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Abstract—In this paper, an imaging methodology for mono-
static millimeter-wave systems is introduced. When the measured
object hologram is piece-wise smooth with sharp boundaries, both
low-pass and high-pass components are present in a transform
domain. Nevertheless, the edges are sparse in transform domain
with respect to the image dimensions. It is shown that the down-
sampling of the hologram with an appropriate rate determined
by the sparsity level, includes the adequate information of all
components for image reconstruction. Using random samples,
an algorithm is proposed to recover all the sparse components,
iteratively. Simulation results illustrate that a high-resolution
recovery can be achieved. For instance, by using 20% of the
randomly selected hologram samples, an image recovery with a
PSNR of 20 dB is achieved and the object scan time is significantly
reduced. The proposed methodology is applied to a practical
imaging system operating at 30 GHz, where the results illustrate
a successful reconstruction of the images.

Index Terms—Iterative recovery, millimeter wave imaging,
mono-static, random sampling.

I. INTRODUCTION

Millimeter-wave imaging systems are widely used for differ-
ent applications, such as concealed weapon detection (CWD),
radar imaging for flaw detection, assisting driving or flying
in foul weather, and non-destructive tests [1], [2]. Millimeter-
waves naturally pass through the regular thin dielectric mate-
rial, such as cloth, wood, and plastic. Thus, they are best suited
for detection of denser materials such as metals, which reflect
the wave. Interestingly, the image resolution of ∼ 1−10 mm,
which is necessary for the detection of such objects is achieved
in this band. The millimeter-wave imaging systems are cat-
egorized into multi-static and mono-static classes. A multi-
static system consists of multiple transmitters and receivers in
different locations, where the transmitter antennas are turned
on sequentially, while the receiving antennas measure the
incoming wave simultaneously. In a mono-static system, a
transmitter antenna and a receiver antenna are placed at the
same location. One of the most conventional imaging methods
in mono-static systems is the based on uniform scanning the
object area by a transceiver pair in half-wavelength steps to
avoid aliasing [3]. Depending on the object size, different
number of hologram samples are required in a uniform scan.
For instance, for a full human body scan (∼ 2 m), about 400
samples are required at 30 GHz (λ ∼ 1 cm). However, most
of the images are sparse in a transform domain. Therefore,
the number of samples required for a high-quality image
reconstruction can be substantially lower than that of the
uniform sampling.
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There are different strategies to reduce the number of
samples. For instance, a nonuniform structure of linear arrays
is designed in [4] to minimize the redundancy of linear arrays.
A sparse sampling technique is introduced in [5], where two
column arrays, one for TX and one for RX, are used with
electronically switching antenna elements. In [6], the data
redundancy in a multi-static imaging systems is studied. It is
shown that the undesired distortion in reconstructed images
can be compensated by applying the modified SAR back-
projection algorithm. An array design called 1.5-D sparse is
introduced in [7], where the elements positions are determined
by applying a row-wise orthogonality constraint to gain from
the diversity of information.

Sparsity is a fundamental property in the reconstruction of
images. For sparse images, the number of required samples to
reconstruct the image can reach values far below the Nyquist
rate. Theoretically, the number of required samples for the
perfect reconstruction is twice the sparsity number (the number
of non-zero coefficients in the sparse domain) and not twice
the length of an interval that contains all non-zero coefficients
[8]. There are two main categories of sparse images [9]. In the
first category, the images are sparse in spatial domain such as
synthetic aperture radar (SAR) imaging, whereas in the second
category, the images are sparse in a transform domain (e.g.,
CWD hologram imaging). In the second category, a transform
domain such as Discrete Fourier Transform (DFT) or Discrete
Cosine Transform (DCT), is required for image reconstruction.
To reconstruct these sparse images from the hologram samples,
various algorithms based on compressive sensing are used,
such as the total variation (TV) minimization technique [10].
Moreover, the dictionary-learning-based methods are used to
adaptively estimate a sparsity domain and reconstruct the
image [11].

