient
as its gradient.4 Nevertheless, to the best of our knowledge,

3To see the definition of subdifferential and subgradient of non-convex
functions, refer to [36, Sec. 3].

4For a convex function, the subdifferential is singleton iff the function is
differentiable [37].
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there is no formal proof. Provided that this intuition is true,
then ∂

(
hδ ◦ σ(X)

)
will be converted to ∇

(
hδ ◦ σ(X)

)
and

equation (11) is obtained. That is why we called this proof
informal.

Formal proof: Equation (11) can be obtained directly
from the “if part” of [35, Thm. 3.1], which does not require
convexity of hδ as stated in its proof.

Corollary 1: For the Gaussian function family given in (7),
the gradient of Fδ(X) at X is

∂Fδ(X)

∂X
= Udiag(−σ1

δ2
e−σ

2
1/2δ

2

, ...,−σn
δ2

e−σ
2
n/2δ

2

)VT .

(13)
Proof: fδ is an even function for the Gaussian family;

therefore, hδ becomes an absolutely symmetric function. As a
result, Theorem 1 proves (13).

C. Initialization

Naturally, we initialize the GNC procedure by the solution
of (10) corresponding to δ →∞. This solution can be found
from the following theorem.

Theorem 2: Consider a class of one variable functions {fδ}
satisfying the Assumption 1. For the rank approximation
problem (10), let X̂ = arg minA(X)=b ‖X‖F , then

lim
δ→∞

arg max
A(X)=b

Fδ(X) = X̂, (14)

where ‖ · ‖F denotes the matrix Frobenius norm.
There is a simple interpretation of the solution of (10) for

the Gaussian family when δ approaches ∞. As e−x ≈ 1− x
for small values of x,

Fδ(X) =

n∑
i=1

e−σ
2
i (X)/2δ2 ≈ n−

n∑
i=1

σ2
i (X)/δ2

for δ � σi(X). Consequently,

arg max
A(X)=b

Fδ(X) ≈ arg min
A(X)=b

n∑
i=1

σ2
i (X) = arg min

A(X)=b

‖X‖F .

The proof is left to Appendix B.
The following Corollary is an immediate result of the above

theorem.
Corollary 2: For the matrix completion problem, the ini-

tial solution of the SRF algorithm is X̂ with the following
definition:

[X̂]ij =

{
[M]ij (i, j) ∈ Ω,

0 (i, j) /∈ Ω.
, (15)

where M and Ω are as defined in (2).

D. The Final Algorithm

The final algorithm is obtained by applying the main idea,
initial solution, and gradient projection to the Gaussian func-
tion given in (7). Fig. 1 depicts the algorithm. In the sequel,
we briefly review some remarks about the parameters used in
the implementation of the algorithm. Most of these remarks
correspond to similar remarks for SL0 algorithm [25], and are
presented here for the sake of completeness.

• Initialization:
1) Let X̂0 = argmin ‖X‖F s.t. A(X) = b as the initial

solution.
2) Choose a suitable decreasing sequence of δ,
{δ1, δ2, . . .}; e.g., δj = cδj−1, j ≥ 2.

3) Choose ε as the stopping threshold.
4) Choose suitable L (Number of internal loop iteration)

and µ, and initialize j with 1.
• While d > ε

1) Let δ = δj .
2) Internal maximization Loop:

– Initialization: X = X̂j−1.
– For ` = 1 . . . L (loop L times):

a) Compute the SVD of

X = Udiag(σ1, . . . , σn)V
T .

b) Let

D = Udiag(−σ1e
−σ2

1/2δ
2

, . . . ,

−σne−σ
2
n/2δ

2

)VT .

c) X← X+ µD.
d) Project X back onto the feasible set:

X← P(X).

3) Set X̂j = X.
4) d = ‖X̂j − X̂j−1‖F /

√
n1n2.

5) j ← j + 1.

• Final answer is X̂ = X̂j .

Fig. 1. The SRF Algorithm.

Remark 1. It is not necessary to wait for the convergence
of the internal steepest ascent loop because as explained in
Section III-A for each value of δ, it is just needed to get
close to the global maximizer of Fδ to avoid local maxima.
Therefore, the internal loop is only repeated for a fixed number
of times (L).

Remark 2. After initiating the algorithm with the minimum
Frobenius norm, the first value of δ may be set to about two to
four times of the largest SV of X̂0 (the initial guess). If we take
δ > 4 max

(
σi(X̂)

)
, then exp

(
−σ2

i (X̂)/2δ2
)
> 0.96 ≈ 1 for

1 ≤ i ≤ n. Thus, this δ value acts virtually like ∞ for all
SVs of X̂0. Finally, the decreasing sequence can be adjusted
to δj = cδj−1, j ≥ 2, where c generally is chosen between
0.5 and 1.

