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Abstract—In millimeter-wave (MMW) imaging, the objects of interest
are oftentimes modeled as 2D binary (black and white) shapes with white
pixels representing the reflecting interior of the object. However, due to
propagation of the scattered waves, the continuous-domain binary images
are convolved with a so-called point-spread function (PSF) before being
digitized by means of sampling. As the 2D PSF is both non-separable
and non-vanishing in the case of MMW imaging, exact recovery is quite
complicated. In this paper, we propose a deep learning approach for
image reconstruction. We should highlight that the wave scatterings
are suitably represented with complex-valued quantities, while standard
deep neural networks (DNN) accept real-valued inputs. To overcome
this challenge, we separate the real and imaginary parts as if we had
two imaging modalities and concatenate them to form a real-valued
input with larger size. Fortunately, the network automatically learns
how to combine the mutual information between these modalities to
reconstruct the final image. Among the advantages of the proposed
method are improved robustness against additive noise and mismatch
errors of imaging frequency and object to antenna distance; indeed, the
method works well in wide-band imaging scenarios over a wide range of
object to antenna distances even in presence of high noise levels without
requiring a separate calibration stage. We test the method with synthetic
data simulated with software as well as real recordings in the laboratory.

Index Terms—Deep neural networks, inverse problem, millimeter wave
imaging, reconstruction, wide-band imaging.

I. INTRODUCTION

M ILLIMETER-WAVE (MMW) imaging systems are widely
used in different applications such as airport security, nonde-

structive tests, medical diagnosis and through-wall imaging [1]–[3].
Millimeter waves can penetrate through thin dielectric layers such as
plastic, wood and clothing, but are reflected from metallic objects
and human body, which makes this band suitable for radar imaging
in detecting flaws and concealed objects [4], [5].

In wideband imaging systems, the transmitter antenna sequentially
sweeps all frequencies for each object pixel. Based on the geometric
position of the TX and RX (i.e. the transmitter and the receiver
antennas), the imaging system is categorized as either mono-static
(same position for TX and RX) or multi-static (different positions
for TX and RX). In this work, we focus on the mono-static case;
however, the extension to the multi-static case is straightforward.

The use of deep learning in the literature of millimeter wave
(MMW) imaging systems is mainly limited to object detection. For
the microwave image reconstruction, a simplified training strategy for
deep neural networks is introduced in [6] in which the reconstruction
network differs from the trained network.

For 1-D electromagnetic signal inversion problem, an enhanced
method of training data generation is studied in [7]. In [8], for
solving the inverse scatter problem, traditional iterative techniques
are combined with recent convolutional neural network (CNN) archi-
tectures. More recently in [9], human pose segmentation alongside
a deep CNN is employed to distinguish abnormal patterns in human
body parts that may reflect the presence of suspicious objects. The
similarity with human body clutter is considered into the training
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phase for more robustness. By thresholding the reconstructed image,
an object segmentation method is introduced in [10]. For tuning
the segmentation threshold, the image histogram is evaluated using
a Gaussian mixture model. The expectation maximization (EM)
algorithm is then applied to determine the threshold. Evidently,
this method is vulnerable to the model mismatch. A deep learning
approach for object detection in MMW images is introduced in
[11]. While quite stable even in low quality inputs, this method
suffers from high computational complexity because of using multiple
classifiers. In another work in [12], based on a collected dataset of
human millimeter wave images, a faster RCNN is employed alongside
the thresholding segmentation technique for object detection. In
a different approach, [13] uses the YOLOv3 network for object
detection; the outcome is a real-time and highly accurate method.

In [14], a fully convolutional network (FCC) with a general auto-
encoder structure is proposed to enhance the recovery quality in CS-
ISAR imaging. Unlike MMW imaging, in this modality the measure-
ments are real-valued. Besides, as the method employs compressed
sensing (CS) techniques, the quality of the result depends on the
sparsity level of the original image.

A neural network structure for an inverse scattering problem
with complex-valued input is introduced in [15] that works with
complex-valued weights. However, it is more of a hybrid solution in
which a traditional linear MMW imaging algorithm is first employed
to provide an initial reconstruction, and then, the complex-valued
DNN would enhance the initial reconstruction. One issue with such
hybrid methods is that they assume a linear approximation of the
inverse scattering problem (which is highly none-linear). Further, the
DNN does not have direct access to the measurements and cannot
comprehensively learn the model. Also, because of the use of the
traditional linear image recovery algorithm at the beginning, the
method of [15] requires accurate estimates of imaging parameters
such as the imaging frequency and the antenna to object distance for
high quality reconstruction.