Another class of recovery methods consists of iterative
methods, which repeatedly apply a simple recovery procedure.
These methods are designed such that the signal of interest
becomes the fixed-point of a transformation, and then, by
repeatedly applying this transformation, an approximation of
the fixed-point signal is improved. Hence, if the initial point is
properly selected, the output gradually converges to the opti-
mum solution. One of the advantages of the iterative methods
is that even when the sampling scheme is not invertible, it
still converges to a fair approximation of the desired outcome,
while most interpolation-based methods diverge in such cases
[12]. Iterative method with side information of spectral support
is investigated in [13]. An iterative method with adaptive
thresholding (IMAT) is introduced in [8], to reconstruct the
sparse signals with sub-Nyquist rate. The IMAT algorithm is
shown to work with both structured and random samples.
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Fig. 1. Configuration of the mono-static imaging system.

In this paper, an imaging methodology based on random
sampling and iterative hologram recovery for millimeter wave
imaging systems is introduced. In this method, a random
subset of the discretized points are selected. Therefore, the
imaging process is very fast. Next, a tailored iterative al-
gorithm is proposed to estimate the missing samples before
recovering the image. Unlike [12], the proposed iterative
method needs to solve a non-linear inverse problem.

This paper is organized as follows. In Section II the system
model of a mono-static imaging device is presented. Then, the
sparse imaging approach and the iterative recovery strategy are
presented in Section III. The simulation and measured results
and discussions are provided in Section IV. Finally, the paper
is concluded in Section V.

II. SYSTEM MODEL

The mono-static imaging system is modeled as shown in
Fig. 1, where the transceiver antenna elements measure the
reflected signal from the object over a 2-D plane parallel to
the object plane. Assume that the transceiver is located at
(x′, 0, z′) in x′-z′ plane, while the point (x, y0, z) in the object
plane (x-z) is being scanned. If the reflected wave from f(x, z)
travels in a linear, isotropic, homogeneous, and non-dispersive
medium, then, all components of the electric and magnetic
fields are fully described by a single scalar wave equation [14].
The scattered field at the transceiver is a linear combination of
the reflected waves from all the object points as stated in [15].
In practice, the scanner produces a finite number of samples.
Hence, a discrete model for the imaging problem is required.
The planes of the transceiver and the object are discretized
into finite points. Let us consider the matrices S and F as the
discretized planes of transceiver with M ×N points, and the
object plane with P ×Q points, respectively. Then, s

S[m,n] =

P∑
p=1

Q∑
q=1

F[p, q]e−j2kr[m,n,p,q], (1)

where r[m,n, p, q] =
√

(m− p)2 + y20 + (n− q)2 is the
Euclidean distance between the transceiver position [m,n] and
the object point [p, q]. Moreover, k is the wavenumber. To
estimate the hologram of the object, different approaches are
presented in the literature such as [15], [9]. One common
method is to use the generalized focusing technique (GSAFT)
[15], which reconstructs the hologram as follows

f(x, z) = F−1{F{s(x, z)} e−jkyy0}, (2)

where ky =
√
4k2 − kx − kz . The operators F{·} and

F−1{·} represent the 2-D Fourier transform and its 2-D

inverse, respectively. In this approach, the final estimated
image is the absolute value of the inverse Fourier transform
of phase shifted measurements in Fourier domain.

