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In this paper, we focus on the heavy-tailed stochastic signals generated through continuous-time 
autoregressive (CAR) models excited by infinite-variance α-stable processes. Our goal is to estimate the 
parameters of the continuous-time model, such as the autoregressive coefficients and the distribution 
parameters related to the excitation process for the α-stable CAR process with 0 < α < 2 based on 
the state-space representation. Likewise, we investigate the closed form expressions for the parameters 
of equivalent model in the discrete-time setting via regular samples of the process. We analyze the 
estimator based on the Monte Carlo simulations and illustrate the estimator consistency to the desired 
values when sampling frequency and sample size tend to infinity. We also apply the proposed method to 
the two types of real-world data, financial and ground magnetometer data, to evaluate its performance 
in real environments.

© 2016 Elsevier Inc. All rights reserved.
1. Introduction

There are two main categories of statistical signal models, 
namely, discrete and continuous. Because of the simplicity of the 
model and the involved mathematical tools, the discrete-domain 
framework is by far the widely adopted choice in engineering 
applications, while discrete-time modeling is an approximation 
for real-time phenomena. However, in different fields of studies, 
continuous-time models have been frequently used, such as au-
tomatic control and signal processing [1,2]. Typical benefits asso-
ciated to continuous modeling over the discrete models are in the 
signal processing applications. In this respect, the problem of miss-
ing data in discrete domain can be alleviated through modeling the 
signal in the continuous domain. Similarly, the problem of treating 
with discrete samples of an irregular sampled process can be sim-
plified when the signal is modeled in the continuous domain from 
the beginning. Besides, interpolation of intermediate data points 
within the range of discrete samples can be properly resolved by 
defining the signal model in the continuous-time domain. Another 
substantial advantage of continuous-time modeling rather than 
commonly used discrete models is the flexibility of continuous-
time models to varying the sampling frequency, whereas discrete-
time modeling is conditioned on the sampling frequency. As a 
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result, a discrete model may switch to another one when the sam-
pling frequency is changed. Consequently, the continuous-domain 
models generally provide more accurate and detailed insight re-
garding the signals of interest. In this respect, there are already 
advanced stochastic models in the continuous-domain such as the 
continuous-time autoregressive (CAR) processes [3–5] that could 
simplify the modeling task. The CAR stochastic processes play 
remarkable role in the signal processing applications, such as 
speech analysis and synthesis, adaptive filtering, identification of 
continuous-time systems and financial modeling [6–9].

In the past decade, the impulsiveness nature of real-world sig-
nals has been the focus of a number of researches [10]. A rich 
class of probability distributions that allows heavy tail is the stable 
distribution family. Lévy-stable processes have been proposed as a 
model that can accurately represent many kinds of real-world data 
and physical systems such as hitting times for a Brownian mo-
tion, the gravitational field of stars, financial time series, ground 
magnetometer data, sea clutter, noise processes in the impulsive 
environment, co-channel interference in ad-hoc and cellular net-
work environments, impulsive bioacoustic signals and teletraffic 
data [11–15].

The Lévy-stable CAR processes provide the advantages of 
continuous-time modeling for the statistically dependent and 
heavy-tailed processes. Estimating the model parameters of CAR 
process driven by α-stable process is a challenging task due to 
continuous-time modeling and infinite variance assumption. Un-
like the Gaussian case, the optimal estimators in the case of 
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heavy-tailed stochastic processes are nonlinear, and thus, computa-
tionally more difficult. The estimation problems such as denoising 
and interpolation have been studied in [10,16], where the model 
has been assumed to be known. Furthermore, in [17] a general 
family of the Lévy processes have been considered for the excita-
tion signals of multivariate continuous-time autoregressive moving 
average (MCARMA) processes. The autoregressive and moving av-
erage coefficients of the MCARMA model have been all assumed to 
be known. Essentially, the authors have only studied the parame-
ters estimation of the excitation distribution using the generalized 
method of moments on the approximated increments of the ex-
citation process. In [2], the challenge of estimating the model 
parameters in the case of finite variance CAR processes has been 
partially studied. In particular, it has been shown that the uniform 
samples of the pth order CAR process can lead to exact identifica-
tion of the differential equation, under finite second-order moment 
assumption of the innovation process. The latter assumption al-
lows for the evaluation of the autocorrelation function and the 
spectrum of the process. As the second-order moment (variance) 
is infinite in the non-Gaussian stable distributions, the autocorre-
lation function (and consequently, spectrum) cannot be defined 
for the α-stable processes with α < 2. This fact rules out the 
standard method of solving Yule–Walker equations. The alterna-
tive used in [18] for estimation of the parameters in a univariate 
symmetric stable discrete-domain autoregressive process is based 
on the so-called covariation. Feng et al. [19] have used a similar 
estimation technique in a radar application where the correlated 
non-Gaussian clutter background has been modeled by symmetric 
α-stable (SαS) fractional autoregressive system. In [20,21], using 
the M-estimator which is based on the least Lν -norm (ν < α), 
the parameters of discrete autoregressive signals with the α-stable 
innovation have been investigated. The authors have shown that 
in the case of finite first moment assumption of the heavy-tailed 
noise, the M-estimator performs well. The CAR processes of order 
p = 1 are widely known as Ornstein–Uhlenbeck (OU) processes 
which involve the smallest number of model parameters among 
the CAR family. The statistical estimation of the model parame-
ters of OU processes with infinite variance assumption has been 
considered by the least squares estimator in [22,23], while the 
least-square (LS) estimator cannot properly handle the outliers in 
the heavy-tailed scenarios.

In this study, we investigate the model parameters estima-
tion of CAR(p) process generated by linear stochastic differential 
equation excited by infinite-variance Lévy-stable process. In the 
discrete-time models, for the heavy-tailed processes, the least ab-
solute deviation estimator is more efficient than the LS estimator 
[24], hence, we extend this issue to the use of the M-estimators 
in the continuous-time setting for the α-stable linear models em-
ployed in this research. We employ the covariation technique along 
with M-estimators to learn the autoregressive coefficients of the 
model. We assume to have access to uniform samples of the 
CAR(p) process on a fine grid. The sampled CAR(p) processes in 
regular time grids yield discrete ARMA(p, p − 1) processes with 
generally dependent excitation processes [3]. In this regard, we 
show that under α-stable assumption, we have independent ex-
citation process in the discrete-time setting. After that, we inves-
tigate renewed equations according to sampled CAR(p) process 
and closed form expressions relevant to model coefficients in the 
discrete-domain. The statistical analyses of the estimator show that 
the accuracy and deviation of the estimated parameters of the 
continuous-time model depend on the sampling frequency and 
sample size. The proposed learning approach is also successfully 
applied to the two types of real-world data; ground magnetometer 
data and financial time series.

The rest of the paper is organized as follows. In Section 2, we 
explain the employed model by briefly reviewing the Lévy-stable 
processes and the α-stable CAR processes. In Section 3, we de-
scribe the parameter learning procedure. The learning consists of 
estimating both the differential equation coefficients and the pa-
rameters identifying the excitation distribution. Using the Monte 
Carlo simulation, we assess the consistency and statistical prop-
erties of the estimator in Section 4. Performance of the proposed 
method is numerically evaluated in Section 5. We also apply the 
estimator on the real-world data sets in Section 6 and after that, 
in the last section, the concluding remarks are discussed.

2. Signal model

This section introduces our continuous-time stochastic model 
that includes two main parts: continuous-time innovation process 
and linear differential equation. To induce heavy-tailedness for the 
signal model, it is assumed that the excitation process is gener-
ated from α-stable distribution with 0 < α < 2 [10]. Furthermore, 
the dependency structure of signal model depends on the linear 
differential equation. In this work, we deal with CAR(p) process as 
a stationary solution of a p-order differential equation.