Remark 3. This remark is devoted to the selection of µj ,
step–size parameter. Typically, in a gradient ascent algorithm,
µj should be chosen small enough to follow the ascent
direction. Furthermore, reducing δ results in more fluctuating
behaviour of the rank approximating function. Therefore, to
avoid large steps which cause jumps over the maximizer, one
should choose smaller value of step–size for smaller values of
δ. Following the same reasoning as in [25, Remark 2], a good
choice is to decrease µj proportional to δ2, that is, µj = µδ2,
where µ is a constant. By letting µj = µδ2, the gradient step
can be reduced to

Xj ← Xj − µUdiag(σ1e
−σ2

1/2δ
2

, . . . , σne
−σ2

n/2δ
2

)VT .

Remark 4. The distance between the solutions at the two



5

consecutive iterations is the criterion to stop the algorithm.
That is, if d , ‖X̂j − X̂j−1‖F /

√
n1n2 is smaller than some

tolerance (ε), the iterations are ended and X̂j becomes the
final solution.

IV. CONVERGENCE ANALYSIS

The SRF algorithm consists of two loops. In the internal
loop, Fδ is maximized for the current value of δ, and in the
external loop, δ is decreased to improve the approximation.
Noting that the original problem is NP-Hard and we are
dealing with non-convex functions, a complete convergence
analysis would be probably very tricky, and is not addressed
in this paper. Instead, in the sequel, it is assumed that the
internal loop has been converged to the global maximum, and
we prove that the final solution converges to the minimum
rank solution as δ goes to zero. In other words, it will be
shown that the sequence of global maximizers converges to
the lowest rank solution. The following results and proofs are
not direct extension of the convergence results of [25] and are
highly more tricky to obtain, though our exposition follows
the same line of presentation.

We start the convergence analysis by the definition of
Spherical Section Property (SSP), used in the analysis of
uniqueness of the rank and nuclear norm minimization [16],
and a lemma which makes this abstract definition clearer.

Definition 1: Spherical Section Property [16], [38]. The
spherical section constant of a linear operator A : Rn1×n2 →
Rm is defined as

∆(A) = min
Z∈null(A)\{0}

‖Z‖2∗
‖Z‖2F

. (16)

Further, A is said to have the ∆-spherical section property if
∆(A) ≥ ∆.

Lemma 1: Assume A has the ∆-spherical section property.
Then for any X ∈ null(A) \ 0, we have rank(X) ≥ ∆.

Proof: Since X belongs to null(A), one can write:

‖X‖∗
‖X‖F

≥
√

∆⇒ ‖X‖∗ ≥
√

∆‖X‖F . (17)

It is also known that
√

rank(X)‖X‖F ≥ ‖X‖∗, see for
example [38]. Putting them together, we have ‖X‖∗ ≥√

∆ ‖X‖∗√
rank(X)

⇒ rank(X) ≥ ∆ or rank(X) ≥ d∆e, where

d∆e denotes the smallest integer greater than or equal to ∆.

The above lemma shows that if ∆ is large, the null space
of A does not include low rank matrices. Such subspaces are
also known as almost Euclidean subspaces [30], in which the
ratio of `1-norm to `2-norm of elements cannot be small.

Theorem 3 ([38]): Suppose A has the ∆-spherical prop-
erty, and X0 ∈ Rn1×n2 satisfies A(X0) = b. If rank(X0) <
∆
2 , then X0 is the unique solution of problem (1).

Lemma 2: Assume A : Rn1×n2 → Rm has ∆-spherical
section property, and set n = min(n1, n2). Let X be any ele-
ment in null(A) and (σ1, ..., σn) represent its singular values.
Then for any subset I of {1, ..., n} such that |I|+ ∆ > n,∑

i∈I σi

(
∑n
i=1 σ

2
i )0.5

≥
√

∆−
√
n− |I|, (18)

where | · | denotes the cardinality of a set.
Proof: If I = {1, ..., n}, then it is clear that∑n
i=1 σi

(
∑n
i=1 σ

2
i )0.5

≥
√

∆, since the ∆-spherical section property
holds. Otherwise, if |I| < n, the ∆-spherical section property
implies that

√
∆ ≤ ‖X‖∗

‖X‖F
=

∑n
i=1 σi

(
∑n
i=1 σ

2
i )0.5

. (19)

For the sake of simplicity, let us define

αi =
σi

(
∑n
i=1 σ

2
i )0.5

. (20)