III. PROPOSED IMAGING METHOD

A. Recovery problem

In the conventional imaging approach, the transceiver scans
the whole object uniformly with the Nyquist rate equal to
λ/2 to avoid aliasing, where λ is the carrier wavelength.
This approach is not time-efficient, since a large amount of
samples is generated. On the other hand, usually the images
are sparse in a transform domain, such as Fourier or Wavelet
domains. Hence, the minimum number of the samples required
to recover the sparse components is far less than the number
of samples obtained from the uniform sampling. In addition, it
is shown that the random sampling preserves the information
of all components in the sparse domain. In this work, the
Fourier domain is considered as the sparse domain and random
sampling scheme by a known rate related to the number of
sparse coefficients is used. The detail of the proposed imaging
method is depicted in Fig. 2, where a random binary mask
(0/1) with the size of the discretized transceiver plane is used
to reduce the processing samples. The transceiver follows the
mask pattern and scans any point where its corresponding
value is equal to 1. After scanning the object, a matrix of
the measured hologram data is formed with missing points
in matrix (Ss). The hologram data in this matrix belong
to the spatial domain. To recover the missing samples of
the hologram, the proposed algorithm is applied. Finally, the
recovered hologram is processed using the GSAFT method to
estimate the final image. In fact, a sparse matrix of data in
Fourier domain is formed such that its projected samples in
spatial domain are equal to the measured random samples.
Mathematically, the following optimization problem is formed

min
S′
‖F{S′}‖0 subject to PM (S′) = PM (S) (3)

where ‖ · ‖0 is the `0-norm, which is equal to the number
of non-zero coefficients. PM (·) is an operator with mask
M (i.e. PM (S) = M � S, where � is the Hadamard
product). Although (3) gives the desired solution, this is a
non-deterministic polynomial time problem, which is compu-
tationally intensive. Hence, based on the theory of compressed
sensing, the `0-norm is replaced by a sub-optimal convex
relaxation approach, so the problem can be solved using `1-
norm minimization [16], or

min
S′
‖F{S′}‖1 subject to PM (S′) = PM (S) (4)

The Basis Pursuit (BP) [17] and LASSO [18] algorithms are
two common methods for solving problems similar to (4). In
this paper, instead, an iterative algorithm is proposed, which
is described in details in the following section.

B. Proposed Algorithm

To recover the hologram from its samples, an iterative
method is employed, where its goal is to construct the in-
version of the distortion operator by its samples [12]. The
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Fig. 2. Proposed imaging method. The green circles in Mask corresponds to the sampling points.
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Fig. 3. The block diagram of the iterative method at (k + 1)th iteration.

iterative recovery methods are tied to the fixed point theory
in mathematics. The block diagram of the iterative recovery
method is presented in Fig. 3. As it is shown, the process
of signal recovery, x, from its measured samples, y, with
distortion operator D{·} at iteration (k + 1) is described by

xk+1 = xk + µ
(
y −D{xk}

)
y = D{x}+ n

x0 = 0

where µ is the relaxation parameter and n is the noise vector.
Similar to the sparse recovery algorithms, the proposed

approach is based on recovering the hologram iteratively.
At each iteration, first the image is transformed into the
Fourier domain (the sparsity domain). Next, the thresholding
operator is applied to enforce the sparsity constraint, and
then, the inverse Fourier transform is used to return to the
pixel domain. Finally, the pixel values are replaced with the
original values wherever available (the projection step). Hence,
the operator D{·} in the proposed algorithm consists of the
thresholding step in the sparsity domain and replacing the
measured samples in the pixel domain. By iteratively enforcing
the sparsity constraint in the Fourier domain and the consis-
tency constraint in the pixel domain, the missing samples are
gradually recovered. In other words, after the iterative method
converges, the recovered image satisfies both constraints. Thus,
if the number of samples is sufficient to uniquely represent the
image, the recovered image shall coincide with the original
one. In other cases, the recovered image represents a sparse
approximation of the original image. The block diagram of
the proposed method is presented in Fig. 4. The thresholding
operator T on matrix X with entries xij and threshold value
τ is defined as

xij = 0 if |xij | < τ, xij = xij otherwise. (5)

Remark 1. To select the sparse components gradually, a
suitable technique is to decrease the threshold level τ as the
iteration number increases. Hence, an exponential threshold
level is used

τk = βe−αk, (6)

Input (Ss)

Output (Ŝ)

F T

F−1

P

Fig. 4. The block diagram of the proposed algorithm. The operators F , T ,
F−1, and P stand for the Fourier transform, the thresholding operator, the
inverse Fourier transform and the projection operator, respectively.