2.1. Lévy-stable process

A Lévy process L(t), t > 0 is a continuous-domain stochastic 
process with stationary and independent increments. The widely-
used concept of white noise in the engineering literature corre-
sponds to the generalized derivative of Lévy processes; in particu-
lar, the white Gaussian noise is the derivative of Brownian motion. 
A Lévy process is completely characterized by its characteristic 
function (CF), �L(ω),

�L(t)(ω) = E{ejωL(t)} = exp{t�L(ω)}, ω ∈R (1)

An α-stable Lévy process with the distribution parameters
(α, ρ, μ, β), is a real-valued process which satisfies

�(ω) =
{

jμω − ρα |ω|α {1 + jβsgn(ω) tan(απ/2)} if α �= 1

jμω − ρ|ω|
{

1 + j 2
π βsgn(ω) log |ω|

}
if α = 1

(2)

Particularly, in a symmetric α-stable distribution, SαS(α, ρ), by 
setting μ = 0 and β = 0 the characteristic function exponent has 
the form

�(ω) = −ρα |ω|α. (3)

In (2), μ is the shift parameter that determines the mean of 
the distribution of L(1) when 1 < α ≤ 2 and its median when 
0 < α ≤ 1. The spread of the PDF around the mean/median is 
specified by the scale parameter ρ > 0, and the symmetry of the 
distribution around its location parameter is indicated by β (for 
a symmetric case β = 0). The characteristic exponent α is a fun-
damental parameter in an α-stable distribution that determines 
the shape, the tail and the decay rate of the distribution, while 
the smaller α represents the more heavy tail. The extreme case of 
α = 2 corresponds to the Gaussian distribution, nevertheless, any 
value of α < 2 results in a distribution with infinite variance. The 
usual representation of an α-stable distribution is via its character-
istic function, as there is no known closed-form expression for its 
PDF except for the Gaussian (α = 2, β = 0), Cauchy (α = 1, β = 0)

and Lévy distribution (α = 0.5, β = 1).

2.2. α-stable CAR(p) process

Since we focus on the heavy-tailed stochastic process modeled 
by the α-stable CAR(p) process, we review some pertinent results. 
A CAR(p) process can be modeled in terms of a continuous-time 
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innovation process and a stochastic integral. Naturally, a CAR(p)

process x(t) is defined as a stationary solution of a linear differen-
tial equation. The process of interest x(t) is defined as,

Dpx(t) +
p∑

i=1

aiD
p−i x(t) = DL(t), (4)

where D denotes the differentiation with respect to t (i.e. D �
d/dt), L(t) represents a Lévy process, and a1, . . . , ap are constant 
coefficients of stochastic differential equation. In the signal pro-
cessing literature, DL(t) shows the white noise process in (4), be-
cause Lévy processes have stationary and independent increments. 
In (4), our model includes two main parts; continuous-time exci-
tation process and whitening operator. The whitening operator can 
be considered as linear operator, where the shaping operator (in-
verse of linear operator) converts the white noise to the signal of 
interest x(t). Thus, the inverse of whitening operator determines 
the dependency structure of signal. The whitening operator that 
converts our interested signal x(t) into the white noise is defined 
as

a(D) = Dp + a1Dp−1 + · · · + ap I (5)

where I denotes the identity factor. Since Lévy processes are not 
differentiable in the usual sense, the expression in (4) should be 
equivalently written in the state-space form [3]. Let Y (t) be a vec-
tor that its ith component shows the (i − 1)th derivative of x(t)
as,

Y (t) �
[

x(t) Dx(t) · · · Dp−1x(t)
]T

. (6)

Therefore, (4) can be rewritten as the form of

dY (t) = AY (t)dt + cdL(t) (7)

x(t) = bT Y (t), (8)

where

A =

⎡⎢⎢⎢⎢⎢⎣
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 · · · 0 1
−ap −ap−1 −ap−2 · · · −a1

⎤⎥⎥⎥⎥⎥⎦ , (9)

b = [ 1 0 · · · 0 0 ]T , c = [ 0 0 · · · 0 1 ]T . (10)

The usual differential operator in calculus is shown by d (for 
instance 

∫
f (x) dx or d

dx f (x)). Additionally, in our notation, vec-
tors are denoted as underlined characters while matrices are up-
per case characters in bold face. Last investigations have shown 
that the equidistant sampled CAR(1) process produces the discrete 
AR(1) process with generally i.i.d. noise, although this equivalency 
is not held for higher order CAR(p) processes [3]. Considering this 
fact helps solve the Itō differential equation (7), because the vector 
Y (t) is similar to a multivariate CAR(1) process, and consequently 
its sampled version is analogous to multivariate AR(1) process 
with a multivariate excitation process [3]. Hence, this equation 
clearly has the solution of

Y (t) = eAt Y (0) +
t∫

0

eA(t−u)cdL(u), ∀t ≥ 0. (11)

If p = 1, x(t) is known as a Lévy OU process. The strictly causal 
stationary solution of (11) exists, if Y (0) is independent of Y (t)

for t > 0 and it has the similar distribution to 
∫ 0
−∞ e−AucdL(u), 

and also if the polynomial a(D) has the roots with negative real 
parts [3]. As a result, for access the strictly causal stationary CAR 
process x(t) from Y (t), these assumptions are essential. In a simi-
lar manner, using the signal processing literature, an autoregressive 
process x(t) is stationary if its rational transfer function in the 
Laplace domain has the poles with the negative real part. For this 
reason, it similarly requires to negative real parts of the zeroes of 
polynomial a(ς) = ς p + a1ς

p−1 + · · ·+ ap , where ς is the variable 
of Laplace domain.
We can rewrite the Lévy process Y (t) stated in (11) as,

Y (t) = eA(t−s)Y (s) +
t∫

s

eA(t−u)cdL(u), ∀t > s ≥ 0. (12)

The sampled Y (t) and also the sampled x(t) are exactly achieved 
by imposing s = (n − 1)T and t = nT in (12),

Y [n] = eAT Y [n − 1] + Z [n], n = 1,2, ... (13)

and

x[n] = bT Y [n], (14)

where

Z [n] �
nT∫

(n−1)T

eA(nT −u)cdL(u). (15)

The time sampling is T . In our notation, parenthesis is used for the 
argument of the continuous-time signal (e.g. Y (t)) and bracket is 
employed for discrete-time one (e.g. Y [n]), so Y [n] � Y (nT ).
Due to independent increments of the Lévy process, Z [n] statis-
tically represents the multivariate independent sequence for n =
1, 2, · · · and therefore it yields the multivariate first order Markov 
process of Y [n]. To analytically find the CF of Z [n], we need a 
property of the Lévy process integrators that indicates if q(t) �∫ t2

t1
g(u)dL(u), where g(.) is a bounded continuous function in R, 

then the CF exponent of q(t) is stated as [25]

ln E{exp(jωq(t))} =
t2∫

t1

�L(ωg(u))du. (16)

Therefore, using (15) and (16), the multivariate CF of Z [n] is de-
duced as

�Z (ω) = E{exp( jωT Z)} = exp(�Z (ω)), (17)

where

�Z (ω) =
nT∫

(n−1)T

�L(ω
T eA(nT −u)c)du. (18)

Briefly, we discussed the statistical model of the heavy-tailed de-
pendent signal x(t) represented by the α-stable CAR(p) process. 
Using the state-space representation, we achieved to multivariate 
CAR(1) process Y (t) in (7), where the relation between Y (t) and 
x(t) is presented in (6) and (8). Under some assumptions, the mul-
tivariate CAR(1) process Y (t) has a strictly stationary solution as 
stated in (11). Therefore, the sampled version of Y (t) yields to a 
multivariate discrete AR(1) Y [n] in (13), with excitation Z [n] that 
its CF exponent is demonstrated in (18).
We present in Fig. 1, the realizations of the first and third or-
der α-stable driven CAR processes with α = 1.1 and α = 1.9. In 
addition, we depict the realizations of the increments of their in-
novation processes.
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Fig. 1. In the first row, three realizations of (a) the increments of the Lévy-stable process with α = 1.1 and the generated (b) CAR(1), (c) CAR(3) processes. In the second row, 
three realizations of (d) the increments of the Lévy-stable process with α = 1.9 and the generated (e) CAR(1), (f) CAR(3) processes.
3. Model parameters estimation