This shows that

1 =

n∑
i=1

α2
i ≥

∑
i/∈I

α2
i ≥

(
∑
i/∈I αi)

2

n− |I|
, (21)

where we used the inequality ∀z ∈ Rp, ‖z‖21 ≤ p‖z‖22. Hence,
it can be concluded that∑

i/∈I

αi ≤
√
n− |I|. (22)

On the other hand, it is known that
√

∆ ≤
∑
i∈I

αi +
∑
i/∈I

αi ≤
∑
i∈I

αi +
√
n− |I|, (23)

which confirms that∑
i∈I σi

(
∑n
i=1 σ

2
i )0.5

=
∑
i∈I

αi ≥
√

∆−
√
n− |I|. (24)

Corollary 3: If A : Rn1×n2 → Rm has ∆-spherical section
property, n = min(n1, n2), and X ∈ null(A) has at most
d∆− 1e singular values greater than α, then

‖X‖F ≤
nα√

∆−
√
d∆− 1e

. (25)

Proof: At least n−d∆−1e singular values of X are less
than or equal to α. If I denotes the indices of singular values
not greater than α, then by using Lemma 2, we will have∑

i∈I σi

(
∑n
i=1 σ

2
i )0.5

≥
√

∆−
√
n− n+ d∆− 1e ⇒ (26)

‖X‖F (
√

∆−
√
d∆− 1e) ≤

∑
i∈I

σi ≤ nα, (27)

which proves that

‖X‖F ≤
nα√

∆−
√
d∆− 1e

. (28)

Lemma 3: Assume A : Rn1×n2 → Rm has ∆-spherical
section property, fδ(·) is a member of the class that satisfies
Assumption 1, and define Fδ as in (8) and n = min(n1, n2).
Let X = {X|A(X) = b} contain a solution X0 with
rank(X0) = r0 <

∆
2 . Then for any X̂ ∈ X that satisfies

Fδ(X̂) ≥ n− (d∆− 1e − r0) , (29)

we have that

‖X0 − X̂‖F ≤
nαδ√

∆−
√
d∆− 1e

, (30)
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where αδ =
∣∣f−1
δ ( 1

n )
∣∣.

Proof: First, note that due to Assumption 1, fδ(x) takes
all the values in ]0, 1[ exactly twice; once with a positive x
and once with a negative one. Because of the symmetry, the
two have the same modulus; therefore, αδ is well-defined.

Let us denote the singular values of X0 and X̂ by σ1 ≥
· · · ≥ σn and σ̂1 ≥ · · · ≥ σ̂n, respectively. Define Iα as the
set of indices i for which σ̂i > α. Now, we have that

Fδ(X̂) =

n∑
i=1

fδ(σ̂i) (31)

=
∑
i∈Iα

fδ(σ̂i)︸ ︷︷ ︸
< 1
n︸ ︷︷ ︸

<n 1
n=1

+
∑
i/∈Iα

fδ(σ̂i)︸ ︷︷ ︸
≤1︸ ︷︷ ︸

≤n−|Iα|

(32)

< n− |Iα|+ 1.

On the other hand, Fδ(X̂) ≥ n− (d∆− 1e − r0); therefore,

n− (d∆− 1e − r0) < n− |Iα|+ 1

⇒ |Iα| < (d∆− 1e − r0) + 1

⇒ |Iα| ≤ d∆− 1e − r0.

This means that at most d∆ − 1e − r0 singular values of X̂
are greater than αδ . Define

H0 =

[
0 X0

XH
0 0

]
, Ĥ =

[
0 X̂

X̂H 0

]
. (33)

In fact, H0 and Ĥ are hermitian matrices that contain the
singular values of X0 and X̂, respectively, as their n largest
eigenvalues and their negatives as the n smallest eigenvalues.
Next, we apply Weyl’s eigenvalue inequality [39] as

λd∆−1e+1(H0 − Ĥ) ≤ λr0+1(H0) + λd∆−1e−r0+1(−Ĥ)

= σr0+1 + σ̂d∆−1e−r0+1

= σ̂d∆−1e−r0+1 ≤ αδ, (34)

where λi(·) stands for the i-th largest eigenvalue. This reveals
the fact that, (X0 − X̂) has at most d∆− 1e singular values
greater than αδ . Since (X0 − X̂) is in the null space of A,
Corollary 3 implies that

‖X0 − X̂‖F ≤
nαδ√

∆−
√
d∆− 1e

. (35)

Corollary 4: For the Gaussian function family given in (7),
if (29) holds for a solution X̂ ∈ X , then