TABLE I
THE RECONSTRUCTION PSNR IN DB AND THE SSIM METRIC FOR FIG. 5

Rate 5% (left col.) 20% (middle col.) 80% (right col.)
Metric PSNR SSIM PSNR SSIM PSNR SSIM

GSAFT 12.12 0.0321 15.84 0.0730 21.28 0.1840
DMAS 12.64 0.0629 14.97 0.2799 19.28 0.8920

Proposed 16.01 0.0425 21.99 0.3295 23.62 0.8101

where β = ‖F{X0}‖∞, and α ∈ (0, 1). Parameter β is set
to the largest coefficient to assure that there is at least one
coefficient to be picked up in the first iteration.

The projection operator, which maps the measured samples
to their locations is

PM{Ss,Z} = Ss + (1−M)�Z, (7)

The projection PM{Ss,Z} returns a matrix, whose entries
are selected from Z (the IFFT of (5)) if the corresponding
entries in M are zero, otherwise they are selected from Ss.
The algorithm terminates when the relative variation of the
reconstructed images between the two consecutive iterations
is smaller than ε. The parameter ε is determined empirically.

IV. SIMULATION AND EXPERIMENTAL RESULT

In this section, the proposed method is examined and
compared with the conventional methods such as GSAFT [15],
FFT-SAR [19], and delay multiply and sum (DMAS) [20].
The mono-static imaging system operates at 30 GHz, so the
minimum sampling space is λ/2 = 0.5 cm. The distance
between the transceiver and object planes is equal to 100 cm.
Also, both planes are discretized to 100 × 100 grid points.
The threshold decay factor is set to α = 0.1. To have a fair
comparison, the structural similarity index measure (SSIM)
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(a) (b)

(c1) (c2) (c3)

(d1) (d2) (d3)

(e1) (e2) (e3)
Fig. 5. Reconstruction of “F” shape for different sampling rates. (a) Object,
(b) full scan result. Recovery using (c) GSAFT, (d) DMAS, and (e) the
proposed method. The reconstruction PSNR in dB and the SSIM metric are
shown in Table I.

metric [21] and the peak signal-to-noise ratio (PSNR) metric of
the reconstructed images are calculated for each reconstructed
image, where the full scan reconstruction is considered as
the benchmark. The PSNR value considering the benchmark
FM×N and the estimated images F̂ is derived from

PSNR(dB) = 10 log10

(
max(F)2(√∑

i,j(Fi,j−F̂i,j)2
)
/(MN)

)
. (8)

For the first simulation, the synthetic image of the shape F,
depicted in Fig. 5(a), is used. Fig. 5(b) shows the full scan
reconstruction as the benchmark for comparison. A random
mask is generated with different sparsity rates. The measured
samples with rates of 5%, 20%, and 80% with respect to the
full scan are fed to the GSAFT, DMAS and the proposed
method. The recovered images are shown in Fig. 5. Due to
the sparsity of the image, the proposed method successfully
estimates the image. Specifically, recovery with only 20%
of samples reconstructs a high quality image with PSNR of
21.99 dB, which is higher than the case when 80% of the
samples are recovered directly by GSAFT method. In the
second simulation, the sampling rate is varied from 10% to
90% with the step size of 10%, and calculate the PSNR and
SSIM of five methods: GSAFT, linear interpolation for the
missing sample recovery, FFT-SAR, DMAS and the proposed
method. Figure 6 shows that by using the proposed algorithm,
even with under-sampling, a high-quality reconstruction is
performed. In particular, in the case of 30% sampling rate
with the proposed method, almost the same quality as the
case of 90% sampling rate with GSAFT method is obtained.
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Fig. 6. Reconstruction quality of random sampling versus sampling rate for
F shape (Fig. 5(a)), (a) PSNR metric, (b) SSIM metric.