In [16], a convolutional neural network is devised to exploit prior
information for improving the performance of a model-based mi-
crowave inverse scattering magnetic resonance (MR) imaging system.

A more conventional image reconstruction approach in MMW
systems is to employ sparse representations. In [17], two-column
sparse arrays with electronically switching antenna elements are
designed to reduce sample redundancy. In [18] a hardware-software
system is introduced to improve the quality of reconstruction; for
this purpose, a dual polarized antenna array is designed to obtain
both co- and cross- polarization and a PCA-based method is devised
for reconstruction. Also, a random sample imaging mechanism is
introduced in [19] that iteratively reconstructs the image by taking
into account the sparsity of the hologram in a transform domain.

In this paper, we propose a deep learning reconstruction technique
to approximate the inverse of the MMW imaging system. The
complex-valued measurements at the receiver antenna are fed into
our neural network to obtain a binary real-valued image as the output.
As the input is complex-valued, similar to [20], we first decompose it
into real and imaginary parts and stack them in depth before feeding
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Fig. 1. The mono-static imaging system model. The TX antenna propagates
EM waves towards the object and the reflected wave is measured by the RX
antenna. An advantage of the method is that no range or frequency calibration
is required. As long as the frequency belongs to the range 28 ∼ 31GHz and
the object is located in 15 ∼ 30cm distance to the RX antenna, the method
can blindly reconstruct the desired image.

to the network. The real and imaginary parts can be thought of as
two imaging modalities with correlated information. It is the task of
the network to optimally take advantage of the common information
between these two inputs. As deep neural networks are quite capable
in learning mixture models, our dataset includes wideband recordings
(frequency range of 29GHz to 31GHz) with varying depths (object to
antenna distances from 15cm to 30cm) to provide more robustness
against model mismatch (other frequency values and depth ranges
can also be used). As a result, unlike other MMW reconstruction
algorithms which require accurate a priori knowledge of the imaging
frequency and depth, our algorithm automatically handles this part
which is an attractive option in practical scenarios.

The rest of this paper is organized as follows: In Section II, the
imaging system model is described. The details of the designed
network are presented in Section III. Simulations and experimental
results can be found in Section IV. The advantages and the limitations
of the proposed deep-learning-based method compared to traditional
approaches are presented in Section IV-B.

II. MMW IMAGING SYSTEM MODEL

The MMW mono-static imaging system can be mathematically
modeled as follows: a collocated pair of TX and RX antennas form a
transceiver for scanning objects. When scanning the object plane (Fig.
1), the TX transmits millimeter waves towards the object plane and
the reflected signals from the illuminated object are captured by the
RX. If (x, y, z0) is the location of an illuminated point on the target,
we denote the reflection coefficient from this point in the direction
of the transceiver position by f(x, y). Due to the wave propagation
phenomenon (assuming far field approximation), f(x, y)e−j2kr is
received at the transceiver (normalized by the magnitude decay of
1/(4πr)2), where k = 2π/λ is the wave number and r stands for the
Euclidean distance between the point on the target and the transceiver.
The overall scattered field at the receiver is the linear combination of
the reflected waves from all object points, which can be represented
as [5]

s(x′, y′) =

∫∫
f(x, y)e−j2krdxdy, (1)

where s(x′, y′) is the measured signal by RX at position (x′, y′)
(location of the transceiver) and r =

√
(x− x′)2 + (y − y′)2 + z20 .

A common baseline approach for image recovery is the generalized
synthesis aperture focusing technique (GSAFT) described in [5],
which is summarized as

f(x, y) = F−1{F{s(x′, y′)}ejkzz0}, (2)

where F{·} and F−1{·} represent the 2-D Fourier transform and
its inverse, respectively, and kz =

√
4k2 − k2x − k2y . To model the

imaging system in discrete domain, let the matrices FP×Q and

…
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Fig. 2. The proposed deep neural network structure. The real and imaginary
parts of the complex measurement matrix are stacked depth-wise and fed into
the DNN structure which fuses their information to produce the image of the
object at its output.