‖X̂−X0‖F ≤
nδ
√

2 lnn√
∆−

√
d∆− 1e

. (36)

Lemma 4: Let fδ, Fδ,X , and,X0 be as defined in Lemma 3
and assume Xδ be the maximizer of Fδ(X) on X . Then Xδ

satisfies (29).
Proof: One can write that

Fδ(Xδ) ≥ Fδ(X0) (37)
≥ n− r0 (38)
≥ n− (d∆− 1e − r0) . (39)

The first inequality comes from the fact that Xδ is the
maximizer of the Fδ(X), and the second one is true because
X0 has (n − r0) singular values equal to zero; thus, in the
summation Fδ(X) =

∑n
i=1 fδ(σi), there are (n − r0) ones.

Hence, Fδ(X0) ≥ n− r0. To see the last inequality, note that
2r0 < ∆ and

∆− 1 ≤ d∆− 1e < ∆⇒ ∆ ≤ d∆− 1e+ 1 < ∆ + 1. (40)

Thus, it can be concluded that 2r0 < d∆−1e+1 which results
in 2r0 ≤ d∆− 1e because r0 ∈ N. Finally, r0 ≤ d∆− 1e− r0

which implies that n− (d∆− 1e − r0) ≤ n− r0.
Lemma 4 and Corollary 4 together prove that for the

Gaussian family,

lim
δ→0

arg max
A(X)=b

Fδ(X) = X0.

In Theorem 4, we extend this result to all function classes that
satisfy Assumption 1.

Theorem 4: Suppose A : Rn1×n2 → Rm has ∆-
spherical property and {fδ} satisfies Assumption 1, and define
X , Fδ, and X0 as in Lemma 3. If Xδ represents the maxi-
mizer of Fδ(X) over X , then

lim
δ→0

Xδ = X0.

Proof: By combining Lemma 3 and Lemma 4, we obtain
that

‖X0 −Xδ‖F ≤
nαδ√

∆−
√
d∆− 1e

, (41)

where αδ =
∣∣f−1
δ ( 1

n )
∣∣. The consequence of Assumption 1 in

(6) shows that for any ε > 0 and 0 < x < 1, one can set δ
sufficiently small such that

∣∣f−1
δ (x)

∣∣ < ε. Therefore,

lim
δ→0

αδ = lim
δ→0

∣∣∣∣f−1
δ

(
1

n

)∣∣∣∣ = 0.

This yields

lim
δ→0
‖X0 −Xδ‖F = 0.

V. NUMERICAL SIMULATIONS

In this section, the performance of the SRF algorithm is
evaluated empirically thorough simulations, and is compared
to a few other algorithms. In the first part of numerical
experiments, effects of the algorithm parameters (L, c, and ε)
in reconstruction accuracy are studied. Next, in the second
part, the so called phase transition curve [1] between per-
fect recovery and failure is experimentally obtained for the
SRF algorithm and is compared to that of the nuclear norm
minimization. In the third part of simulations, accuracy and
computational load of the SRF algorithm in solving the matrix
completion problem are compared to two well known matrix
completion algorithms. Finally, in the fourth part, robustness
of the SRF against the measurement noise is experimentally
verified.

To generate a testing random matrix X ∈ Rn1×n2 of
rank r, the following procedure is used. We generate two
random matrices XL ∈ Rn1×r and XR ∈ Rr×n2 whose
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entries are independent and identically drawn from a Gaussian
distribution with zero mean and unit variance. Then X is
constructed as the product of XL and XR, i.e., X = XLXR.
In the affine rank minimization problems, the affine con-
straint A(X) = b is converted to A vec(X) = b, where
A ∈ Rm×n1n2 denotes the matrix representation of the linear
operator A and vec(X) denotes the vector in Rn1n2 with
the columns of X stacked on top of one another. All entries
of A are drawn independently and identically from a zero
mean, unit variance Gaussian distribution. Moreover, in the
matrix completion simulations, the index set Ω of revealed
entries is selected uniformly at random. We denote the
result of the SRF algorithm by X̂ and measure its accuracy
by SNRrec = 20 log10(‖X‖F /‖X − X̂‖F ) in dB, which is
referred to as the reconstruction SNR. In addition, by term
easy problems, we mean problems in which the ratio m/dr is
greater than 3, where dr = r(n1 +n2−r) denotes the number
of degrees of freedom in a real-valued rank–r matrix [2].
When this ratio is lower than or equal to 3, it is called a
hard problem.

