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Robustness of Two-Dimensional Line Spectral
Estimation Against Spiky Noise

Iman Valiulahi, Farzan Haddadi, and Arash Amini

Abstract—The aim of two-dimensional (2D) line spectral esti-
mation is to super-resolve spectral point sources from finite time-
domain samples. In many applications such as radar and sonar,
spiky noise occurs when electronic instruments temporarily enter
cut-off or saturation region. To overcome this problem, a new
convex program is presented to simultaneously estimate the
spectral point sources and spiky noise in the 2D case. To prove
uniqueness of the solution, it is sufficient to show that a dual
certificate exists. Construction of the dual certificate imposes a
mild condition on the separation of the spectral point sources.
Also, number of spikes and detectable spectral sources are
shown to be a logarithmic function of number of time samples.
Simulation results confirm the validity of our theoretical results.

Index Terms—Two-dimensional line spectral estimation, total
variation norm, continuous domain dictionary, convex optimiza-
tion.

I. INTRODUCTION

Two-dimensional (2D) line spectral estimation (LSE) has
received much attention in signal processing in recent years.
It is a fundamental concern of many applications such as
orthogonal frequency-division multiplexing (OFDM) passive
radar [1], super-resolution imaging [2], and conventional radar
[3]. In the LSE problem, a sparse combination of sinusoids is
observed. A subset of observations is often corrupted by spiky
noise because of various reasons. In the OFDM passive radar
[1] for instance, the transmitted symbols should be estimated
at the receiver side. In some cases, large estimation errors
occur leading to the demodulation error at the receiver side.
This results in significant errors in the observed signal which
is modeled as spiky noise, hence increasing side lobes of the
clutter and strong targets. Due to the fact that the reflection of
targets is usually small, this noise makes heavy interference
with the real targets [1]. Another application of the LSE
problem is recovering a high-resolution image of stars from a
low-resolution telescope. Meanwhile, spiky noise happens in
astronomical images because of thermal generation in pixels or
collision of cosmic rays with image sensors [2]. Moreover, this
type of perturbation may occur in the super-resolution radar
imaging [3] by lightning discharges or telephone switching
transients [4]. Recovering delay and Doppler shifts in the
super-resolution radar imaging [3] can be significantly affected
by spiky noise. The goal of this paper is to investigate the 2D
LSE problem in the presence of spiky noise.

Parametric approaches in the LSE problem are based on
dividing the observation space into signal and noise subspaces
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by singular value decomposition [5], [6]. Although the compu-
tational complexity of these approaches is low, the sensitivity
to additive perturbations is high. Also, they cannot determine
the spiky noise location and number of spectral sources.

In another field of study known as compressive sensing, an
exact solution can be achieved in an underdetermined linear
system of equations by assuming that the signal of interest
is sparse in a known discrete dictionary [7]. Furthermore, ℓ1
minimization can be used to recover support of the signal
in the DFT basis. In many practical applications such as
radar and sonar, however, the spectral sources belong to a
continuous dictionary. Thereby, mismatch between the actual
and reconstructed sources in the DFT basis is inevitable [8].
In [9], it is shown that refining the grid greatly increases the
computational complexity. Further, ℓ1 minimization does not
achieve the exact solution in this ultrahigh-dimensional setting.

The LSE model incorporates a 2D spectral matrix X ∈
Cn1×n2 given by

Xk =

r∑
i=1

die
j2πfT

i k, k ∈ J, (1)

where d is the complex amplitude vector, di = |di|ejϕi , ϕi ∼
U(0, 2π), |di| ∼ δ0.5 + X 2(1), r is the level of sparsity, fi ∈
[0, 1]2. Without loss of generality, assume that n1 = n2 = n,
so J = {1, . . . , n} × {1, . . . , n} is the 2D integer square that
indicates time indices.

In [10], Candes and Fernandez proposed a non-parametric
approach to super-resolve the inherent frequencies in (1) for
the 1D and 2D cases. Their approach is based on Total-
Variation (TV) norm –the continuous version of the ℓ1 norm–
minimization which promotes the sparsity of a continuous
function. It is proven that a linear combination of the fourth
power of the Dirichlet kernel and its derivatives can be
used to construct a valid dual certificate for this problem.
This construction imposes a minimum separation of 4/n and
4.76/n between the frequency sources in dimensions one and
two, respectively. To achieve a sharper bound on minimum
separation in the 1D case, [11] constructed the dual certificate
using three Dirichlet kernels with different cut-off frequencies.
Also, [12] extended this approach to the 2D case. The required
minimum separations for the 1D and 2D cases are 2.52/n
and 3.36/n, respectively. In [13], 1D signals are observed at a
random subset of time instances. Under mild assumptions on
the minimum separation and with O(r log r log n) partial time
samples, Tang et.al. proved that one can always find a random
trigonometric polynomial that estimates the point sources. This
approach is extended to the 2D case in [14].