In this work, we consider the CAR(p) signals driven by the 
symmetric Lévy-stable processes. We propose an estimation tech-
nique for learning the autoregressive coefficients, a = {a1, ..., ap}, 
expressed in (4) and likewise employ a method for the unknown 
parameters related to SαS(α, ρ) distribution of the excitation pro-
cess in (3). The proposed learning method in the continuous-time 
setting encompasses three main parts that are explained below 
and summarized in Table 1. In Subsection 3.1, the characteristic ex-
ponent α of the excitation distribution and also ρx are initially es-
timated. In Subsection 3.2, in order to estimate the autoregressive 
coefficients of the continuous-time model, an estimation procedure 
based on the covariation issue and M-estimation algorithm is pro-
posed. After that, in Subsection 3.3, the scale parameter of the 
excitation distribution using ρx and the estimated autoregressive 
coefficients is extracted. These described steps are summarized in 
the first, second and third parts of Table 1, respectively. Further-
more, in the last subsection, the signal model and its parameters 
in the discrete-time setting are characterized.

3.1. Characteristic exponent estimation of Lévy-stable CAR(p) process

To study the distribution of x(t) as a CAR(p) process driven 
by SαS(α, ρ) process, the causal strictly stationary process Y (t)
in (11) can be written in a moving average representation of the 
form [3]

Y (t) =
+∞∫

−∞
K (t − u)dL(u), (19)

when

K (t) � eAtcu(t), (20)

and u(t) is a step function; u(t) = 1 for t ≥ 0, u(t) = 0 for t < 0.
In this case, using (8) we have

x(t) =
t∫

−∞
bT eA(t−u)cdL(u). (21)

The independent increments of Lévy process L(t) have SαS dis-
tribution with characteristic exponent α. Equation (21) indicates a 
moving average representation of the independent Lévy increments 
that yields to α-stable distribution with the same α, because a lin-
ear combination of independent α-stable random processes with 
the same α is an α-stable process.
In order to analytically drive the scale parameter of x(t) and 
also find relation between the scale parameters of x(t) and excita-
tion process that are denoted as ρx and ρ respectively, we can use 
the univariate CF of x(t) with the expression �x(ω) = exp(�x(ω))

where

�x(ω) =
t∫

−∞
�L(ωbT eA(t−u)c)du

= −ρα |ω|α
∞∫

0

|bT eAuc|αdu

︸ ︷︷ ︸
�k

= −ρα
x |ω|α, (22)

when

ρx � ρk1/α, (23)

and

k �
∞∫

0

|bT eAuc|αdu. (24)

Equation (22) clearly indicates that x(t) has the characteristic com-
ponent α that is equal to characteristic component of Lévy-stable 
excitation process, but different scale parameter ρx . The expres-
sion in (23) shows that the scale parameter ρx depends on the 
scale parameter ρ of excitation process and the autoregressive co-
efficients a.

The density parameters Estimation of α-stable process have 
been frequently considered in the literature [26,27]. Due to the 
lack of closed form expression for the most of α-stable distribu-
tions, the maximum likelihood procedure for the parameters esti-
mation results in considerable computation cost. There are several 
well-known estimation approaches for the density parameters of 
α-stable such as empirical characteristic function (ECF), quantile 
and logarithmic moment. By comparison of these methods in [26], 
the authors have shown that the ECF approach has the highest ac-
curacy and the best stability for the density parameters estimation, 
without any restricted assumption on the parameters. As a result, 
in order to estimate the characteristic exponent α and the scale 
parameter ρx , we employ the ECF of x(nT ) as

�̂x(ω) = 1

N

N∑
i=1

exp(jωx(iT )). (25)

Using the CF expression of x(t) in (22), we achieve to

log(− log(|�̂x(ω)|2)) = log(2ρx
α) + α log(|ω|). (26)
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It is possible to estimate α and ρx through a linear regression on 
(26) and employing the method explained in [26]. The first part of 
Table 1 mentions the estimation algorithm of α and ρx .

3.2. Autoregressive parameters estimation

Here, we develop an estimation algorithm for the autoregressive 
coefficients expressed in (4) related to an infinite variance CAR(p)

process x(t) driven by SαS(α, ρ) process. The main challenges of 
the estimation procedure for the model parameters of x(t) are 
three points: Firstly, due to the lack of finite second moment, we 
are prevented from employing the methods based on autocorre-
lation issue. Secondly, no closed form solution for the probability 
distribution of the process causes that the inference procedures 
according to distribution function undertake significant computa-
tional costs. Thirdly, the samples of CAR(p) process x(t) in the 
discrete-time setting can not be modeled by a p-order autoregres-
sive process as a p-order Markov model. In our learning algorithm 
for the autoregressive coefficients of x(t), we employ the sampled 
data and estimated parameter α̂, and also utilize the covariation 
concept and the M-estimation method. To this end, the covaria-
tion technique is initially employed, when α > 1. Next, the esti-
mated parameters are used as initial values for the M-estimation 
of autoregressive coefficients. Details of the learning algorithm for 
autoregressive coefficients are explained in the following and sum-
marized in the second part of Table 1.

Traditionally, the autoregressive parameters of discrete-time 
processes with finite variance property are estimated by Yule–
Walker equations with an appropriate accuracy. Besides, in the last 
decade, under infinite variance assumption, the model parameter 
of the first order CAR process has been estimated by the LS estima-
tor [22,23]. Nevertheless, in the discrete-time setting the method 
based on the sample covariation has been proposed as a mea-
sure for the parameters estimation of univariate SαS autoregressive 
processes. It has been shown that the confidence interval in the co-
variation method performs better than those based on the autocor-
relation function [18]. We extend this topic to estimate the param-
eters relevant to autoregressive coefficients of the continuous-time 
setting. To this end, we use the discretized state-space equation 
(13) that converts the system model to a multivariate Lévy OU 
process with an exponential matrix, eAT , corresponding to the au-
toregressive parameters. We multiply the both sides of (13) by a 
vector ξ(Y n−1)

T as a p-variate function of Y n−1. After that by ap-
plying an expectation operator, it achieves to

E{Y nξ(Y n−1)
T } = eAT E{Y n−1ξ(Y n−1)

T } + E{Znξ(Y n−1)
T }. (27)

Since Zn and Zn−1 are independent, it yields to E{Znξ(Y n−1)
T }

= 0. On the other hand, by defining

Cn,n−k � E{Y nξ(Y n−k)
T }, k = 0,1, (28)

and employing stationary property of Y n which yields to Cn−1,n−1
= Cn,n , we access to

Cn,n−1 = eAT Cn,n. (29)

Since Y [n] is a multivariate α-stable variable, the fractional mo-
ments of lower order than α for every entry of Y [n] exist. Con-
sidering this fact and the covariation concept help us choose an 
appropriate function for ξ(·) that causes limited values for the en-
tries of matrix Cn,n−k .

ξ(Y [n]) � [ s1[n] · · · sp[n] ]T , (30)

where

si[n] � sign(yi[n]) | yi[n] |ν−1, ν < α if yi[n] �= 0.

si[n] � 0 i f yi[n] = 0. (31)
The sample version of the empirical covariation matrix is stated 
as

Ĉn,n−k = 1

N

N∑
n=1

Y nξ(Y n−k)
T , k = 0,1. (32)

The covariation matrix Cn,n−k for ν < 2 may not be a positive defi-
nite matrix and the heavy-tailed process Y [n] for α < 2 makes the 
non-symmetric covariation matrix Cn,n−k non-invertible. Hence, to 
derive an exponential matrix estimator êAT , (32) is substituted in 
(29) and then a LS estimator is used as

êAT = arg min
eAT

(‖Ĉn,n−1 − eAT Ĉn,n‖2). (33)

Further, the known structure of matrix A from (9) is inserted in 
(33) to arrive at more accurate estimation by a nonlinear optimiza-
tion method of

[ap, · · · ,a1] = arg min
a

(‖Ĉn,n−1 − f (a)Ĉn,n‖2), (34)

where

f (a) � exp

⎛⎜⎜⎜⎝
⎡⎢⎢⎢⎣

0 1 · · · 0
...