In all experiments the parameter µ is fixed at 1, and we use
a decreasing sequence of δ’s according to δj = cδj−1, j > 1,
where 0 < c < 1 denotes the rate of decay. The value of δ1
is set twice as large as the largest singular value of the initial
estimate. For the sake of simplicity square matrices are tested,
so n1 = n2 = n.

Our simulations are performed in MATLAB 8 environment
using an Intel Core i7, 2.6 GHz processor with 8 GB of RAM,
under Microsoft Windows 7 operating system.

A. Parameters Effects
Experiment 1. As already discussed in Section III-A, it is

not necessary to wait for complete convergence of the internal
optimization loop. Instead, a few iterations suffice to only
move toward the global maximizer for the current value of δ.
Thus, we suggested to do the internal loop for fixed L times.
However, the optimal choice of L depends on the aspects of
the problem at hand. As a rule of thumb, when the problem
becomes harder, i.e., the number of measurements decreases
toward the degrees of freedom, larger values of L should
be used. Likewise, for easier problems, smaller values of L
decrease the computational load of the algorithm, while the
accuracy will not degrade very much.

To see the above rule, the affine rank minimization problem
defined in (1) is solved using the SRF algorithm, while
changing the parameter L. We put n = 30, r = 3, ε = 10−5,
and c = 0.9. The number of measurements change from
250 to 500 to cover both easy and hard problems. To obtain
accurate SNRrec estimates, the trials are repeated 100 times.
Fig. 2 shows the effects of changing L from 1 to 10. It can
be concluded from Fig. 2 that for easy and hard problems,
there is a threshold value for L, which choosing L beyond
it can only slightly improves reconstruction SNR. However,
thorough simulations, we found that increasing the L boosts
the computation time almost linearly. For instance, when
m = 500 and L = 1, the average computation time is about
0.5 sec, while this time increases to about 1.2 sec for L = 5
and to about 2.2 sec for L = 10.
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Fig. 2. Averaged SNRrec of the SRF algorithm in solving the affine RM
problem versus L. Matrix dimensions are fixed to 30× 30, and r is set to 3.
The parameter c and ε are set to 0.9 and 10−5, respectively to have small
effect on this analysis. SNR’s are averaged over 100 runs.

Experiment 2. The next experiment is devoted to the depen-
dence of the accuracy of the SRF algorithm on the parameter
c. In this experiment, the dimensions of the matrix are the
same as the previous experiment, and L and ε are fixed to 8
and 10−5, respectively. Affine rank minimization and matrix
completion problems are solved with two different number
of measurements to show the effect on different conditions.
c is changed from 0.15 to 0.95, SNRrec’s are averaged on
100 runs. Fig. 3 depicts the reconstruction SNR versus the
scale parameter c for different problems. It is obvious that
SNR increases as c approaches 1. However, when c exceeds
a critical value, SNR remains almost constant.

Generally, the optimal choice of c depends on the criterion
which aimed to be optimized. When accuracy is the key
criterion, c should be chosen close to 1, which results in slow
decay in the sequence of δ and a higher computational time.

Experiment 3. In this experiment, the effect of ε on the
accuracy of the algorithm is analyzed. All dimensions and
parameters are the same as the experiment 2 except c and ε.
c is fixed to 0.9, and ε is changed from 10−1 to 10−6. The
result of this experiment is shown in Fig. 4. It is seen that
after passing a critical value, logarithmic reconstruction SNR
increases almost linearly as ε decreases linearly in logarithmic
scale. Hence, it can be concluded that ε controls the closeness
of the final solution to the minimum rank solution.

B. Phase Transition Curve

Experiment 4. To the best of our knowledge, the tightest
available bound on the number of required samples for the
NNM to find the minimum rank solution is two times greater
than that of the rank minimization problem [16]. More pre-
cisely, for the given linear operator which has a null space
with ∆-spherical section property, (1) has a unique solution
if rank(X0) < ∆/2, while (3) and (1) share a common
solution if rank(X0) < ∆/4. Our main goal in this experiment
is to show that the SRF algorithm can recover the solution
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Fig. 3. Averaged SNRrec of the SRF algorithm as a function of c. Matrix
dimensions are fixed to 30× 30 and r is set to 3. The parameter L and ε are
set to 8 and 10−5, respectively to have small effect on this analysis. SNR’s
are averaged over 100 runs. ’MC’ and ’RM’ denote the matrix completion
and affine rank minimization problems, respectively. For two MC problems,
m is set to 450 and 550, and for two RM problems, is set to 300 and 400.
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Fig. 4. Averaged SNRrec of the SRF algorithm as a function of ε. Matrix
dimensions are fixed to 30 × 30 and r is set to 3. The parameter L and c
are set to 8 and 0.9, respectively to have small effect on this analysis. SNR’s
are averaged over 100 runs. ε is changed from 10−1 to 10−6. ’MC’ and
’RM’ denote the matrix completion and affine rank minimization problems,
respectively. For two MC problems, m is set to 450 and 550, and for two
RM problems, is set to 300 and 400.

in situations where the nuclear norm minimization fails. In
other words, this algorithm can get closer to the intrinsic
bound in recovering of low rank matrices. The computational
cost of the SRF algorithm will be compared to an efficient
implementation of the nuclear norm minimization in the next
experiment.