The inherent infinite dimensionality of the LSE problem is
generally an obstacle. One can approximate the problem on a
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fine grid [15] or solve the TV-norm minimization directly
by linear programming [16]. In [10], the associated dual
problem of TV-regularization is converted into linear matrix
inequalities (LMI) using positive trigonometric polynomial
(PTP) theory [17]. However, in higher dimensions, a hierarchy
of sum of squares relaxation is required [18]. Magnitude of
the trigonometric polynomial in each subband of its frequency
domain is controllable by the coefficients that are obtained
from PTP theory [19]–[21].

Additive noise is inevitable in most applications. Recently,
a significant line of research is focused on the support stability
of TV-norm minimization when measurements are corrupted
by dense perturbations [22]. Establishing a trade-off between
noise power and TV-norm, known as burling least angle re-
gression (BLASSO), is a common technique in such problems
[23], [24]. In [25], a precise comparison between robustness
of optimization-based methods and conventional approaches
against additive noise is provided. Spiky noise is another
kind of corruption that may appear due to hardware failure.
Subspace decomposition approaches are not able to estimate
the sources when a subset of time samples is corrupted by
spiky noise. They are indeed designed to overcome Gaussian-
type noises and are relatively inefficient against spiky noise.

In [26], a convex optimization problem that incorporates the
sparsity feature of spiky noise in the cost function is suggested
in order to estimate simultaneously both the spectral sources
and spiky noise in the 1D setting. Spiky noise in the 1D
case is also studied in [27] and [28]. While many works in
the literature study the 1D case, multi-dimensional analysis
is required in many applications such as super-resolution
imaging [2] and MIMO radar [29]. [30] proposed an innovative
approach based on matrix completion that super-resolves the
spectral sources and detects spiky noise in the 2D case. The
proposed Enhanced Matrix Completion (EMaC) is also shown
to find the exact solution if the sample complexity exceeds
O(r2 log3 n2), under some incoherence conditions.

In this paper, the main contribution is to construct a valid
dual certificate for penalized TV-regularization in the 2D
LSE problem. The proposed certificate is a 2D trigonometric
low-pass polynomial that can interpolate any sign pattern of
the signal. This feature is used to localize the support of
the spectral sources. Further, its coefficients belong to the
interior of the sub-differential of ℓ1 norm. One can take
advantage of this feature to detect the locations of spiky noise.
Under mild conditions on the separation between the spectral
sources, it has shown that if the numbers of spectral sources
and spiky noise occurrences are restricted by a logarithmic
function of the number of samples, the suggested semidefinite
programming achieves, with high probability, the exact solu-
tion. A semidefinite programming using PTP theory is also
proposed for the associated dual problem of penalized TV-
regularization. Finally, we provide numerical phase transition
graphs certifying the fact that both the number of spectral
sources and spiky noise are controlled by a logarithmic func-
tion of the number of time samples.

The rest of the paper is organized as follows. The problem
is formulated in Section II. Penalized TV-norm minimization
and our main theorem are presented in Section III. Construc-

tion of the dual certificate and implementation of the dual
problem are provided in Sections IV and V, respectively.
Section VI is devoted to numerical experiments. Finally,
conclusions are discussed in Section VII.

Throughout the paper, scalars are denoted by lowercase
letters, vectors by lowercase boldface letters, and matrices by
uppercase boldface letters. The ith element of the vector x
and the k = [k1, k2]

T element of the matrix X are given
by xi and Xk, respectively. The operator | · | denotes the
cardinality of sets, absolute value for scalars and element-
wise absolute value for vectors and matrices; also ∥z∥∞ =
max

i
|zi|. For a function f and a matrix A, ∥f∥∞, ∥A∥∞,

∥A∥ and ∥A∥1 are defined as sup
t
|f(t)|, sup

∥x∥∞≤1

∥Ax∥∞ =

max
i

∑
j |Ai,j |, sup

∥z∥2≤1

∥Az∥2 and
∑
i,j

|A(i, j)|, respectively.