SM×N represent the reflection values of the object plane sampled on
a grid and the measured data recorded on another grid, respectively.
The discrete form of (1) is then given by

S[m,n] =

P∑
p=1

Q∑
q=1

F[p, q]e−j2kr[m,n,p,q], (3)

where r[m,n, p, q] is the Euclidean distance between the transceiver
position [m,n] and the object point [p, q]. The wideband imaging
model can be obtained by extending (3) to Nf frequencies (fi, i =
1, · · · , Nf ) as follows

S[m,n, fi] =

P∑
p=1

Q∑
q=1

F[p, q]e−j2 2π
c

fir[m,n,p,q]. (4)

III. NETWORK STRUCTURE AND TRAINING PROCEDURE

As explained earlier, our measurements from the object are
complex-valued. Hence, for image reconstruction, we design a deep
neural network that receives complex-valued input data and returns
an image at the output. The network shall be trained by a dataset
generated using (4), where S stands for the measured data (input
to the network) and F represents the desired output of the network.
We consider the object under imaging procedure to be represented
by a binary (black and white) image, with white area indicating the
interior of the object. The structure of the proposed network, the
dataset preparation and the training procedure are explained in details
in the following subsections.

A. Network Structure

The proposed neural network receives a matrix with 61 × 61
complex-valued measured entries (pixels) as the input, and returns an
image matrix of the same size as the output. The designed network
structure is depicted in Fig. 2. For the sake of simplicity, let us
define a super-layer with three sequential sub-layers including a 2D
convolutional layer with 64 filters of size 3× 3 followed by a Relu
activation layer, and a batch normalization layer. The complex-valued
measurements are first decomposed into real and imaginary parts
which are stacked in depth and fed into the DNN structure. The DNN
consists of a set of ten super-layers followed by a 2D convolutional
layer with 64 filters of size 3×3 and no activation function, before a
flattening layer ahead of a dense layer with 3721 neurons and finally,
a Sigmoid activation layer, the output of which is de-flattened to
form the 61 × 61-pixel output image. For the training process, we
use Adam optimizer [21]. Binary cross entropy loss function is used
to minimize the difference between the binary ground-truth and the
estimated images

Hp = − 1

N

N∑
i=1

yi log(p(yi)) + (1− yi) log(1− p(yi)), (5)
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Fig. 3. (a) Training and validation loss, (b) MAE metric.

where y is the label and p(y) is the predicted probability for all N
points.

B. Dataset generation and training

The dataset that we used in this work includes 5671 binary images
from several open access libraries: [22]–[25]. We split this amount
into two subsets: 80% for training, and 20% for test purposes. In each
subset, data augmentation is applied with the following strategy: in
each subset, all binary images are cropped around their bounding
boxes. Each image is then rotated 90, 180, and 270 degrees, and the
rotated versions are added to the initial subset. In addition, by keeping
the aspect ratio fixed, we scaled each image to w × h pixels, where
max(w, h) = 35 (yielding a 35 × h or w × 35 image). We form
the ground-truth binary 61× 61-pixel images by placing each of the
scaled images in 15 random locations inside the 61×61-pixel image.
The default value of the pixels is 0; therefore, only those pixels that
belong to the interior of the [shifted] scaled shapes are non-zero. This
data augmentation strategy increases the volume of the initial dataset
with the factor of 60. For each ground-truth binary image in the
augmented dataset, we generate its corresponding complex-valued
measurements using the forward system model (4). The imaging
frequency and the TX to object distance are set uniformly at random
in the range 28GHz to 31GHz and 15cm to 30cm, respectively.
We further include a complex-valued additive Gaussian noise with
varying power such that the resulting signal to noise ratio (SNR)
falls between 15dB and 20dB.

With a batch-size of 64, we train the neural network for 80 initial
epochs using the learning rate 10−3, another 50 epochs using the
learning rate of 10−4, and a final 20 epochs using the 10−5 learning
rate. The training and validation loss curves (vs. epoch), as well as
the mean absolute error (MAE) between the predicted and the desired
outputs are shown in Fig. 3.

C. Calibration

Calibration is one of the essential procedures in most real world
imaging systems that has a great impact on imaging quality. In
most systems, we either need to tune or estimate a number of
high-level parameters before operation. MMW imaging systems are
no exception and require the knowledge about the exact imaging
frequency as well as the distance between the antenna and the
object of interest before every single shot. Oftentimes, obtaining such
information is tedious and cumbersome. Our approach to overcome
this issue is that we train the network on data coming from varying
frequencies and distances in the operational range at once (Fig.
1). As a result, the trained network can automatically reconstruct
an image from measurements corresponding to frequency range of
28 ∼ 31GHz and distance range of 15 ∼ 30cm without any further
calibration stages. It should be noted that the mentioned ranges are
chosen due to their popularity; they could be easily replaced with
user-defined ranges.