Like compressive sensing literature, the phase transition can
be used to indicate the region of perfect recovery and fail-
ure [1]. Fig. 5 shows the results of applying the proposed algo-
rithm on the affine rank minimization. A solution is declared to
be recovered if reconstruction SNR is greater than 60 dB. The
matrix dimension is 40 × 40, ε = 10−5, L = 6, and c = 0.9.

m/n2

d
r
/m
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1
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Fig. 5. Phase transition of the SRF algorithm in solving the affine RM
problem. n = 40, ε = 10−5, L = 6, c = 0.9, and simulations are performed
50 times. Gray-scale color of each cell indicates the rate of perfect recovery.
White denotes 100% recovery rate, and black denotes 0% recovery rate.
A recovery is perfect if the SNRrec is greater than 60 dB. The red trace
shows the so called weak bound derived in [17] for the number of required
measurements for perfect recovery of low rank matrix using the nuclear norm
heuristics.

Simulations are repeated 50 times. The gray color of cells
indicates the empirical recovery rate. White denotes perfect
recovery in all trials, and black shows unsuccessful recovery
for all experiments. Furthermore, the thin trace on the figure
shows a theoretical bound in recovery of low rank solutions
via the nuclear norm minimization found in [17]. In [17], it
is shown that this bound is very consistent to the numerical
simulations; thus, we use it for the sake of comparison. One
can see in Fig. 5 that there is a very clear gap between this
bound and phase transition of the SRF algorithm.

C. Matrix Completion

Experiment 5. The accuracy and computational costs of the
proposed algorithm in solving the matrix completion problem
are analyzed and compared to two other methods. Among
many available approaches, FPCA [19] and OptSpace [22] are
selected as competitors. FPCA is an efficient implementation
of the NNM and can obtain very accurate results with low
complexity [19], while OptSpace is based on trimming rows
and columns of the incomplete matrix followed by truncation
of some singular values of the trimmed matrix [22].

Although CPU time is not an accurate measure of the
computational cost, we use it as a rough estimate to compare
algorithm complexities. Every simulation is run 100 times, and
the results are averaged. We set ε = 10−5, L = 8, and c =
0.9. FPCA and OptSpace are run by default parameters.

Table I shows some results of this comparison for easy
problems. In all cases, the accuracy of SRF in recovering the
solution is considerably higher than other algorithms. Also, we
observe that at large matrix dimensions, the run time of the
SRF algorithm is comparable or even better than OptSpace.
Note that c is set to 0.9 to accommodate the worst case
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TABLE I
RESULTS OF APPLYING THREE ALGORITHMS ON EASY MC PROBLEMS.

Algorithm SRF OptSpace FPCA
(n, r,m/dr) Time Error Time Error Time Error
(50,5,4) 0.19 3.17e-8 0.09 6.85e-2 0.28 1.62e-2
(50,5,5) 0.19 8.45e-9 0.08 4.53e-7 0.29 6.81e-1
(100,2,5) 1.48 3.23e-6 0.15 1.93e-2 0.07 3.68e-3
(100,2,10) 0.57 1.96e-7 0.14 8.30e-7 0.07 4.55e-5
(100,5,5) 0.68 1.33e-7 0.30 2.42e-2 0.09 3.69e-5
(100,5,10) 0.71 8.23e-9 65.7 1.37 0.82 6.98e-1
(200,5,5) 4.69 7.10e-7 0.88 2.56e-2 0.19 2.35e-4
(200,5,10) 2.92 2.50e-8 0.64 4.90e-7 0.30 6.42e-6
(200,10,5) 3.25 6.36e-8 2.76 5.78e-7 0.33 1.79e-5
(200,10,10) 3.72 6.44e-9 1.27 2.28e-7 2.82 8.09e-1
(200,20,5) 4.00 4.37e-9 9.64 1.98e-7 2.99 8.40e-1
(300,30,5) 12.6 3.17e-9 75.6 1.56e-7 8.07 8.80e-1

TABLE II
RESULTS OF APPLYING THREE ALGORITHMS ON HARD MC PROBLEMS.