The function relint(C) denotes the relative interior of a set
C. The sub-differential of a function f at point x is shown
by ∂f(·)(x). ith derivate and i1, i2 partial derivatives of a
1D function f(t) and a 2D function f(t := [t1, t2]

T ) are
denoted by f i(t) and f i1i2(t), respectively. The operators
(·)T and (·)∗ represent transpose and Hermitian transpose of
a vector, respectively. The function sgn(x) is reserved for
the element-wise sign of the vector x. Also, vec(X) denotes
the columns of X being stacked on top of each other. The
inner product between two functions f and g is defined as
⟨f, g⟩ :=

∫
f(t)g(t)dt. The operator ⊗ is the Kronecker

product and the adjoint of a linear operator F is denoted by
F∗. To show that A is a semidefinite matrix we write A ⪰ 0.

II. PROBLEM FORMULATION

In the spectral domain, the signal in (1) is a linear combi-
nation of Dirac delta functions:

µ =
∑
fi∈T

diδ(f − fi), (2)

where T is the support of the signal and δ(f − fi) denotes
the Dirac delta function located at fi. The main goal in the
LSE problem is to recover the location and amplitude of each
delta by finite time-domain samples. As mentioned in the
previous section, many practical applications such as radar and
sonar suffer from spiky noise due to the electrical instruments
failure. Assume that spiky noise is added to the signal (1) as:

Yk = Xk + Zk, k ∈ J, (3)

where Zk is an element of the sparse noise matrix Z ∈ Cn×n

with s non-zero entries. The observation model can be written
in the matrix form:

Y = Fµ+Z, (4)

where F(·) is a linear operator that maps any measure in the
frequency domain to J in the time domain. The problem is
to estimate the spectral sources and locations of spiky noise
from Y .
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III. ROBUST TOTAL VARIATION MINIMIZATION

Spectral sparsity is not single-handedly sufficient to solve
this problem. In fact, if two sources are located too close to
each other, it would be impossible to resolve them [10].

Definition 3.1: Let T2 be the 2D torus obtained by identi-
fying the endpoints on [0, 1]2. For each set of points T ⊂ T2,
the minimum separation is defined as:

∆(T ) := inf
ti,tj∈T, ti ̸=tj

∥ti − tj∥∞

= inf
i ̸=j

max{|t1i − t1j |, |t2i − t2j |}, (5)

where |t1i − t1j |, |t2i − t2j | denote the wrap-around distances
on the unit circle.

The ℓ1 minimization is not suitable for the LSE problem,
due to the discretization of the spectral domain. Whereas,
the TV-norm defined as ∥ν∥TV := supρ

∑
E∈ρ |ν(E)| can

promote sparsity in continuous functions. Indeed, TV-norm
maximizes the disjoint sum of positive measures |ν(·)| over
all partitions ρ of the signal domain. In the special case for
(2), ∥µ∥TV =

∑r
i=1 |di|.

Most inverse problems are solved by minimizing a cost
function that promotes an inherent structure of the signal
of interest. This concept emerges in compressed sensing [7].
The cost function may also include a specific penalty term
to perform side tasks. For instance, [31] has shown that
penalizing ℓ1 norm with an ℓ2 error term is an efficient way
for denoising. The observation model (4) is the sum of two
sparse signals in different domains. [26] balances the TV-
norm of spectral sources and the ℓ1 norm of spiky noise in
the 1D case. We generalize this approach to the 2D case by
introducing the following optimization problem:

PTN : min
µ̃,Z̃

∥µ̃∥TV + λ∥Z̃∥1 subject to Y = Fµ̃+ Z̃,

where λ > 0 is a regularization parameter that makes a trade-
off between TV-norm of spectral spikes and ℓ1 norm of spiky
noise. The first goal of this paper is to prove that PTN achieves
exact recovery. The following theorem states that the solution
of PTN is exact, under some specific conditions.