. . .
. . .

...

0 · · · 0 1
−ap · · · −a2 −a1

⎤⎥⎥⎥⎦ T

⎞⎟⎟⎟⎠. (35)

The non-symmetric and non-invertible properties of Cn,n−k reduce 
the accuracy of the estimator. In this regard, lower values of α
(e.g. α ∈ (0, 1)) cause very impulsive signal L(t) and then the es-
timator of (34) does not converge to a proper value. Consequently, 
for α ≥ 1, the estimated parameters of (34) as initial values in an-
other optimization task associated to the M-estimation approach 
are used. But, for α < 1, the covariation-based estimator of (34) is 
not utilized, whereas the M-estimation approach without initial-
ization is used.

In the M-estimator for the discrete autoregressive process, the 
loss function is 
(x) = |x|ν which especially yields to LS and least 
absolute deviation (LAD) when ν = 2 and ν = 1, respectively. Un-
like the LS estimator, the M-estimator criterion provides a suitable 
measure for the heavy-tailed process with infinite variance [28]. 
The strong consistency of the M-estimator for discrete-time autore-
gressive processes with the finite first moment has been proven 
in the literature [28]. Also, several simulation studies for the dis-
crete α-stable AR(p) process have depicted that for α ∈ (0, 1), 
the loss function 
(x) = |x|ν is optimal when ν = α. Therefore, 
we use these results in our case of the multivariate first order 
Markov process Y [n]. Since the discrete multivariate excitation pro-
cess Z [n] in (13) has statistically independent multivariate distri-
bution for n = 0, 1, ..., we apply the M-estimator with loss function 

(x) = |x|ν to (13) as

êAT = arg min
eAT

(
N∑

n=2

‖Y [n] − eAT Y [n − 1]‖ν

)
. (36)

It is also beneficial to consider again the structure of matrix 
A in the optimization method for a more precise estimation of 
{a1, ..., ap}.

[ap · · · a1] = arg min
a

(
N∑

n=2

‖Y [n] − f (a)Y [n − 1]‖ν

)
, (37)

where f (a) is defined in (35). Also, ν is selected according to esti-
mated parameter of α. It is substantial that besides the higher ac-
curacy, the proposed method encompasses more advantages than a 
simple M-estimator, because the number of parameters that should 
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Table 1
Learning method.

An outline of the proposed procedure for the model parameters estimation of the α-stable CAR(p) processes.

Inputs: x(t) and p; Outputs: â and (α̂, ρ̂)

I. Estimate of the characteristic exponent α and scale parameter ρx ,
· Sampling x(t).
· Compute ECF of x(t) using (25).
· Estimate α and ρx by ECF and linear regression on (26).

II. Estimate of the differential equation coefficients a,
· For n = 1, ..., N

· Approximate the derivatives of x(t)|t=nT using (38), then approximate the sampled version of (6) (i.e. Y [n]).
· If α > 1,

· Estimate the covariation matrix by (32).
· Compute the initial values a0 by a LS in (34).
· Estimate autoregressive coefficients a by minimizing the loss function of M-estimator in (37), with the initial values a0.

· Else,
· Estimate autoregressive coefficients a by minimizing the objective function of M-estimator in (37) without initialization.

III. Estimate of the scale parameter ρ ,
· Compute eAT .
· Compute k from (24).
· Extract ρ from (39) using k and ρx .
be estimated decreases to p from p × p and the valid structure of A
is preserved. Furthermore, satisfactory initial values for {a1, ..., ap}
from (34), improve the speed of the convergence of the optimiza-
tion method.

In summary, our estimation procedure for autoregressive coeffi-
cients depends on the estimated value of α. If α ≥ 1, the objective 
function of M-estimator is optimized as stated in (37) with ini-
tial values that are firstly computed from the covariation approach 
through the minimization in (35). But, for α < 1 the optimization 
of the M-estimator in (37) is considered without initialization. Fur-
thermore, the value of ν in M-estimation is conditioned on α. In 
the literature [28], simulation results have shown that for the M-
estimation with loss function 
(x) = |x|ν , the optimal choice of ν , 
when α ∈ [1, 2) is ν = 1 and the best selection of ν for α ∈ (0, 1)

is ν = α.
The explained optimization procedure needs the (p − 1) deriva-

tives of x(t) in the sampling time instants to construct Y n . The 
approximation of derivatives for the Lévy continuous-time process 
needs the observed samples of the CAR process with an appropri-
ate sampling frequency. There are two different assumptions for 
sampling frequency, that both yield to proper approximation of re-
quired signal derivatives. In the first case, an efficient sampling 
time T for proper approximation of derivatives is assumed and 
then all the signal observations are on the uniformly-spaced grids 
with the fixed size T . In the second case, our main observations on 
the uniformly-spaced grids are assumed with a low and arbitrary 
frequency sampling 1/T , while there is access to p − 1 high fre-
quency samples with a mesh size h (h < T ) in each time grid [29]. 
Throughout the second assumption, we do not need a full time 
high frequency sampling. The local high frequency data besides 
low frequency samples offer the required data for an appropri-
ate approximation. The most commonly used approximations of 
derivatives are the forward, backward and the central difference 
approximations. The consistent backward estimation of the deriva-
tives is defined as [29]

D̂kx(t) � 1

hk

k∑
i=0

(−1)i
(

k
i

)
x(t − ih), for k = 0, ..., p − 1, (38)

where the error is O (h) in the Taylor series expansions. Hence, it is 
possible to construct Ŷ n from (38) and employ in the optimization 
task of (34) and (37) to estimate the model parameters. Neverthe-
less, to reduce the approximation error of the signal derivatives 
to O (h2), we should employ the central difference approximation. 
Further, to achieve more precise approximations, we can employ 
a greater number of samples using closed-form expressions repre-
sented in [30].

3.3. Scale parameter estimation of excitation distribution

In the learning procedure, first, we estimate the characteris-
tic exponent α related to excitation process. After that, using the 
proposed technique, the coefficients a of the stochastic differen-
tial equation in (4) are estimated. Here, inference of the model 
parameters of the SαS(α, ρ) excitation distribution is completed 
by determining its scale parameter ρ , that is mentioned in the 
third part of Table 1. From (23), the scale parameter of excitation 
distribution depends on the scale parameter of x(t) and the au-
toregressive coefficients a. Using ρx which is derived by ECF and 
linear regression on (26), and also the autoregressive coefficients 
that are estimated from (37), it is explicitly possible to derive k
from (24) and then the scale parameter ρ corresponding to the 
excitation process by (23)

ρ = ρx

k1/α
. (39)

Briefly, in our learning procedure, we investigated the parameter 
estimation of the continuous-time signals modeled by the SαS 
driven differential equation under infinite variance assumption. 
The proposed learning method in the continuous-time setting en-
compasses three main parts that are summarized in Table 1.

