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Abstract

Human action recognition based on standard video files is a well-studied
problem in the literature. In this study, we assume to have access to sin-
gle modality standard data of some actions (training data). Based on this
data, we aim at identifying the action involved in target modality video data
without the source-target relationship information. In this case, the train-
ing and test phases of the recognition task are based on different imaging
modalities. Our goal in this paper is to introduce a mapping (a nonlinear
operator) on both modalities such that the outcome shares some specific fea-
tures. These common features were then used to recognize an action in each
domain. Simulation results on MSRDailyActivity3D, MSRActionPairs and
UTKinect-Action3D Dataset datasets showed that the introduced method
outperforms state-of-the art methods with a success rate margin of 15% on
average.

Keywords: Depth Information, Human Action Recognition, RGB Video,
Transfer Learning, Non-Linear Mapping.

1. Introduction

In recent years, various approaches have been proposed for identifying
human action. The goal in these approaches is to automatically analyze the
activities from a video recordings (i.e. a sequence of image frames). While
the RGB modality is the dominant imaging format, other modalities such
as the skeleton-based and depth images are also used. The cost-effectiveness
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and availability of Microsoft Kinect has led to popularity of depth imaging in
parallel to RGB imaging. Indeed, Kinect sensors have found applications in
consumer electronics including smart automobiles, health care, surveillance
and activity recognition [1]. The simultaneous imaging of RGB and depth
modalities is commonly referred to as RGB-D data format. The existence
of the additional depth information, is likely to equip RGB-D data with a
better human action recognition compared to the conventional RGB data
[2]. Besides, we have witnessed remarkable progress in the field of machine
learning in recent years which potentially enables us to take advantage of the
additional information in the RGB-D format.

One of the challenging problems in RGB-D action recognition is the miss-
ing modality issue. This happens when one of the modalities becomes tem-
porarily unavailable. For instance, during the night, RGB recordings become
very noisy and could be even ignored in low-light situations. Now the chal-
lenge is to identify an action based on only one modality (e.g., depth during
the night) by having access to a database of valid RGB-D data of multiple
actions. The existence of RGB-D dataset could potentially increase the ac-
curacy of the action recognition beyond that of a method based solely on
a single modality. One possible approach is to relate two modalities and
employ this relation to retrieve the other modality when missing [3], [4].
Another approach is the multimodal transfer learning based on an existing
RGB-D dataset and extending the technique to the available problem [5], [6].
In transfer learning, since the training and test data belong to two separate
domains, it is common to call them source and target domains, respectively.
Supervised transfer learning is a subfield of transfer learning in which the
target domain contains a limited part with labeled data. The use of transfer
learning in the missing modality problem consists of two steps: 1) trans-
ferring the knowledge from source database to the target database, and 2)
transferring the knowledge from the source modality to the target modal-
ity [7]. The outcome could be considered as multimodal transfer learning.
Chengcheng et al, have proposed a transfer learning approach is presented
for the missing modality problem in which the missing modality is treated
as latent information in the target domain. Using a tensor-based framework,
these latent information are recovered via rank-minimization. The above
studies highlight that the representation of the two modalities and their con-
nections have a great impact on the accuracy of the method [8].

In this work, we consider a somewhat more difficult problem. We assume
to know a database of the actions only in one modality (i.e., either RGB
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Figure 1: Example of steps for RGB and depth sequence in proposal method a) normalized
depth frame b) mapping c) adaptive background subtraction for rgb sequence d) gray scale
frame e) mapping f) adaptive background subtraction for depth sequence

or depth, and not both); then, for a given recording of action in the other
modality, we shall determine the action. In other words, unlike the transfer
learning approach, we do not have access to a database of joint RGB-D
modalities. Our approach is to map two modalities into a lower-dimensional
subspace such that the representations in two modalities become similar.
With this technique, we eliminate the need of having an auxillary RGB-D
dataset. This mapping consists of finding the significant parts of the scene
in which the action is taking place and evaluating the HOG features of the
cropped videos. A KNN classifier is ultimately used to determine the action.
To the best of our knowledge, the missing modality problem without an
auxillary database is not studied in the past. For an illustrative example,
we have plotted the procedures in Figure 1: the RGB and depth modalities
of a frame are shown in (a) and (b) subfigures, respectively. The outcome
of our method on these two modalities is shown in subfigures (h) and (d),
respectively. It is evident that the two outcomes are very similar, which
greatly facilitates the classification task.