Theorem 3.1: Let J = {1, . . . , n} × {1, . . . , n} be the set
of indices of observed entries in the matrix, Y = Fµ + Z,
where each element of the noise matrix is independently non-
zero with probability s

n2 supported on the set Ω ⊂ J (|Ω| = s).
Also, the support of µ =

∑
fi∈T diδ(f − fi), obeys ∆(T ) ≥

3.36
n−1 , where fi ∈ [0, 1]2 and |T | = r. If r + s ≤ n2,

r ≤ Cr

(
log

n2

ϵ

)−2
n2, s ≤ Cs

(
log

n2

ϵ

)−2
n2,

n ≥ 4× 103, λ =
1

n
, (6)

which Cr and Cs are numerical constants, then, the exact
solution of PTN is (µ,Z) with probability 1 − ϵ for any
ϵ ∈ [0, 1].

Therefore, one can estimate the spectral sources and spiky
noise samples up to a logarithmic function of the number of
time-domain samples under a mild condition on the separation
of the spectral sources. Note that the large amount of n ≥
4×103 in Theorem 3.1 should not be considered as a sampling

budget. This is only required for mathematical proofs and in
the phase transition graphs (see Fig. 2) we show that PTN

works for even small amounts of n.

IV. CONSTRUCTION OF THE DUAL CERTIFICATE

The following Proposition justifies that if there exists a low-
pass trigonometric polynomial that belongs to the interior of
the sub-differential of TV-norm and its coefficient lies on the
interior of the sub-differential of ℓ1 norm, it will be a valid
certificate for PTN.

Proposition 4.1: (Proof in Appendix C). Under the con-
ditions of Theorem 3.1, for any sign patterns h ∈ C|T | and
r ∈ C|Ω| such that |hi| = 1 and |rl| = 1, for all i and l, if there
exists the following 2D low-pass trigonometric polynomial

F∗C = Q(f) =
∑
k∈J

Cke
−j2πfTk, (7)

such that

Q(fi) = hi, ∀fi ∈ T, (8)
|Q(f)| < 1, ∀f /∈ T, (9)
Ckl

λ
= rl, ∀kl ∈ Ω, (10)

|Ck| < λ, ∀k /∈ Ω, (11)

where fi = [f1i, f2i]
T and kl = [k1l, k2l]

T , then (µ,Z) is the
unique solution of PTN.
The conditions (8) and (9) state that Q(f) ∈ relint(∂(∥ ·
∥TV(µ))), so for any measure µ̂, we have ∥µ + µ̂∥TV ≥
∥µ∥TV + ⟨Q, µ̂⟩. Similarly, it can be deduced from (10) and
(11) that C

λ ∈ relint(∂(∥ · ∥1(Z))), so for any Ẑ, we have
∥Z+Ẑ∥1 ≥ ∥Z∥1+⟨Cλ , Ẑ⟩. Let µ̄ = µ+µ̂ and Z̄ = Z+Ẑ
as a feasible point such that Y = Fµ̄+ Z̄:

∥µ̄∥TV + λ∥Z̄∥1 ≥ ∥µ∥TV + λ∥Z∥1 + ⟨Q, µ̄− µ⟩

+ λ⟨C
λ
, Z̄ −Z⟩F ≥ ∥µ∥TV + λ∥Z∥1

+ ⟨C,F∗(µ̄− µ) + Z̄ −Z⟩F ≥ ∥µ∥TV + λ∥Z∥1. (12)

Hence, this concludes the existence and uniqueness of the
solution (µ,Z). The coefficient of Q(f) can be obtained by
solving the dual problem of PTN, the following section claims
this issue.

V. THE DUAL PROBLEM

Though the primal problem PTN can be implemented using
Vandermonde decomposition of Toeplitz matrices [32], we
are more interested in the dual approach because it gives
us the chance to simultaneously detect both the ground-truth
spectral sources and the location of spiky noise. The infinite
dimensional PTN is indeed converted into a tractable problem.
At the first step, the dual problem of PTN is obtained by
Lagrange theorem. The results of PTP theory is then applied
to convert the explicit constraint of the dual problem into LMIs
[17].