(a1) (b1) (c1) (d1)

(a2) (b2) (c2) (d2)

(a3) (b3) (c3) (d3)

(a4) (b4) (c4) (d4)
Fig. 4. The noiseless scenario. Columns from left to right correspond to
the ground-truth images, measurements, reconstructed images using GSAFT,
and the reconstructed images using the proposed method, respectively. The
reconstruction qualities in terms of PSNR and SSIM are reported in Table I.

TABLE I
PSNR AND SSIM METRICS FOR IMAGES IN FIG. 4

Object GSAFT Proposed
PSNR(dB) SSIM PSNR(dB) SSIM

(a1) 9.1733 0.6363 29.9469 0.9826
(a2) 11.2058 0.7137 37.3374 0.9929
(a3) 8.8795 0.5919 25.3446 0.9607
(a4) 11.7696 0.6782 24.8661 0.9820

IV. RESULTS AND DISCUSSIONS

A. Simulation and measurement Results

In this subsection, we study the result of the proposed method in
reconstructing images from both noiseless and noisy measurements
of various synthetic and real objects. In our experiments, we compare
the proposed method with GSAFT [5] as a well-studied baseline in
the literature of MMW image reconstruction, as well as a more recent
reconstruction method called Delay Multiply and Sum Beamforming
Algorithm (DMAS) [26]. We evaluate the reconstruction quality by
SSIM metric [27] and PSNR metric which is defined as:

PSNR = 10 log10

(
max(I)2

1
MN

∑M
m=1

∑N
n=1(I[m,n]−Î[m,n])2

)
(6)

where I is the original image and Î is its reconstructed version.
In the first experiment, we consider noiseless synthetic measure-

ments obtained in a wide-band mono-static imaging setup with
Nf = 10 equally spaced frequency points in the range 28GHz
to 31GHz, and the object depth (i.e. orthogonal distance between
transceiver plane and object plane) set to 15cm. The pair of trans-
mitter and receiver scan an area of 61×61 points and for each point
record the data of all frequencies. The sampling interval on both the
measurements and the imaging results are 5 millimeters across the
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Fig. 5. The sensitivity of the reconstruction to additive noise, imaging
frequency and object to TX distance. The PSNR metric in terms of input
SNR(dB), frequency and depth are shown in (a), (b) and (c), respectively.
Similar curves for the SSIM are shown in (d), (e) and (f).

(a) (b) (c) (d) (e)
Fig. 6. Reconstruction under loss of calibration. (a) The original object,
(b) measured data with depth 18cm, (c) GSAFT recovery with inaccurate
depth (loss of calibration) that achieves PSNR = 13.49709dB, (d) GSAFT
recovery with exact depth (calibrated) that achieves PSNR = 13.5220dB,
and (e) the proposed blind recovery that achieves PSNR = 37.2754dB.

x, and y axes. The results are shown in Fig 4 (and Table I) for four
different objects.

In the second experiment, we investigate the sensitivity of the
reconstruction to additive noise, imaging frequency and object to
sensor distance (depth). For each case, we fix two of the parameters
and vary the third beyond the range used for training. In Fig. 5(a)
and Fig. 5(d) we respectively plot the PSNR and SSIM metrics of
the reconstruction when the imaging frequency and the depth are set
to 29.5GHz and 22.5cm, respectively, and the input SNR sweeps
the range 5dB to 30dB. We should highlight that the range 15dB to
20dB was used for training. Similar curves are shown in Fig. 5(b) and
Fig. 5(e) when the input SNR and the depth are fixed to 17.5dB and
22.5cm, respectively, and the imaging frequency varies from 25GHz
to 34GHz (training data was limited to [28GHz , 31GHz]. In the
last setup, we sweep the depth from 5cm to 40cm (the used range
for training was 15cm to 30cm) while fixing the input SNR and
the imaging frequency at 17.5dB and 29.5GHz, respectively (Figs.
5(c)-(f)). We observe that our model is robust to various changes and
maintains a high reconstruction accuracy without requiring an exact
prior knowledge about these parameters, even in presence of noise.
It is worth noting that at MMW frequencies, the wave propagation
loss increases with the increase in the depth. This phenomenon can
be witnessed at the tail of SSIM curve in Fig. 5 (b).

In the next experiment, we intentionally use the method in a
misadjusted setting to mimic loss of calibration. Here, we set the
object to sensor distance as 18cm, but use the value 20cm in
reconstruction and use various imaging frequencies from 28GHz to
31GHz. Reconstruction results for both the GSAFT and the proposed
method are provided in Fig. 6. While the performance of the GSAFT
method degrades in the misadjusted setting, the proposed method that
works blindly, performs superbly (PSNR = 37.2754dB).