(a) (b)

(c) (d) (e)
Fig. 7. A scene with multiple shape objects scanned with 20% undersampling.
(a) Complex resolution chart, (b) full scan, (c) GSAFT, PSNR: 12.57dB
(SSIM= 0.0325), (d) DMAS, PSNR: 9.52dB (SSIM= 0.0567), (e) proposed
PSNR: 17.31dB (SSIM= 0.1365).

In the third test, several complex shapes with low sparsity are
employed to study the performance of the proposed algorithm.
For more complex shapes, the sparsity of the image decreases,
therefore, more samples are required for better reconstruction.
The complex resolution chart with size of 200 × 200 points
and the simulation results for the sampling rate of 20% are
depicted in Fig. 7. These results state that the proposed method
successfully recovers the image with PSNR of 17.31 dB
(SSIM = 0.1365), which is about 5 dB higher than that of
the GSAFT recovery method.

In the last experiment, the proposed methodology is applied
to the practical data obtained by the system illustrated in
Fig. 8. The imaging system consists of two horn antennas
with 20 dB gain at Ka-band (26.5 − 40 GHz) used as TX
and RX antennas, an RF amplifier with 18 dB gain and
a mechanical positioner, which moves the antennas to scan
the object in Cartesian plane. The TX and RX antennas are
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Fig. 8. Practical setup for imaging at 30 GHz. The shape is parallel to the
transceiver plane.

(a) (b)

(c) (d) (e)
Fig. 9. Measurement results. (a) Original object, (b) full scan, (c) GSAFT
with 40% sampling rate, PSNR: 14.25 dB (SSIM= 0.2424), (d) DMAS with
40% sampling rate, PSNR: 13.67dB (SSIM= 0.2596), (e) proposed method
with 40% sampling rate, PSNR: 25.02dB (SSIM = 0.6583).

connected to HP8722ES network analyzer, which transmits
and receives millimeter-wave signals. The whole system is
placed inside an anechoic chamber, where undesired reflectors
are absorbed. The distance between the transceiver and object
planes is 30 cm. The horn antennas follow the binary mask of
size 55 × 55 for imaging. The scanning time at each sensor
node (essentially each pixel) takes 0.1 ms. The measured
received signal is saved in the computer and then the proposed
algorithm is applied. The sampling rate of 40% is used in this
experiment, where a metal cross object is used. The results
are depicted in Fig. 9. The proposed method successfully
reconstructs the image from a subset of samples with a PSNR
of 25.02 dB.

The execution time of the proposed algorithm on images
size of 100×100 is measured as 35.1 ms on average over 1000
independent runs with varying sampling rates. For a typical
case, consider a 30% undersampling rate which translates into
dropping 3000 pixels. This saves us 300 ms of scanning time,
while our method adds 35.1 ms to the overall computation
time. The algorithm was implemented in MATLAB 2019b on
a workstation with Intel(R) Core(TM) i7-4930K CPU @3.40
GHz(12 CPUs) and 16 GB RAM. On this workstation for
the sampling rate of 20% the execution time of reconstruction
process for GSAFT, proposed approach, and DMAS are 3.12
sec, 3.39 sec and 97.70 sec, respectively.

V. CONCLUSION

In this paper, an imaging methodology for the mono-static
millimeter wave systems was introduced, based on random

sampling with the specific rates related to the sparsity of the
hologram in a transform domain. To achieve a high resolution
recovery, an iterative algorithm is proposed to recover the
missing samples of the hologram. Simulation results on the
synthetic shapes as well as the experimental data proved the
successful performance of the proposed imaging and recovery
methods. For example, it was shown that by using only 20% of
the regular samples, the imaging process is performed faster.
Furthermore, the achieved PSNR in the reconstruction is over
20 dB, which is higher than the case where 80% of samples
are processed with the direct GSAFT method.
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