The associated dual problem of PTN is given by

max
C∈Cn×n

⟨C,Y ⟩

subject to ∥F∗C∥∞ ≤ 1, ∥C∥∞ ≤ λ, (13)
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(a) (b)

Fig. 1: Frequency and spiky noise localization. In Fig.1(a), the support of the spectral and estimated sources are represented
by the blue and red lines, respectively. The magnitude of dual solution and support of spiky noise are shown in the blue lines
and red stars in Fig. 1(b), respectively.

where C is the dual variable. Due to the establishment of
the Slater’s conditions, there is no gap between the objective
value of the dual and primal problem. Therefore, ⟨Ĉ,Y ⟩ =
⟨Ĉ,Fµ + Z⟩ = ∥µ∥TV + λ∥Z∥1, ⟨F∗Ĉ,µ⟩ + ⟨Ĉ,Z⟩ =
⟨sgn(µ),µ⟩ + λ⟨sgn(Z),Z⟩. Consequently, |F∗Ĉ| = 1 and
|Ĉk| = λ if f ∈ T and k ∈ Ω, respectively. This provides
a strategy to recover the support of the spectral sources and
spiky noise (see Fig 1).

The magnitude of the trigonometric polynomial can be
controlled by LMIs using the results of the PTP theory
[17]. In dimension two, we need to consider the hierarchy
of sum of squares relaxations [18]. Let us define sum-of-
squares relaxation degree vector n′ := [n′

1, n
′
2]

T . Without
loss of generality, assume that n′ = n′

1 = n′
2. One can

define a zero-padded extension C̃ of C under n′ ≥ n, J̃ =

{1, · · · , n′} × {1, · · · , n′}, such that c̃k =

{
ck if k ∈ J
0 otherwise .

Regarding the results of [18], problem (13) can be written as:

max
C,Q0

⟨Y ,C⟩

subject to δk = tr[ΘkQ0], k ∈ J̃ , Q0 vec(C̃)

(vec(C̃))H 1

 ⪰ 0, ∥C∥∞ ≤ λ, (14)

where Q0 ∈ Cn′2×n′2
is a Hermitian matrix such that Q0 ⪰ 0,

Θk = Θk2 ⊗ Θk1 , Θk ∈ Cn′×n′
is an elementary Toeplitz

matrix with ones on it’s k-th diagonal and zeros elsewhere.
Notice that k = 0 is associated with the main diagonal,
positive and negative values are reserved for the upper and
lower diagonals, respectively. Also, δ0 = 1 and δk = 0 if
k ̸= 0. To support the theoretical results, in the next section,
numerical experiments are presented.

VI. EXPERIMENTS

In this section, numerical experiments for observation model
(4) are provided to investigate performance of the proposed
positive semidefinite programing (14). In the first experiment,
r = 7 frequency sources, without any separation condition,
in the domain [0, 1]2 and s = 7 spiky noises in the set
J are randomly generated. The magnitude and phase of
each sinusoid is randomly generated from δ0.5 + X 2(1) and
U(0, 2π), respectively. Problem (14) is implemented by CVX
[33] under n′ = n and the technique described in Section V
is leveraged in order to localize the support of the frequency

sources and spiky noise. Fig. 1 demonstrates that the local
extremums of |F∗Ĉ| that achieve one and the locations of |Ĉ|
that achieve λ are associated with the inherent frequencies of
(1) and the locations of spiky noise, respectively.

In the second experiment, under the fixed minimum sepa-
ration condition 3

n−1 and n′ = n in (14), the phase transitions
of the proposed approach for different amounts of the regular-
ization parameter λ are depicted. The regularization parameter
is indeed varied when varying k and s (Fig. 2). As mentioned,
λ makes a balance between the structure of two different
components. Small λ more strongly penalizes TV-norm of
the spectral sources than ℓ1 norm of spiky noise. This leads to
a cost function which is more appropriate to manifest the time
domain sparsity. Fig. 2 verifies this claim when λ is changed
from small to large values. The first and second rows in Fig. 2
are respectively related to different numbers of measurements
n2 = 64 and n2 = 81. The estimation is considered successful
if the normalized mean squared error ∥X̄ − X̂∥2/∥X̄∥2 ≤
10−3, where X̄ and X̂ are respectively associated with X and
reconstructed data when the corresponding indices of spiky
noise are eliminated. The grayscale images show the empirical
success rate and each point is related to a specific (r, s, n2).
Under the minimum separation condition, one can verify that
the number of detectable ground-truth spectral sources and
spiky noise are controlled by a logarithmic function of the
number of samples as discussed in Theorem 3.1.

It is beneficial for attentive readers to interpret phase transi-
tion graphs in the OFDM passive radar [1]. Explicitly, suppose
that we have additional knowledge that the environment is
highly corrupted by demodulation error (spiky noise). Our
simulation results reveal that if we choose small λ, the
optimization problem (14) is able to detect a more number
of noise spikes. The larger λ is the solution for the case of
knowing in advance that the number of delay-Doppler sources
is large.