1.1. Related works

The problem has been studied at two major levels of complexity: 1)ac-
tions and 2)activities. Actions are characterized by simple motion patterns
typically executed by a single human. Activities are more complex and in-
volve coordinated actions among a small number of humans [9]. Feature rep-
resentation methods have been developed for recognizing actions from video
sequences based on color scale cameras. Ahad et al [10], have proposed, sil-
houettes are temporally accumulated to form motion energy images (MEIs)
and motion history images (MHIs). Alp et al [11] they were extracted from
both MEIs and MHIs as action descriptors. Used Gaussian mixture models
(GMM) to capture the distribution of the moments of silhouette sequences
was proposed by Davis in [12]. Several other approaches utilize motion flow
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patterns to represent human actions. Typically, optical flows are calculated
for the entire image by matching consecutive video frames. In addition, se-
ries of Spatio-temporal interest points (STIPs) based methods have been pro-
posed, which achieve state-of-the-art performances in activity recognition. In
addition ,optical flow [13], context [14], HoG/HOF [15] and extended SURF
[16], can be considered as a clustering of low-level features. There are a set
of useful features for the depth data, such as depth map [17], RGB-D points
[4], HON4D [3]. Compared with the RGB data, the depth data can separate
the background and foreground according to the hierarchical distance to the
camera. these are useful method, base on representing video as feature or de-
scriptor. Another method was two feature representation methods has been
introduced for color and depth information fusing for activity recognition,
which is developed in a straight forward manner from two state-of-the-art
action representation methods, i.e., spatial-temporal interest points (STIPs)
and motion history images (MHIs). The idea which the fusion of color and
depth information is suitable for the task that has these two modalities [18].

Other approaches belong to the transfer learning task. Missing modality
problem in transfer learning is defined as the target modality is unavailable
in the training stage, while only the source modality can be obtained in
this stage. Recently, low-rank matrix constraint [19], [20] has been intro-
duced into the transfer learning problem in the image processing task. It
can be revealed that the subspace structure of both source and target data
can be achieved through the locality aware reconstruction. This reconstruc-
tion keeps guiding the knowledge transfer in a latent shared subspace. Some
transfer learning methods take advantage of unlabeled data by predicting
their labels. There are two situations for the target labels, one in the cate-
gories of source and target data are the same. Ding et al [21] have proposed
a deep transfer learning method in two domains and have predicted target
labels. They combined labeled and unlabeled data, and predicted the la-
bels each time to reconstruct the whole dataset. The second situation is
in the case that the categories of source and target data are different. A
semi-supervised model by transferring semantic attributes have proposed by
Rohrbach et al [22]. They was exploiting the manifold structure of target
data to improve the prediction of unlabeled data. Their method could pre-
dict the new categories of data in one domain. The important point in this
method is the source domain data that can help in recognizing the target
domain data.

LTSL[19] and LRDAP[20] are two typical transfer learning methods that
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include the low-rank constraint. LTSL aims to find a common subspace
where the source data can represent the target in the low-rank framework
well. LRDAP aims to find a rotation on source domain data to be represented
by the target domain in the low-rank framework. LRDAP considers that the
rotated source data can be used to test the target data when the rotated
source data can be reconstructed in the target domain. In both cases, the
role of the auxiliary data is very important. Different from other studies,
jia proposed method which have transfered common properties between two
domains, and aligned source and target domains by learning a coefficient
matrix, which has been optimized by two graphs. One graph reflects the
manifold structure of labeled source data, while the other is generated by
the neighbors of unlabeled target data. Since the two graphs are cooperated
to update the coefficient matrix, the graph with unlabeled target data is
guided by the other with label information, therefore they could obtain more
reliable predicted labels of the target data. Most of these approaches need
another dataset which can be time-consuming and may have a very different
distribution between two domains. Also, we purpose a non-linear mapping
to dismiss Malicious information and special attention to the area that has
more information about the act.