3.4. Characterizing the signal model in the discrete-time setting

Since we usually access the discrete-time samples of received 
signals in the signal processing applications, it is essential to un-
derstand the characteristics of the discrete-time model obtained 
by sampling the continuous-time process. For the stationary and 
causal process x(t) described by (4), the sampled process x[n] rep-
resents an ARMA(p, p − 1) model with generally dependent exci-
tation process. It satisfies the following equation [3]

�(B)x[n] = s[n], (40)

where

�(z) =
p∏

i=1

(1 − eλi T z−1), (41)

B is a backshift operator; Bkx[n] = x[n − k], and {λ1, · · · , λp} are 
the roots of polynomial a(D). The polynomial function �(z) in the 
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discrete domain is associated to polynomial a(ς) in the continuous 
setting, where ς is the Laplace symbol. On the other words, �(z)
is the discrete counterpart of a(ς). The polynomial function �(z)
in the time domain is stated as

θ[n] = Z−1{�(z)} =
p∑

k=0

q[k]δ[n − k]. (42)

In (40), generally s[n] is a dependent sequence with the expression 
of [3]

s[n] = bT
p−1∑
m=0

m∑
k=0

q[k]eA(m−k)T Mn−m, (43)

where

Mn =
nT∫

(n−1)T

eA(nT −u)cdL(u). (44)

Considering (42), it is explicit that θ[n] is an FIR filter of length 
(p + 1) expressed by {q[k]}k=0,...,p which converts x[n] to s[n]
with expression (43). During the last decades, under finite vari-
ance assumption for the Lévy process [3], s[n] has been modeled 
by a moving average of white noise sequence with uncorrelated 
and not necessarily independent components as s[n] = �(B)u[n], 
where the white noise process u[n] facilitates the computational 
complexities. Unlike, in our scenario, due to infinite variance of the 
Lévy-stable process (when α < 2), the correlation concept is not 
appealing, therefore we need to derive the dependency structure 
of the s[n] sequence. We initially derive a closed form expression 
for the coefficients of θ[n] in (42) using (41) as

for k = 0 : q[k] = 1

∀k ∈ (0 : p] : q[k] = (−1)k ×
p−k+1∑

i1=1

p−k+2∑
i2=i1+1

...

p∑
ik=ik−1+1︸ ︷︷ ︸

k times

× exp

⎧⎪⎨⎪⎩(λi1 + · · · + λik︸ ︷︷ ︸
k terms

)T

⎫⎪⎬⎪⎭. (45)

After that, by substituting (44) in the expression of (43), we explic-
itly show that in each sampling instant, t = nT , s[n] is generated 
from a sum of p independent terms relating to (p −1) former, that 
satisfies the (p − 1)th order Markov model, as

s[n] =
p−1∑
m=0

(n−m)T∫
(n−m−1)T

(
m∑

k=0

q[k]bT eA((n−k)T −u)c

)
dL(u). (46)

Based on the celebrated property of the Lévy processes that sat-
isfies the independent nature of the non-overlapping increments, 
we conclude the independency among the p terms in the exter-
nal summation from (46). As mentioned above, the expression of 
s[n] demonstrates the (p − 1)th order Markov model. We investi-
gate the statistical dependency of s[n] for the α-stable process as a 
substantial class of Lévy processes. We propose the following theo-
rem to present s[n] is a linear moving average of the i.i.d. α-stable 
process.

Theorem 1. For the samples of a CAR(p) signal x(t) expressed in (4)
and driven by SαS(α, ρ) process L(t), the filtered process s[n] in (40), 
demonstrates the (p − 1)th order of linear Moving Average of i.i.d. SαS 
signal u[n] with time-invariant coefficients γi as follows
s[n] =
p∑

i=1

γiu[n − (i − 1)], (47)

where

u[n] i.i.d.∼ SαS(α,ρ),

γi =
⎛⎝ T∫

0

∣∣∣∣∣∣bT

⎛⎝ i−1∑
j=0

q[ j]eA(m+(i−1− j)T )

⎞⎠ c

∣∣∣∣∣∣
α

dm

⎞⎠1/α

. (48)

The proof of Theorem 1 is provided in Appendix A. The main 
significance of this theorem is that it explicitly identifies the de-
pendency structure of s[n] and provides closed form expression for 
the linear coefficients γi , i = 1, ..., p.

4. Estimator analysis

We discuss the convergence of exponential matrix estimation 
related to the autoregressive coefficients of α-stable CAR(p) pro-
cess from discretized equation (36). Also, the statistical properties 
of the estimator are shown through numerically computing the es-
timator PDF for each coefficient ai and evaluating the effects of the 
sampling frequency and sample size on the limiting distribution of 
the estimator.

4.1. Convergence

Here, same as the literature for continuous-time model pa-
rameters estimation [23,31], asymptotic behavior of the estimator 
is considered when T → 0 (i.e. f → ∞) and NT → ∞. In the 
proposed estimation procedure, the state-space representation of 
α-stable CAR(p) process produces a multivariate AR(1) model as 
shown in (13), where, Z [n] is an independent heavy-tailed sig-
nal for n = 1, · · · . Using this representation, the model parameters 
estimation leads to the convex objective function derived in (36)
that can be considered as a Least Lν multivariate linear autore-
gression with infinite variance error. For heavy-tailed process, the 
M-estimation procedure is more appropriate compared to LS esti-
mator, since less weights are assigned to outliers [28]. In [32,33], 
the authors established that M-estimation of multivariate linear re-
gression under α-stable assumption is consistent, when α > 1 and 
ν < α. Consequently, we deduce the consistent estimator for the 
exponential matrix in (36) for the case of α > 1. Also, in [28], 
the strong consistency of the LAD estimator for α > 1 has been 
demonstrated under assumption that Z1 has a unique median at 
zero. On the other hand, the authors proved that for model pa-
rameters estimates of the alpha-stable AR(p) process when α < 1, 
the least Lν estimator is consistent if E|Z [n]|ν < ∞ and the func-
tion of m(x) = E|Zn − x|ν has a unique minimum. But, it is difficult 
to show the unique minimum for m(x). However, the simulation 
results in [34,35] depicted that in the M-estimation approach with 
α-stable noise the optimal choice for ν when α < 1, is ν = α. In 
summary, in the estimation algorithm, we have consistency for the 
estimator of exponential matrix in (36) when α > 1.

Further, in our algorithm, we then use the known structure of 
A in (37) to decrease the computational complexity in the opti-
mization algorithm and increase the rate of the convergence. This 
causes to estimate the unknown vector of a including p coeffi-
cients, instead of the exponential matrix with p × p entries. Hence, 
a nonlinear objective function with much less unknown coeffi-
cients is appeared in (37). In this regards, computing the initial 
value for a via the covariation method in (34) accelerates the 
convergence rate of the optimization approach. To evaluate the 
asymptotic behavior of our estimator for a, we utilize the mean 
square error (MSE) sense. To this end, the MSE of every coefficient 
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Fig. 2. MSE of the estimate of every coefficient ai as a function of NT when frequency sampling is f = 2 KHz, for three cases of CAR(p) process: p = 3, p = 2 and p = 1.

Fig. 3. Effects of f and NT on the autoregressive coefficients estimation of the α-stable CAR(3) process. (a)–(c) Shift the PDF of the estimator for every ai to the true value 
by increasing the sampling frequency in a fixed NT . (d)–(f) Decreasing the dispersion of the estimator for every ai around the estimated parameter by increasing NT in a 
fixed sampling frequency.
ai in three cases of CAR(p) process is numerically computed, when 
p = 3, p = 2 and p = 1. As shown in Fig. 2, when NT increases, 
the MSE of the estimates decreases and the estimates converge 
to their true values, in a sampling frequency of f = 2 KHz. This 
reveals that the estimator asymptotically tends to accurate value 
in MSE sense. Furthermore, since the theoretical computation of 
limiting distribution for the estimate of every ai is complex, we 
numerically provide a brief discussion for the characteristics of the 
estimator PDF in the next section.