It is worth mentioning that we adopt a brute-force search
method with the step size 1/200 along each axis and find
the locations at which the magnitude of the dual polynomial
above 1 − 10−5 to recover the spectral sources. This search
method is problematic in two aspects. First, the brute-force
approach resorts back to discretization. Note that the main
goal of using TV norm instead of ℓ1 norm in the compressed
sensing is to avoid this discretization [22]. Second, user-
parameters are required for the above implementation for
which no role of thumb exists. Unlike the search method
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Fig. 2: Grayscale images, under the fixed minimum separation condition 3
n−1 , show the empirical rate of success of (14) over

10 trials. First and second rows are corresponding to n2 = 64 and n2 = 81, respectively. Also, each column from left to right
respectively show the results for λ = 0.1, λ = 0.125 and λ = 0.2.

proposed here, authors in [32] presented an analytical approach
in which the frequencies are computed by the numerical
solution of the SDP. The presented approach in [32] can be
leveraged in our problem. Once the SDP in (14) is solved
using CVX [33], one is able to obtain the solution of the 2-
level Toeplitz matrix associated with the primal problem PTN

for free. The frequencies can then be computed by performing
a Vandermonde decomposition on the 2-level Toeplitz matrix
[32]. This approach seems to be more appropriate in practical
implementation since it involves much easier user parameter
tuning and can be generalized to high dimensions in a straight-
forward manner.

VII. CONCLUSION AND FUTURE DIRECTION

In this paper, the 2D LSE problem, when a subset of time
domain samples is corrupted by spiky noise, is investigated.
In addition, a semidefinite program that achieves the exact
solution under mild conditions on number of spike noise
number and separation of spectral sources is proposed. One
can extend the suggested approach to arbitrary dimensions
which is the fundamental concern of many applications such as
MIMO radar [34]. Also, it would be nice if one studies model
(3) in compressed sensing regime in which a random subset
of time-domain samples which some of them are corrupted
by spike noise is available. Analyzing 2D LSE problem in the
presence of both dense and spiky perturbations would be an
interesting future research direction. One only needs to restrict
the affine constraint of PTN to the power of dense noise though
deriving theoretical justifications might be very sophisticated.
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APPENDIX A
DETERMINISTIC CERTIFICATE

Without loss of generality, assume that J =
{−m, · · · ,m} × {−m, · · · ,m} where m = n−1

2 or
m = n

2 − 1 when n is odd or even, respectively. To construct

the dual certificate in the presence of spiky noise, it is
necessary to consider the LSE problem in the noiseless
case. In [10], it is shown that the following polynomial can
estimate the frequency sources under a mild condition on
their separations:

Q̄(f) =
∑
k∈J

C̄ke
−j2πfTk, (15)

such that

Q̄(fi) = hi, ∀fi ∈ T, (16)
|Q̄(f)| < 1, ∀f /∈ T. (17)

The same approach in [10] and [12] is followed to construct
a deterministic dual certificate as below:

Q̄(t) =
∑
fi∈T

ᾱiK̄(f − fi) + β̄1iK̄
10(f − fi)

+β̄2iK̄
01(f − fi), (18)

where ᾱ, β̄1 and β̄2 are interpolation vectors. To meet (16)
and (17), the following conditions are sufficient

Q̄(fi) = hi, fi ∈ T, (19)
∇Q̄(fi) = 0, fi ∈ T. (20)

In [12], authors suggested K̄(f) = K̄γ(f1)K̄γ(f2),
to construct the dual certificate, in which K̄γ(f) =∏3

i=1 K(γim, f) =
∑m

k=−m cke
j2πkf , where K(m̄, f) =

1
2m̄+1

∑m̄
k=−m̄ ej2πkf is known as the Dirichlet kernel, γ1 =

0.247, γ2 = 0.339, γ3 = 0.414, and c ∈ Cn is the convolution
of the Fourier coefficients of k(γ1m, f), k(γ2m, f), and
k(γ3m, f). Conditions (19) and (20) can be reformulated as a
matrix equation: Ē00 κĒ10 κĒ01