1.2. Our Contributions

Different from the previous studies, our method aims to solve the missing
modality problem by:
• proposing a nonlinear mapping between two domains .
• Using an adaptive background subtraction to bring both modalities closer
together.
• Our method do not use the relation information between RGB and depth
data by another auxiliary database.
For the classification task, we used the HoG feature for both new repre-
sentations of depth and RGB and it was shown that is more efficient than
other methods. To the best of our knowledge, we are the first to consider the
missing modality problem in the human action recognition framework, by re-
covering the relation between two modalities. The result shows classification
accuracy on average in all experiments 15% higher than other methods.

1.3. road map

In section II, we express the process on RGB and depth data by mapping
and adaptive background subtraction. We introduced a non-linear mapping
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Figure 2: An overview of the process performed

and prepare the data for the next stage in this section. In section III, we in-
troduce datasets and experimental settings. Then, we evaluate the accuracy
of our proposed method and compare it with other methods. Finally, section
IV concludes the paper.

2. Method

To address the Missing Modality Problem, we need to find a method to
represent two modalities that are as similar as possible, so we could assume
that we have just one modality. To this end, the non-linear mapping on both
modalities and adaptive background subtraction could help to find more
similarities between the two modalities.

we first resized the frames of depth and RGB data. This makes the
video frames have the same size and normalizes the amplitudes of the images
to the range [0,1]. Given action databases with N samples of the video
in two modalities; we denote X for RGB and Y for depth representations
respectively. X = {X1, X2, ...XM} and Y = {Y1, Y2, ...YM} where M is the
number of videos and each sample Xi or Yi ∈ Ra×b×N where a, b are the
width and length of each frame which are equivalent in both modalities and
N is the number of frames in each sample.
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The steps of the proposed method in both RGB and depth modalities
are illustrated in figure 2. The most important step in our work is applying
nonlinear mapping to the whole video. In video for both modalities, due to
the detection of movements by the difference of frames, we can see which
intensity level or in depth modality which distance, could have more infor-
mation about the actions. To estimate it, we calculate the area that action
happens with the help of consecutive frames. It yields the 3 dimensional
binary mask, which helps us to estimate the most important position related
to actions. Thus,

Bi = |Xi −Xi−1| > θ1, i = 2, 3, ..., N (1)

θ1 is the threshold for RGB modality to consider the amount of difference
in the image sequence. This value is obtained empirically. But for depth
data, due to the nature of the depth images, some sort of noise like shot
noise will appear. To achieve a result more similar to the RGB modality, we
must overcome this type of noise as much as possible. Since the difference in
images in two consecutive frames does not have sudden and large changes,
we could consider changes smaller than a threshold like 0.7. It makes sense
when the action happened, the difference between two consecutive frames is
not large in amplitude and when the variation is too high, it is due to such
noise, so we used an upper limit in depth modality to avoid this noise.

Bi = (|Yi − Yi−1| < 0.7) > θ1, i = 2, 3, ..., N (2)

After we calculated the binary mask for both modality, we multiplied it to
whole video frames, if the input data is RGB, then:

Vi = Bi. ∗Xi, i = 2, 3, ..., N (3)

and if the input data is depth:

Vi = Bi. ∗ Yi, i = 2, 3, ..., N (4)

Now V ∈ Ra×b×(N−1) is zero valued for unimportant data which have no
action was occurred there and have a non zero intensity level or distance
value for the important part of the action video. This cube is now suitable
to estimate the parameters of our non linear mapping in both modalities.

7



2.1. NON LINEAR MAPPING

To Emphasis and consider the important part of intensity for grayscale
and distance for depth modalities, we must estimate the action variations
intensity or distance. The approach to estimating these variations is to use a
Gaussian mapping which has the mean and variance values of the intensity
(in RGB modality) and distance( in depth modality) changes. The spatial-
temporal mask which calculates in the previous step is now a good guide to
find out these parameters. The mean value is selected as the most occurring
level that appears in the movement of a non zero V . So, we calculated the
average of the whole non zero elements in V . For the variation of action, we
calculated the variance of non-zero elements in the action. A small amount
of variance indicates small actions like pushing or pulling and big actions
that have bigger variance is expressible as activities like walking around or
push the chair, etc. So if we consider G as non zero elemnts of V , hence we
can write:

θ = 1
N−1

N∑
i=2

(Gi) , σ2 = 1
N

N∑
i=2

(Gi − µ)2. (5)

Where θ and σ2 are the mean and variance of G, respectively. After calcu-
lating these parameters, now we employ non linear mapping. Thus:

Di = exp
(
− (1/σ) ∗ (Xi − θ)2

)
, i = 2, 3, ...N (6)

and for depth images:

Di = exp
(
− (1/σ) ∗ (Yi − θ)2

)
, i = 2, 3, ...N (7)

This mapping converts the space of original videos into a space in which the
intensity level or distance is emphasizes and in addition, we greatly reduced
the effect of shot noise in depth modality. To express this issue, figure 3
shows the surface of one frame in depth modality before and after mapping.

2.2. Adaptive Background Subtraction

After non-linear mapping, we represented the action by the shape of
changes in intensity or depth modalities of image sequences. as:

outputi = |S(i− 1)−D(i)| > θ2, i = 2, 3, ...N (8)
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(a) (b)

(c) (d)

Figure 3: a)surface of one depth frame b)image of depth frame c)surface of same frame
after mapping by Gaussian transform d)image after mapping

where Di is the current frame and Si−1 is the result of the previous back-
ground subtraction frame and θ2 is the threshold used to binarized the dif-
ference values. Adaptive background subtraction Helps to identify temporal
changes and somehow preserve the history of actions. History of changes
that will be preserve, depends on frame number of videos and level of ac-
tion’s movement. Thus, Si defines as:

Si = α ∗Di + β ∗ Si−1, i = 2, 3, ...N (9)

The value of α and β were obtained empirically. these value determining
the weighted effect of the previous frame and current frame in the formation
of background subtraction framework. For the first step, S is equivalent
to frame number 2. The process going from frame number 2 until the end
for both modalities. The entire process can consider a non-linear operation
too. The last step is, to extract 8 frames at specific intervals. This reduces
the sensitivity to pick exactly one frame in each modality. In other words,
the robustness of the algorithm was increased to timing misalignment of the
frame in videos of two modalities. The reason for such resistance is the use of
adaptive background subtraction for the final display of each video in both
modalities. The details of the algorithm are outlined in Algorithm 1 for both
modalities. After this processing for all train videos, we resize the videos
and binarized them. The final threshold for binarization after resizing is
determined experimentally.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4: RGB and depth samples from the datasets: a,b) depth frames from MSR Ac-
tionPAIR, c,d) depth frames from MSRDailyActivity3D, e,f) RGB frames from MSR Ac-
tionPAIR, g,h) RGB frames from MSRDailyActivity3D

(a) (b) (c) (d) (e) (f) (g)

(h)

Figure 5: Proportional frames in the figure 4, after proccess. The shadow that appears is
the result of adaptive background subtraction. in (c),(g) the actions is difficult to identify
due to law movement and small in analogy or the whole scene.

3. Experiments

3.1. DATASET

For the purpose of experiments, we consider three action datasets: MSR-
DailyActivity3D1[23], MSRActionPairs2[3] and UTKinect-Action3D Dataset3[24].
Each dataset contains the two modalities of RGB and depth. In the MSR-
DailyActivity3D dataset, there are 16 categories of actions performed by 10
subjects, each performing every action twice. There are 320 RGB samples
as well as 320 depth samples. In the MSRActionPairs dataset, there are six
pairs of actions performed by 10 subjects with three trials each.

1http://research.microsoft.com/en-us/um/people/zliu/ActionRecoRsrc/
2http://www.cs.ucf.edu/ oreifej/HON4D.html
3http://cvrc.ece.utexas.edu/KinectDatasets/HOJ3D.html
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In total, there are 360 RGB and 360 depth action samples. Finally, in
the UTKinect-Action3D dataset, there are 10 subjects performing each of 10
action types twice. In Figure 4 we show RGB and depth samples from each
of the mentioned datasets. In addition, we show the output of our non-linear
mapping and background subtraction in Figure 5.