4.2. Statistical properties

Due to the complexity of the estimator function employed in 
(37) for estimating the coefficients of the differential equation 
{ai}i=1,...p , deriving the analytical expression for the asymptotic 
distribution function of the estimator is not feasible. Hence, we in-
vestigate the statistical behavior of the estimator via Monte Carlo 
simulation by computing the empirical probability density function 
(EPDF) for every estimated parameter âi which is provided by mul-
tiple running of the learning algorithm. We numerically present 
the significant role of increasing two effective factors, f and NT , 
on the statistical properties of the estimator. First, for a fixed 
NT = 50, we increase the sampling frequency of a CAR(3) signal 
driven by SαS process and compute the EPDF of the estimator âi
through 100 independent runs, as shown in Figs. 3a–3c. By in-
creasing the sampling frequency f , the mode of EPDF shifts to true 
value. After that, in a fixed sampling frequency of f = 2 KHz, by 
increasing NT , the reduction in the dispersion of the EPDF of the 
estimator âi is clearly depicted in Figs. 3d–3f. Finally, we increase 
the sampling frequency and NT altogether and illustrate their ef-
fects on the consistency and dispersion of the estimator in Fig. 4. 
In Fig. 5a the error norm of the estimated vector â, versus fre-
quency for p = 1, 2, 3 in a fixed and large NT = 50 is depicted. It 
shows that the accuracy of the estimated vector increases when 
the sampling frequency enlarges. On the other hand, since the 
EPDF of the estimator has heavier tail than normal distribution, we 
compute the average of the dispersion parameter of â versus NT , 
as generalized standard deviation, in a fixed sampling frequency 
f = 2 KHz as shown in Fig. 5b. It reveals the effects of increasing 
NT on decreasing the dispersion of the estimates. As a result, by 
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Fig. 4. The influence of increasing NT and f together on the estimator for every autoregressive coefficient ai of an α-stable CAR(3) process, where (NT3, f3) > (NT2, f2) >
(NT1, f1).

Fig. 5. (a) The error norm related to the estimation of the vector of the autoregressive coefficients, a, for a CAR(p) process versus f . (b) The generalized standard deviation 
of the estimator a for a CAR(p) process versus NT .

Fig. 6. Nonparametric PDF approximation corresponding to the estimator of the every autoregressive coefficient ai in the α-stable CAR(p) model and also the best fitted 
α-stable PDF and the best fitted Gaussian PDF, when (a)–(c) p = 3, (d)–(e) p = 2 and (f) p = 1.
increasing both factors of NT and f, the estimates tend to accurate 
values.

We compare the limiting distribution of our estimates with nor-
mal and α-stable distributions for the assumption of frequency 
sampling f = 1 KHz and sample size N = 105 that is used in 
the next section for computing the results given in Table 3. The 
EPDF of every âi for three cases of α-stable CAR(p) process, p = 1, 
p = 2 and p = 3, with α = 1.1, through 100 independent runs is 
depicted in Fig. 6. The figure also shows the best fitted normal 
PDF and the best fitted α-stable PDF in addition to the computed 
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Table 2
Anderson–Darling statistic.

p = 3 p = 2 p = 1

a1 a2 a3 a1 a2 a1

Gaussian fit 3.7631 4.0808 3.4598 4.3482 3.7937 1.2803
α-stable fit 2.6502 0.6472 0.7902 0.7336 0.6790 0.6320

EPDF. As shown, the EPDF of the estimated values for every âi , 
is very close to the fitted α-stable distribution which presents 
a heavy-tailed behavior that is in contrast to normal assump-
tion. Testing the goodness of fit of a distribution is based on the 
difference between the empirical distribution function, F (a), and 
the fitted distribution function, F̂ (a), according to the most well-
known goodness-of-fit statistics such as Kolmogorov–Smirnov and 
Anderson–Darling statistics [36]. In the Anderson–Darling statis-
tic, discrepancy measure is given by the Cramer–von Mises fam-
ily Q = n 

∫ +∞
−∞ { ˆF (a) − F (a)}2χ(a)dF (a), when the weight function 

χ(a) is {F (a){1 − F (a)}}−1. The Anderson–Darling distance makes 
more weight on the samples in the tails of the distribution. For the 
critical values of hypothesis testing in the Anderson–Darling test, 
no asymptotic results are explicitly characterized for α-stable law 
in [37]. Hence, we do not use hypothesis testing and just compare 
the test values. Certainly, the lower values show the better fit-
ted distribution. Therefore, not only visually but also based on the 
goodness-of-fit measures in Table 2, stable distributions provide a 
better fit compared to the Gaussian, especially for the smaller val-
ues of α, because a Gaussian process is a special case of α-stable 
processes and does not include the heavy-tailed behavior. Hence, 
for the results of Table 3, instead of the mean we generally de-
rive the median of the estimated parameters and also in place of 
standard deviation, the scale parameter is used to illustrate their 
dispersion.

5. Simulation study

We have employed the Euler scheme and also Yuima package 
[38] to generate several realizations of Lévy-stable driven CAR(p)

processes for use in MATLAB. To assess the performance of our 
proposed procedure, Table 3 shows the results of learning method 
corresponding to differential equation coefficients, a, and in addi-
tion the parameters of excitation distribution (α, ρ) for different 
orders of CAR process, p = 1, 2, 3, and also for variant values of α
with the sampling frequency of f = 1 KHz and the sample size of 
N = 105 in the 100 independent runs. To estimate the unknown 
parameters, we use the learning procedure given in Table 1. In 
the literature [34], the authors numerically demonstrated that the 
best choices for the M-estimator with Loss function of Lν norm 
are ν = 1 when α > 1 and ν = α when α <= 1. Hence, we use 
this point in our learning algorithm for the estimates given in 
Table 3. Based on the estimator analyses in the previous section 
which show that the estimator presents a heavy-tailed behavior 
when f = 1 KHz and N = 105, the scale parameter of the estima-
tor is used as the generalized standard deviation (Gstd) to present 
the dispersion of the estimates. In addition, the median of the 
estimator (μest ) is employed instead of the mean corresponding 
the estimated parameters. The initialization of the optimization 
method (μ0) for {âi}i=1,...,p using the covariation method, and the 
error of the estimated parameters (Error) are given in Table 3. As 
shown, the proposed learning procedure explicitly provides more 
accurate estimator for the lower values of α.

To the best of our knowledge, statistical inference for the 
α-stable CAR(p) process has not been explored previously apart 
from the first order univariate or multivariate CAR process as the 
stable OU process. Since in the past methods of the multivari-
ate OU process or in the finite variance Lévy CAR process, the 
unknown matrix has been directly estimated, we compare our 
method with their approaches (i.e. Yule–Walker and initialized LS 
estimator) [23] through the normalized error of the estimated ex-
ponential matrix eA versus the multiple values of α in Fig. 7. The 
LS estimator of a matrix without an appropriate initial value takes 
a long time to even converge, hence, we initialize the LS estimator 
by the covariation-based method to accelerate the convergence and 
enhance the accuracy of the results. Due to the low accuracy of the 
covariation-based method for α < 1, the LS method for α = 0.8 is 
initialized by the Yule–Walker estimates. However, if we do not 
properly initialize LS method in α = 0.8, similar to our proposed 
learning procedure which is not initialized for α < 1, the accuracy 
of the LS estimates by considering a limitation on the number of 
iterations due to very long runtime, decreases as depicted in Fig. 7. 
Our method provides more accuracy for the estimates and signifi-
cantly decreases the required time for the convergence to the true 
values, because it uses a proper initialization for α > 1 and also 
reduces the unknown parameters from p × p to p.