−κĒ10 −κ2Ē20 −κ2Ē11

−κĒ01 −κ2Ē11 −κ2Ē02


︸ ︷︷ ︸

Ē

 ᾱ
κ−1β̄1

κ−1β̄2

 =

h0
0

 , (21)

where (Ēi1i2)ℓ,j = K̄i1i2(fℓ − fj) and κ := 1√
|K2|(0)

. We

borrow bounds on ∥c∥∞ and κ from [11] which are useful in
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our proof

∥c∥∞ ≤ 1.3

m
, (22)

0.467

m
≤ κ ≤ 0.468

m
, for m ≥ 2× 103. (23)

APPENDIX B
RANDOM CERTIFICATE

Spiky noise randomly corrupts a subset of time samples. It
is similar to random sampling in compressed sensing literature
[13]. [26] used the same technique to incorporate the random-
ness of spiky noise into the dual certificate construction. We
follow the proposed approach to construct a valid certificate
for the 2D case when a subset of time samples does not follow
the exponential structure as considered. First, Q(f) is divided
into two terms Q(f) := Qaux(f) + R(f), where Qaux(f) :=∑

k∈Ωc Cke
−j2πfTk, and R(f) := 1

n

∑
kl∈Ω rle

−j2πfTkl .
The coefficients of the first and second terms are restricted to
Ωc and Ω, respectively. From the definitions, it is obvious that
(10) is satisfied and R(f) has no degrees of freedom. So, it is
necessary to construct Qaux(f) to guarantee other conditions
in Proposition 4.1. The inequality |Q(f)| < 1, ∀f /∈ T is
satisfied by setting to zero the partial derivatives of Q(f) at
T . Thus,

Qaux(fi) = hi −R(fi), ∀fi ∈ T, (24)
∇Qaux(fi) = −∇R(fi), ∀fi ∈ T. (25)

Let us define a restricted version of K̄ in Ωc as below:

K(f) :=
∑
k∈Ωc

ck1ck2e
j2πfTk =

∑
k∈J

δΩc(k)ck1ck2e
j2πfTk,

where δΩc(k) = 1 when k = Ωc, δΩc(k) = 0 otherwise. Un-
der the noise condition of Theorem 3.1, these are independent
Bernoulli random variables with parameter n2−s

n2 . Hence, the
expectation of K(f) can be written as:

E(K(f)) =
n2 − s

n2

∑
k∈J

ck1ck2e
j2πfTk =

n2 − s

n2
K̄(f).

The mean of partial derivatives of K(f) can be obtained by
the same technique. The function Qaux(f) is constructed by a
linear combination of K(f) and its partial derivatives as:

Qaux(t) =
∑
fi∈T

αiK(f − fi) + β1iK
10(f − fi)

+β2iK
01(f − fi), (26)

where α, β1 and β2 ∈ C|T | are interpolation coefficient
vectors. The conditions (24) and (25) can be recast in the
matrix form as follows: E00 κE10 κE01

−κE10 −κ2E20 −κ2E11

−κE01 −κ2E11 −κ2E02


︸ ︷︷ ︸

 α
κ−1β1

κ−1β2


E

=

h0
0

− 1

n
BΩr

(27)

where (Ei1i2)ℓ,j = K(i1i2)(fℓ − fj) and 1
nBΩr can be

written in terms of the components of R(f) and their partial
derivatives

1

n
BΩr =

[
R(f1) · · ·R(fr), R10(f1) · · ·R10(fr),

R01(f1) · · ·R01(fr)
]T

. (28)

Define BΩ :=
[
b(ki1), · · · , b(kis)

]
, Ω = {i1, · · · , is}, and

b(k) =

 1
−j2πκk1
−j2πκk2

⊗

e−j2πfT
1 k

·
e−j2πfT

r k

 , where ki1 , · · · ,kis are

associated with k ∈ Ω. Interpolation vectors can be computed
by solving the linear system in (27), so

Q(f) = w00(f)TE−1

(h0
0

− 1√
n
BΩr

)
+R(f), (29)

where wi1i2(f) for i1, i2 ∈ {0, 1, 2} is defined as:

wi1i2(f) := κi1+i2

[
Ki1i2(f − f1), · · · ,Ki1i2(f − fr),

κKi1+1i2(f − f1), · · · , κKi1+1i2(f − fr)

κKi1i2+1(f − f1), · · · , κKi1i2+1(f − fr)

]T
. (30)

The following Lemma establishes an upper bound on ℓ2 norm
of b(k).