3.2. Competing methods

To better illustrate the results of the proposed method, we compare them
with the results of LTSL, GFK [25], HOG-KNN [26], SALAD [27], LTTL
[8] and SLRTL[8]. Some highlights of these methods are: LTSL learns a
common subspace by transferring information between two domains via a
low-rank constraint. In GFK, the common subspace is found by maximizing
a correlation measure between source and target domains. The HoG-KNN is
a benchmark without transfer learning, i.e., the source dataset is not used in
the training phase. SALAD focuses on domain adaptation where the actions
in the source and target datasets are the same with known source action
labels. Latent tensors and low-rank constraints are incorporated in LTTL[8]
to estimate the missing modality in a low dimensional subspace. SLRTL is
the same as LTTL with the exception that the action labels are known.

3.3. Results and Discussions

To study the action recognition performance of the proposed method and
other referenced approaches, we consider two main setups: training based on
the RGB modality and testing on the depth modality (results in Table[1])
and training based on the depth modality and testing on the RGB modality.
Moreover, for each test, once we use the first half of the subjects as training
data and the other half as the test data, and then, we swap the train and
test data and repeat the experiments again. We should highlight that the
experiments are applied according to the provided settings in [8] and there-
fore, the results (besides the proposed method) are directly reported from
this reference.

For the results of the proposed method, we recall that the last step in
Figure 2 was to resize each frame and make a binary map by applying a
thresholding scheme. To find the optimal resize dimensions, we have con-
sidered resizing to dimensions [80, 50], [60, 40], [60, 30], [50, 30], [50, 25], and
[40, 30], with equal thresholds. Overall, the best dimension for highest accu-
racy (averaged over all 4 experiments) is observed to be [50, 25]. Therefore,
resizing to [50, 25] is consistently used in all the reported results in figure 6.
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(a) (b)

(c)

Figure 6: Average accuracy in all 4 experiments per data set based on
frame size changes. a)UTKinect-Action3D Dataset b)MSRDailyActivity3D Dataset
c)MSRActionPairs Dataset

It is worth mentioning again that we derive the HoG features of the resized
frames and employ a traditional KNN for classifying the action.

Table 1 shows the results of all the compared methods when RGB modal-
ity is used for training to estimate the actions in depth modality (test data).
The results confirm the superior accuracy of the proposed method compared
to the other techniques in all experiments. Our method achieves its highest
accuracy when applied to the MSRActionPairs dataset; meanwhile, MSR-
DailyActivity3D seems to be the most challenging dataset, as we observe the
worst accuracy here. The poor performance of our method for this dataset
has three main reasons

1. As explained earlier, the accuracy of recognition in our method is di-
rectly linked to the level of movements. Therefore, the actions of drink-
ing, eating, talking-with-mobile, reading and writing are expected to be
similar (potential miss classification between the actions); in the same
way, due to the lack of significant movements, the actions of still and
working with a laptop are also similar.

2. Our training dataset consists of a single subject performing an action;
therefore, when a second subject (human or and object) makes a move-
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Table 1: accuracy of test1: RGB-depth on three action databases

Dataset MSRdaily MSRAction UTKinect-
Activity3D Pairs Action

Training data 1sthalf 2ndhalf 1sthalf 2ndhalf 1sthalf 2ndhalf

METHODES

GFK 22.50 16.25 18.18 11.86 25.00 30.50

LTSL 06.88 05.00 10.80 07.34 11.50 21.00

HOG-KNN 28.75 26.25 22.73 24.29 17.50 25.50

SALAD 27.67 27.67 30.43 30.43

LTTL 29.38 34.38 35.23 31.07 28.50 25.50

SLRTL 29.38 34.38 35.23 31.07 33.00 28.50

OURS 39.37 38.75 65.55 55.55 40.00 49.00

ment, we have a combination of movements and our method is likely
to miss clasify the first subject’s action. We observe that some of the
test data in the MSRDailyActivity3D dataset are corrupted by second
human / object movement; an example is when someone throws an
object or type on a laptop while another person is walking around.