Algorithm SRF OptSpace FPCA
(n, r,m/dr) Time Error Time Error Time Error
(50,5,2,5) 0.30 8.99e-7 0.09 3.85e-1 1.93 2.96e-6
(50,5,3) 0.23 3.21e-7 0.11 1.71e-1 0.06 4.85e-5
(50,10,1.5) 0.62 8.47e-5 1.97 7.40e-1 2.44 3.64e-6
(50,10,2.5) 0.21 1.88e-8 1.10 3.46e-1 2.27 9.97e-8
(50,20,1.25) 0.60 8.88e-6 0.63 7.72e-1 4.45 3.42e-1
(50,20,1.5) 0.27 8.67e-8 12.4 7.24e-1 4.57 2.48e-1
(50,25,1.25) 0.43 4.16e-7 2.55 8.21e-1 4.56 3.82e-1
(100,15,2.5) 0.84 8.10e-8 1.41 4.21e-1 6.02 4.36e-7
(100,40,1.25) 2.07 6.83e-7 19.5 8.74e-1 13.3 3.20e-1
(100,50,1.25) 1.57 2.27e-7 19.5 8.83e-1 14.3 3.62e-1
(200,20,2,5) 4.75 2.05e-7 19.5 3.98e-1 21.2 1.58e-6
(200,100,1.25) 7.24 1.24e-7 19.5 9.35e-1 57.5 3.51e-1
(200,110,1.25) 6.04 2.86e-8 19.5 9.22e-1 57.5 3.63e-1

scenario of hard problems. However, it can be tuned to speed
up the SRF method, if the working regime is a priori known.

The significant advantage of SRF is in solving hard prob-
lems. As Table II shows, in all cases except one, SRF has the
best accuracy. Particularly, when the matrix rank increases (for
examples in the experiments corresponding to the two bottom
rows of Table II), SRF exhibits an accuracy which is 106 times
better than the closest competitor, without compromising the
run time.

D. Noisy Measurements

Experiment 6. Although the SRF algorithm is designed
for noiseless measurements, we show experimentally that it is
robust against noise. The measurement model can be updated
as

A(X) = b + ν

in the existence of an additive noise vector ν. To check
the robustness, we set up an experiment with n = 30, r =
3, c = 0.9, ε = 10−5. We generate entries of ν as i.i.d.
realizations of zero-mean Gaussian random variables with unit
variance. We also vary m from dr to 3dr, and average SNRrec
over 100 trials. Fig. 6 shows the results of SNRrec vs. the
number of measurements for various measurement SNR values
(SNRmeas = 20 log10(‖b‖2/‖ν‖2)). Except for the noiseless
case where SNRmeas = ∞, we observe that the curves of
SNRrec stagnate almost at the same level as SNRmeas.
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Fig. 6. SNRrec versus number of measurements when there is measurement
noise. n = 30, r = 3, c = 0.9, ε = 10−5, m is changed from dr to 3dr ,
and results are averaged on 100 runs.

VI. CONCLUSION

In this work, a rank minimization technique based on
approximating the rank function and successively improving
the quality of the approximation was proposed. We theoret-
ically showed that the proposed iterative method asymptoti-
cally achieves the solution to the rank minimization problem,
provided that the middle-stage minimizations are exact. We
further examined the performance of this method using nu-
merical simulations. The comparisons against two common
methods reveal superiority of the proposed technique in terms
of both quality and computational time, especially when the
number of affine measurements decreases towards the unique
representation lower-bound. By providing examples, we even
demonstrate the existence of scenarios in which the conven-
tional nuclear norm minimization fails to recover the unique
low rank matrix associated with the linear constraints, while
the proposed method succeeds.

APPENDIX A
In this appendix, the closed form least squares solution of

the orthogonal back projection onto the feasible set is derived.
Let us cast the affine constraints A(X) = b as A vec(X) = b.
The goal is to find the nearest point in the affine set to the
result of the j-th iteration, Xj . Mathematically,

min
X
‖X−Xj‖2F subject to A(X) = b, (42)

or equivalently,

min
X
‖ vec(X)− vec(Xj)‖2 subject to A vec(X) = b, (43)

where ‖ · ‖ denotes vector `2-norm. By putting y = vec(X)−
vec(Xj), the problem (43) can be easily cast as the following
least squares problem

min
y
‖y‖22 subject to Ay = b−A vec(Xj). (44)

Let A† = AT (AAT )−1 be the Moore-Penrose pseudoin-
verse of A. Then the least squares solution of (42) will be
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X = matn1,n2

(
A†b+ [I−A†A] vec(Xj)

)
, where I denotes

the identity matrix, and matn1,n2(·) reverses the operation of
vectorization, i.e., matn1,n2

(
vec(X)

)
= X.