Besides, we investigated the sampled α-stable CAR(p) process 
in the discrete-time setting. Theorem 1 proves that its samples 
present a discrete ARMA(p, p − 1) model with absolutely i.i.d. ex-
citation process and provides a closed form expression for the 
moving average coefficients. To represent the consequence of the 
theorem, we have generated a realization of a CAR(3) process 
x(t), driven by an α-stable process L(t). The sampled process x[n]
should be a discrete ARMA(3, 2) signal with the autoregressive 
Table 3
The estimated parameters of the α-stable driven CAR(P ) processes.

p = 1, a = [1] p = 2, a = [3,2] p = 3, a = [7,14,8]
α ρ a1 α ρ a1 a2 α ρ a1 a2 a3

α = 0.8
ρ = 1

μest 0.7991 1.0201 1.0005 0.8021 1.0341 3.0015 2.0030 0.8025 1.015 7.0035 14.0290 8.0281
Error 9.00e−4 2.01e−2 1.50e−3 2.10e−3 3.41e−2 1.52e−3 3.01e−3 2.52e−3 1.50e−2 3.53e−3 2.90e−2 2.81e−2
Gstd 1.21e−3 4.40e−3 1.15e−5 7.12e−3 1.80e−2 2.49e−5 4.37e−5 3.60e−3 6.62e−2 5.85e−5 1.61e−4 2.73e−4

α = 1.1
ρ = 1

μ0 – – 1.1078 – – 2.8271 2.1350 – – 6.6668 14.3915 9.0059
μest 1.1003 1.0120 1.0005 1.0999 1.030 3.0018 2.0035 1.1049 0.9420 7.0040 14.0297 8.0279
Error 3.41e−4 1.20e−2 5.00e−4 1.46e−4 3.01e−2 1.83e−3 3.57e−3 4.92e−3 5.80e−2 4.02e−3 2.97e−2 2.79e−2
Gstd 4.61e−3 6.40e−3 9.67e−4 5.31e−3 3.59e−2 1.62e−3 2.82e−3 5.11e−3 7.41e−3 2.8e−3 1.30e−2 1.67e−2

α = 1.5
ρ = 1

μ0 − − 1.0672 − − 2.9322 2.1222 − − 7.1021 14.1151 8.2003
μest 1.4998 1.0071 1.0008 1.5002 1.0502 3.0056 1.9970 1.4951 0.9475 7.0123 14.0406 8.0368
Error 2.00e−4 7.11e−3 8.22e−3 1.79e−4 5.02e−2 5.61e−3 3.05e−3 4.93e−3 5.25e−2 1.23e−2 4.06e−2 3.68e−2
Gstd 5.3e−3 3.62e−3 1.94e−2 5.52e−3 1.4e−2 3.20e−2 3.76e−2 6.30e−3 6.11e−2 5.36e−2 1.65e−1 1.60e−1

α = 1.9
ρ = 1

μ0 – – 1.05 – – 3.1204 2.1104 – – 7.0901 14.3164 8.3423
μest 1.8976 1.0108 0.9806 1.9013 0.9840 3.0324 2.0333 1.8983 1.013 7.0705 14.1943 7.9562
Error 2.44e−3 1.08e−2 1.94e−2 1.30e−3 1.60e−2 3.24e−2 3.33e−2 1.74e−3 1.30e−2 7.05e−2 1.9e−1 4.38e−2
Gstd 4.91e−3 1.30e−2 9.73e−2 4.72e−3 2.70e−2 1.60e−1 2.06e−1 3.61e−3 3.53e−2 4.60e−1 8.02e−1 9.12e−1
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Fig. 7. A comparison between the proposed method, Yule–Walker and LS method versus the different values of α for α-stable CAR(p) process when (a) p = 3 and (b) p = 2.

Fig. 8. The consequence of Theorem 1. s[n] follows DL[n] ∗ϒ[n], where DL[n] represents the increments of α-stable process and ϒ[n] is an FIR filter with coefficients derived 
from (48).

Fig. 9. (a) Transformed horizontal component Bx of the magnetic field with 5-minute resolution for the year 1987 at OTT station. (b) The α-stable CAR fitting for the PDF of 
the transformed component Bx at OTT station.
and moving average coefficients expressed in (45) and (48) re-
spectively. Moreover, the filtered process s[n] � x[n] ∗ θ[n] acquired 
by the FIR filter θ[n] from (42), should be similar to DL ∗ ϒ[n]
when ϒ[n] is an FIR filter with coefficients computed in (48) and 
DL[n] is generated through stationary and independent increments 
of the excitation process L(t). It is shown in Fig. 8 that s[n] follows 
DL ∗ ϒ[n] which verifies the validity of the derived expressions in 
(47) and (48).

6. Applications to real-world data

In this section, we demonstrate the utility of the proposed 
method by applying to some data sets whose distributions have 
heavier tails than the exponential distribution. We fit the α-stable 
CAR model to the twelve real time series which are drawn from 
two types of real-world data, namely, ground magnetometer data 
and financial time series. Since our data sets are generated from 
non-stationary processes, we transform them to stationary forms 
by computing xi = ln(ri+1/ri), where xi is the stationary trans-
formation of the real-time data ri . Through this conversion, no 
information is lost and the original time series can be achievable 
from the transformed data [11]. Figs. 9a and 10a show the trans-
formed time series for the two kinds of real-world data sets.

To evaluate the proposed method on the real data, we fit an 
α-stable distribution to the EPDF of every time series, x, and es-
timate its distribution parameters (αx, ρx, μx, βx). Since it is as-
sumed that our signal model has a symmetric distribution, we only 
utilize the data sets with the small values for β and μ as shown 
in Tables 4 and 5. According to the described method for the es-
timation of the distribution parameters of the excitation process 
(α, ρ), we have α = αx and ρ = ρx/k(1/α) from (23). Hence, it is 
possible to estimate the differential equation coefficients, a, and 
the scale parameter ρ of the excitation process using the proposed 
procedure in Table 1 and the assumed order model. To show that 
the data sets are indeed consistent with the estimated α-stable 
CAR models, we compare the EPDF of the real time series with the 
EPDF of the generated data from the learned CAR model. In this 
regard, first, the EPDF of the real time series, f (x), is computed. 
After that, we generate a sample path of the model by the esti-
mated model parameters to calculate its EPDF, f̂ (x). The results of 
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Fig. 10. (a) Transformed daily financial time series of TWDIB in the period of 1995-01-4 to 2015-06-26. (b) The α-stable CAR fitting for the PDF of TWDIB.

Table 4
Estimated model parameters for the ground magnetometer data.

Station α ρx μx βx ρ a Error MSE RSE

ME 0.9443 2.08e−04 1.57e−07 0.0135 2.68e−4 [1.3445] 0.0108 3.92e−07 0.0208
RPC 1.2550 7.54e−05 6.60e−07 0.0213 9.95e−05 [1.1287] 0.0237 1.88e−06 0.0793
RIT 1.1855 0.0027 5.22e−06 0.0268 0.0046 [1.5974] 0.0361 4.36e−06 0.1128

OTT 1.2486 8.05e−05 −7.96e−07 0.0176 5.75e−04 [4.8081,6.4680] 0.0244 2.11e−06 0.0773
CB 1.2728 0.0020 5.40e−05 −0.0011 0.0143 [4.9218,6.3626] 0.0319 3.71e−06 0.1140
NEW 1.1326 7.78e−05 2.59e−07 0.0217 5.19e−04 [4.1125,6.5369] 0.0207 1.81e−06 0.0601

Table 5
Estimated model parameters for the financial data.

Financial time series α ρx μx βx ρ a Error MSE RSE

TWDIB 1.8216 0.0017 −7.96e−06 0.0406 0.0054 [4.5589] 0.0122 5.03e−07 0.1080
CCFSI/CM 1.5769 0.0051 4.47e−04 −0.0256 0.0065 [0.9279] 0.0170 9.75e−07 0.1234
CCFSI/FEM 0.8293 0.0121 3.66e−04 −0.0525 0.0071 [0.7648] 0.0275 2.57e−06 0.0934

CUSFER 1.5943 0.0019 −1.45e−06 −0.0034 0.0116 [2.8250,6.7719] 0.0236 2.81e−06 0.1167
7-YTCMR 1.4973 0.0067 −1.83e−04 −0.0281 0.0408 [2.9283,6.6527] 0.0226 1.72e−06 0.1328
GFPLBM 1.5596 0.0057 1.01e−04 0.0545 0.0322 [2.4274,6.9757] 0.0283 4.05e−06 0.1358
three error functions with the following statements, are reported 
in Tables 4 and 5 which are based on average of 100 independent 
runs.