3. The MSRDailyActivity3D dataset is mainly used for object recognition
and not action recognition [28]. This dataset consists of actions with
very similar nature such as “talking on the phone while walking” and
“just walking”, which are difficult to distinguish particularly, in our
method that employs only 8 frames from a video. We should high-
light that the type of movements in MSRActionPairs dataset are more
distinct and easier to distinguish.
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Table 2: accuracy of test2: depth-RGB on three action databases

Dataset MSRdaily MSRAction UTKinect-
Activity3D Pairs Action

Training data 1sthalf 2ndhalf 1sthalf 2ndhalf 1sthalf 2ndhalf

METHODES

GFK 15.63 14.38 07.44 19.17 18.00 18.00

LTSL 05.63 05.00 07.44 12.50 19.00 18.00

HOG-KNN 17.50 16.88 12.40 22.50 33.00 28.00

SALAD 31.97 31.97 30.98 30.98

LTTL 35.00 31.88 23.14 23.33 35.00 28.00

SLRTL 35.00 31.88 28.10 23.33 35.00 28.00

OURS 34.37 34.37 58.00 45.00 58.00 43.00

To justify the superior performance of our method compared to the com-
peting methods is that these methods make use of transfer learning, which in
turn requires a considerable overlap between the source and target datasets.
This requirement is however, widely violated in our experiments; for instance,
we have “pushing a chair” in the source dataset while the closest counter part
in the target dataset is “sitting on a sofa”. The difference between source and
target image modalities also further complicates the task of transfer learning.

The UTKinect-Action dataset has short-length action videos with missing
frames. Therefore, the tuned α and β parameters (in adaptive background
subtraction stage) for the previous datasets no longer achieve desirable results
here. To better accumulate the motions in our combined frames, we consider
α = 0.9 and β = 0.1 here, which amount to longer memory for keeping the
actions (in contrast to α = 0.1 and β = 0.9 for the previous datasets).
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According to [28], the most challenging multimodal action recognition
is when the image modality in the source dataset is depth and the image
modality in the target dataset is RGB. The rationale is that the depth images
are quite noisy and less informative that the RGB images. In our method,
by applying a denoising stage, we have tried to decrease the information gap
between the two modalities. As a result, in Table 2 we observe that the most
and least challenging multimodal action recognition tasks have comparable
accuracy levels in our method. It is worst highlighting that our method does
not make use of any auxiliary dataset to enhance the accuracy level.

4. CONCLUSION

Unlike previous studies, our method aims to solve the missing modal-
ity problem by finding an intersection of the two modalities which is yet
information-preserving. For this purpose, we proposed a non-linear map-
ping and adaptive background subtraction to form a binary representation.
The representation actually captures the movements involved in an action.
The important point was that the aimed representation is achieved without
having access to an RGB-D dataset of actions. Through a number of ex-
periments, we showed that the proposed method outperforms the existing
techniques in terms of accuracy. In particular, it marks great improvements
when trained on a depth dataset and tested on an RGB dataset.

Since our method solely takes the movements into account, it makes mis-
takes when two actions consist of similar movements. Therefore, as a future
work, one can combine the movements with other features such as the in-
volved objects to improve the accuracy.
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Algorithm 1 New RGB/depth data representation

Require: X = {X1, X2, ...XM} as the normalized RGB tensors, or Y =
{Y1, Y2, ...YM} as the normalized depth tensors with M videos
N= the number of frames
α, β=weights for adaptive background subtraction
θ1, θ2= thresholds used in the nonlinear mapping and adaptive background
subtraction
-Nonliner mapping
For i = 2 : N

if input is RGB: Bi = |Xi −Xi−1| > θ1
if input is depth: Bi = (|Yi − Yi−1| < 0.7) > θ1

end
if input is RGB: vi = Bi . ∗ Xi

if input is depth: vi = Bi . ∗ Yi
Define: G← V6=0

Define: σ2 =

N∑
i=2

(Gi−µ)2

N
, θ =

N∑
i=2

(Gi)

N−1
for i = 1 : n
for RGB data:
D(i)= exp(−(1/2 ∗ σ2) ∗ (Yi − θ)2)
for depth data:
D(i)= exp(−(1/2 ∗ σ2) ∗ (Yi − θ)2)
end
-Adaptive Background Subtraction
for i = 2 : n, S1 = D1

volum(i) ⇐= |Si−1 −Di| > θ2
Bi = α ∗Di + β ∗ Si−1
end
output: volum∈ Ra×b×N−1
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