APPENDIX B
PROOF OF THEOREM 2

Proof: Let Xδ = arg maxA(X)=b Fδ(X). To prove
limδ→∞Xδ = X̂, we first focus on singular values σi(Xδ).
Due to Assumption 1, it is known that limδ→∞ Fδ(X̂) = n.
Thus, for any ε ≥ 0, one can set δ large enough such that
Fδ(X̂) ≥ n− ε. Note that for any 1 ≤ i ≤ n, we have that

n− 1 + fδ
(
σi(Xδ)

)
≥ Fδ(Xδ) ≥ Fδ(X̂) ≥ n− ε, (45)

or

fδ
(
σi(Xδ)

)
≥ 1− ε. (46)

This implies that σi(Xδ) ≤ |f−1
δ (1 − ε)| = δ|f−1(1 − ε)|.

Hence,

0 ≤ lim
δ→∞

σi(Xδ)

δ
≤
∣∣f−1(1− ε)

∣∣, ∀ 0 < ε < 1. (47)

By considering the above inequality for ε → 0, we conclude
that

lim
δ→∞

σi(Xδ)

δ
= 0, 1 ≤ i ≤ n. (48)

Using the Taylor expansion, we can rewrite f(·) as

f(s) = 1− γs2 + g(s), (49)

where γ = − 1
2f
′′(0) and

lim
s→0

g(s)

s2
= 0. (50)

In turn, Fδ(·) can be rewritten as

Fδ(X) =

n∑
i=1

fδ
(
σi(X)

)
= n− γ

δ2

n∑
i=1

σ2
i (X) +

n∑
i=1

g(σi(X)/δ). (51)

This helps us rewrite Fδ(Xδ) ≥ Fδ(X̂) in the form

γ

δ2

n∑
i=1

σ2
i (Xδ)−

n∑
i=1

g(σi(Xδ)/δ) ≤

γ

δ2

n∑
i=1

σ2
i (X̂)−

n∑
i=1

g(σi(X̂)/δ),

or similarly,

‖σ(Xδ)‖2 − ‖σ(X̂)‖2 ≤
∑n
i=1 g

(
σi(Xδ)/δ

)
− g
(
σi(X̂)/δ

)
γ δ−2

≤ ‖σ(Xδ)‖2

γ

n∑
i=1

∣∣g(σi(Xδ)/δ
)∣∣(

σi(Xδ)/δ
)2

+
‖σ(X̂)‖2

γ

n∑
i=1

∣∣g(σi(X̂)/δ
)∣∣(

σi(X̂)/δ
)2 .

Recalling ‖σ(X)‖2 = ‖X‖2F , we can write that

‖Xδ‖2F ≤ ‖X̂‖2F

1 + 1
γ

(∑n
i=1

∣∣∣ g(σi(X̂)/δ
)(

σi(X̂)/δ
)2 ∣∣∣)∣∣∣∣1− 1

γ

(∑n
i=1

∣∣∣ g(σi(Xδ)/δ
)(

σi(Xδ)/δ
)2 ∣∣∣)∣∣∣∣ . (52)

We also have

lim
δ→∞

σi(X̂)/δ = 0
(50)

==⇒ limδ→∞
g
(
σi(X̂)/δ

)(
σi(X̂)/δ

)2 = 0, (53)

lim
δ→∞

σi(Xδ)/δ = 0
(50)

==⇒ limδ→∞
g
(
σi(Xδ)/δ

)(
σi(Xδ)/δ

)2 = 0. (54)

Application of (53) and (54) in (52) results in

lim
δ→∞

‖Xδ‖2F ≤ ‖X̂‖2F . (55)

According to the definition of X̂, we have ‖Xδ‖2F ≥
‖X̂‖2F and limδ→∞ ‖Xδ‖2F ≥ ‖X̂‖2F . Combining this result
with (55), we obtain

lim
δ→∞

‖Xδ‖2F = ‖X̂‖2F . (56)

Also, any matrix in null(A) is perpendicular to X̂ since it
is the minimum Frobenius-norm solution of the A(X) = b.
Thus,

‖Xδ‖2F = ‖X̂‖2F + ‖Xδ − X̂‖2F . (57)

In summary, we conclude that limδ→∞ ‖Xδ − X̂‖2F = 0

which establishes limδ→∞Xδ = X̂.
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