Error =
√√√√ N p∑

i=1

(
f (xi) − f̂ (xi)

)2; MSE = 1

Np

N p∑
i=1

(
f (xi) − f̂ (xi)

)2;
RSE =

√∑N p

i=1

(
f (xi) − f̂ (xi)

)2√∑N p

i=1 ( f (xi) − fav)
2

. (49)

Np is the number of EPDF samples and fav is the average value for 
the EPDF of the real data. The goodness of fit that is determined 
by RSE varies between 0 and 1, where the small value for RSE in-
dicates that the employed model performs well in simulating the 
real data [39]. In the following, we briefly explain about the real-
world data sets and the results that are achieved by employing the 
α-stable CAR model.

6.1. Ground magnetometer data

Lévy processes are an excellent tool for modeling the heavy-
tailed behavior in the interplanetary medium and the magneto-
sphere [12,39]. Here, we model a component of the ground mag-
netometer measurements by the α-stable CAR process. The mag-
netometer arrays are placed in the different locations of the world 
and measure the Earth’s magnetic fluctuations. The parameters of 
the measurements encompass some components such as the north 
component of the horizontal intensity Bx [39]. We use ground 
magnetometer measurements of the horizontal component Bx of 
the magnetic field at 6 stations, namely, Meanook (ME), Rapid-City, 
SD (RPC), Rankin-Inlet (RIT), Ottawa (OTT), Cambridge-Bay (CB), 
Newport (NEW) [40]. We examine the ground station data aver-
aged over 5-minute intervals covering the first 6 months of the 
year 1978.

The α-stable CAR processes are employed to model these 
ground magnetometer data. The estimated model parameters are 
reported in Table 4. As shown, the signals of the first half stations 
are modeled by the first order CAR processes and the signals of 
the second half stations are represented by the second order CAR 
models. The proposed learning approach is applied to these real 
data sets. The results indicate that our estimation procedure works 
on the real data and the α-stable CAR provides a good approach 
to model the horizontal component Bx of the magnetic field. As an 
example, the transformed time series from the OTT station is de-
picted in Fig. 9a. Fig. 9b shows that the EPDF of this time series is 
consistent with the EPDF of the simulated data from the estimated 
model.

6.2. Financial data

Stable distributions, a rich class of probability distributions, are 
an appropriate model for representing many types of economic 
data. Due to heavy-tailed behavior of financial data, α-stable pro-
cesses accurately model multiple kinds of financial time series [11]. 
We fit the α-stable CAR model to some financial data sets and re-
port their results in Table 5. As shown, the first half data sets are 
modeled by the first order CAR processes and the remained data 
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sets with the second order. Our learning approach is examined on 
these financial data sets. Table 5 depicts that our algorithm works 
on the real data. Furthermore, the results of the error functions 
illustrate a reasonably good agreement between the model and 
the experimental data. The transformed financial time series of the 
TWDIB is shown in Fig. 10a. In Fig. 10b, the EPDF of this data and 
the EPDF of the generated data from the learned model reveal the 
compatibility of the model with the data set.

The daily financial data that are used in Table 5 are respec-
tively, Trade Weighted U.S. Dollar Index: Broad (TWDIB) in the 
period of 1995-01-4 to 2015-06-26, Contributions to the Cleve-
land Financial Stress Index: Credit Markets (CCFSI/CM) in the pe-
riod of 1991-09-25 to 2015-06-30, Contributions to the Cleveland 
Financial Stress Index: Foreign Exchange Markets (CCFSI/FEM) in 
the period of 1991-09-25 to 2015-06-25, Canada/U.S. Foreign Ex-
change Rate (CUSFER) in the period of 1971-01-04 to 2015-06-26, 
7-Year Treasury Constant Maturity Rate (7-YTCMR ) in the pe-
riod of 1969-07-01 to 2015-06-30, Gold Fixing Price 10:30 A.M. 
(London time) in London Bullion Market based in British Pounds 
(GFPLBM) in the period of 1968-04-01 to 2015-06-29 [41].

7. Conclusion

We studied the model parameters estimation of the heavy-
tailed stochastic processes described by p-order CAR models ex-
cited by α-stable processes under infinite-variance assumption. 
The proposed learning procedure is divided into two parts: esti-
mating the parameters of the excitation distribution and finding 
the CAR coefficients. The former is accomplished by estimating the 
characteristic exponent of the SαS process. In contrast to solving 
conventional Yule–Walker equations which rely on finite second-
order moments of the distributions, we made use of the covari-
ation equations and M-estimation optimization methods to esti-
mate the CAR coefficients. To perform the mentioned tasks, given 
the samples of a stable CAR(p) process, we used the equivalent 
state-space representation. Furthermore, since the sampled CAR(p)

processes yield ARMA(p, p − 1) processes in discrete-time setting, 
we derived closed-form expressions that describe the model pa-
rameters of ARMA(p, p − 1) process. Our Monte Carlo simulations 
indicate that the method works well when the sampling frequency 
( f ) and the whole interval of signal (NT ) are large, especially for 
the signals with the smaller values of α. In addition, our proposed 
method was applied on the ground magnetometer data and the 
financial time series to evaluate the performance of our learning 
algorithm in the realistic world. The experimental results show a 
good agreement between the model and these real-world data.

Appendix A

Proof of Theorem 1. We show that s[n] follows a moving average 
of i.i.d. α-stable process u[n], under α-stable assumption for the 
Lévy excitation process. Using (46), we have

s[n − l] =
(n−l)T∫

(n−l−1)T

q0bT eA((n−l)T −u)cdL(u)

+
(n−l−1)T∫

(n−l−2)T

bT

(
q0eA((n−l)T −u) + q1eA((n−l−1)T −u)

)
cdL(u) + · · ·

+
(n−l−p+1)T∫
(n−l−p)T

bT

(
q0eA((n−l)T −u) + · · · + qp−1eA((n−l−p+1)T −u)

)

× cdL(u) (A.1)
Every term is generated from the Lévy process L(t) in a distinct 
time duration, thus s[n −l] is constituted from a linear combination 
of p independent α-stable processes with the identical parameter 
α and different scales which are inferred by CF corresponding to 
s[n − l], as following

�s[n−l]ω = exp { jωs[n − l]}

= exp

⎧⎨⎩−
⎛⎝ T∫

0

∣∣∣q0bT eAmc
∣∣∣α dm

⎞⎠ρα |ω|α
⎫⎬⎭

.exp

⎧⎨⎩−
⎛⎝ 2T∫

T

∣∣∣bT
(

q0eAm + q1eA(m−T )
)

c
∣∣∣α dm

⎞⎠ρα |ω|α
⎫⎬⎭ · · ·

.exp

{
−
( pT∫
(p−1)T

∣∣∣∣∣bT

(
q0eAm + · · · + qp−1eA(m−(p−1)T )

)
c

∣∣∣∣∣
α

dm

)

.ρα |ω|α
}

= exp
{−γ α

1 ρα |ω|α}exp
{−γ α

2 ρα |ω|α} · · ·exp
{−γ α

p ρα |ω|α} .
(A.2)

Therefore s[n − l] is a linear combination of p independent but 
not identical α-stable random variables. From (A.2), these inde-
pendent α-stable random variables have the same characteristic 
exponent α but different scale parameters γi . On the other hand, 
for example, a random variable r with SαS(α, ρ) distribution has 
the identical distribution with the random variable ρ.v when ρ is 
a constant parameter and v is a random variable with SαS(α, 1)

distribution. In other words, we can similarly deduce that s[n − l]
is a linear combination of p independent and identical α-stable 
random variables u[n] ∼ SαS(α, ρ) with the coefficients extracted 
from γi , where

γ α
k =

kT∫
(k−1)T

∣∣∣∣∣bT

(
k−1∑
i=0

qie
A(m−iT )

)
c

∣∣∣∣∣
α

dm, k = 1, ..., p. (A.3)

So (48) can be exactly derived that represents the time invari-
ant coefficients. Hence it yields (47), a linear moving average of 
i.i.d. sequence u[n] with symmetric α-stable distribution and equal 
statistical characteristics corresponding to the distribution of exci-
tation increments. �
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