As another experiment, we use real measurements. The system
setup in Fig. 7 shows a pair of antennas connected to a network
analyzer for scanning the object at 61× 61 predefined points. In this

Fig. 7. The real imaging system setup. The transceiver moves in a 2D plane,
scans the object and sends the measured data to the VNA.

(a1) (b1) (c1) (d1) (e1)

(a2) (b2) (c2) (d2) (e2)

(a3) (b3) (c3) (d3) (e3)

(a4) (b4) (c4) (d4) (e4)
Fig. 8. Each row is related to the measurements of a separate object using
the MMW imaging system in Fig. 7. Column (a) shows the optical image of
the objects. Column (b) depicts the measured data before reconstruction, and
columns (c) and (d) demonstrate the recovery of the fully calibrated GSAFT
and DMASS methods, respectively. Finally, column (e) presents the none-
calibrated blind recovery results of the proposed method.

wide-band imaging scenario, the frequency is swept from 28GHz to
31GHz and depth is set to 20cm. The results are shown in Fig. 8.

Finally, we compare the run time of our proposed method with
GSAFT on a workstation with an Intel(R) Core(TM) i7-8700K @
3.70GHz CPU and a graphic card of NVIDIA GeForce GTX 1080Ti.
A set of 1000 images of size 61×61 pixels were fed to the proposed
model as well as the GSAFT method for reconstruction. On average,
the proposed method takes 2.55ms for reconstructing each image in
contrast to 2.47ms for the GSAFT method. This shows that with
parallel processing, the higher computational load of the proposed
method can be handled in almost the same time as the simple
GSAFT method. It should be noted that we employed the numpy
implementation of FFT in this experiment, and our proposed network
is implemented in Keras.

B. Discussions

In the previous experiments, we observed that the proposed method
had a superior reconstruction accuracy compared to traditional meth-
ods like GSAFT and DMAS. Also, while these conventional methods
require the knowledge of imaging frequency and object to antenna
distance to maintain a good reconstruction performance, the proposed
model only assumes a [pre-determined] range for these parameters
and does not require the knowledge of the exact values. As measuring
these parameters at each imaging shot is not required, we consider
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the method as calibration-free. Noise-tolerance is another advantage
of the proposed method. As the model is trained also with noisy
data (various levels), it is able to partially compensate for the noise
without asking for the noise variance (noise level). The latter is rather
distinctive when compared to conventional methods.

The two main drawbacks of deep-learning-based approaches such
as the proposed method are 1) the need for large datasets for training,
and 2) higher computational complexity compared to conventional
methods.

Deep-learning-based methods are known to be data hungry, as
they need to learn the structures from scratch. Conventional methods,
however, rely on certain mathematical models with few parameters
that express the structures. In this work, we had to find a workaround
to this issue by generating synthetic data for training using (4), instead
of gathering a huge volume of experimental data. Since the real-world
measurements do not fully match the generated synthetic data, we
observe some artifacts in the reconstructed images. In general (not
necessarily the studied case in this paper), issues such as insufficient
number of layers, limited number of learning parameters and train-
ing/test data model mismatch (e.g., the type of noise and distortions)
lead to uncertainty in reconstruction results of neural networks. Some
recent works such as [28] find it useful to address these issues,
and quantify the reconstruction uncertainty by introducing confidence
values.

To compare the computational load of the deep-learning-based
methods with conventional methods, let us consider the GSAFT
method that we used as a baseline in our comparisons. This method
is based on FFT, which has considerably less computational load than
that of a neural network with multiple layers. Nevertheless, with the
availability of current GPUs, parallel processing could substantially
compensate for the higher computational cost of a neural network for
reducing the run time.

V. CONCLUSION

In this work, we studied the problem of image reconstruction in
millimeter wave imaging systems. We proposed a deep-learning-
based structure to approximate the inverse system of the MMW
imaging device. The designed network receives the measured com-
plex data from the receiver antenna array at its input, and generates
the 2D image of the object under test at its output. The proposed
neural network architecture is trained on wide-band data, taking depth
variations and noise into account. Therefore, it is compatible with
real-world wideband imaging systems and capable of maintaining
accurate reconstruction without being accurately calibrated. Despite
the relative success of the proposed method in reconstructing images
both with synthetic and experimental data, there is still room for im-
provement. The deep-learning methods (like the one employed here)
require large amount of training data with close to authentic (real-
world) distortions and non-idealities. Besides, they impose higher
computational load compared to conventional linear inverse scattering
approaches.
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