Lemma B.1: If m ≥ 2×103, then ∥b(k)∥22 ≤ 21r, for k ∈
J.
Proof.

∥b(k)∥22 ≤ r
(
1 + max

|k1|≤m
(2πk1κ)

2 + max
|k2|≤m

(2πk2κ)
2
)

≤ 21r, (31)

where the result of (23) is used. The following lemma suggests
an upper bound on the operator norm of BΩ with certain
probability.

Lemma B.2: (Proof in Appendix D). If the conditions of
Theorem 3.1 hold, the event

εB :=

{
∥BΩ∥ > CB(log

n2

ϵ
)−1/2n

}
, (32)

happens with probability ϵ
5 where CB is a numerical constant.

The following lemma states that wi1i2(f) is concentrated
around the scaled version of

w̄i1i2(f) := κi1+i2

[
K̄i1i2(f − f1), · · · , K̄i1i2(f − fr)

κK̄i1+1i2(f − f1), · · · , κK̄i1+1i2(f − fr)

κK̄i1i2+1(f − f1), · · · , κK̄i1i2+1(f − fr)

]T
, (33)

on a fine grid with high probability.
Lemma B.3: (Proof in Appendix E). Let G ⊂ [0, 1]2 be a

2D equispaced 800n4-point grid that discretizes [0, 1]2. If the
conditions of Theorem 3.1 hold, then the event

εv :=

{∥∥∥∥wi1i2(f)− n2 − s

n2
w̄i1i2(f)

∥∥∥∥
2

> Cv(log
n2

ϵ
)−1/2

}
,

(34)
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happens with probability ϵ/5 for all f ∈ G, i1, i2 ∈ {0, 1, 2, 3}
and numerical constant Cv .

APPENDIX C
PROOF OF PROPOSITION 4.1

First, it is necessary to determine the uniqueness of the
solution of the linear system (27). The following lemma
shows that E is concentrated around Ē with high probability.
Consequently, E is invertible and one can bound the operator
norm of its inverse.

Lemma C.1: (Proof in Appendix F). If the conditions of
Theorem 3.1 hold, then the event

εE :=

{∥∥∥E−n2 − s

n2
Ē
∥∥∥

≥ n2 − s

4n2
min

{
1,

CE

4

}(
log

n2

ϵ

)−1
2

}
, (35)

happens with probability ϵ/5. Also, under the event εcE , E is
invertible and∥∥E−1

∥∥ ≤ 8,∥∥∥E−1 − n2

n2 − s
Ē−1

∥∥∥ ≤ CE

(
log

n2

ϵ

)−1
2 , (36)

where CE is the numerical constant.
Indeed, this lemma claims that, under the event εcE , the linear
system (27) has an stable solution. So, Q(f) is well defined
and (8) holds. In order to meet (9), it is sufficient to show that
Q(f) is concentrated around Q̄(f) on a fine gird. Then, using
Bernstein inequality, one can demonstrate that this property
holds on the whole [0, 1]2. Finally, some bounds on Q̄(f) and
its partial derivatives from [12] are borrowed to complete the
proof.

Lemma C.2: (Proof in Appendix G). If the conditions of
theorem 3.1 hold, then |Q(f)| < 1, for f /∈ T, with
probability 1− ϵ/5 under the event εcB ∩ εcE ∩ εcv.
The last task is to show that (11) is met. The following lemma
asserts that under the event εcB ∩ εcE ∩ εcv, one can control
the magnitude of dual polynomial’s coefficients with high
probability.

Lemma C.3: (Proof in Appendix H). If the conditions of
Theorem 3.1 hold, then |Ck| < 1

n , for k ∈ Ωc, under the
event εcB ∩ εcE ∩ εcv.
Finally, the same technique in [26] is used to complete the
proof. Consider εQ and εq as the events, such that (9) and (11)
hold, respectively. By De Morgan’s laws and union bound we
get

P((εQ ∩ εq)
c) = P(εcQ ∪ εcq)

≤ P(εcQ ∪ εcq|εcB ∩ εcE ∩ εcv) + P(εB ∩ εE ∩ εv)

≤ P(εcQ|εcB ∩ εcE ∩ εcv) + P(εcq|εcB ∩ εcE ∩ εcv)

+ P(εB) + P(εE) + P(εv)
≤ ϵ, (37)

which holds by the fact that for any pair of events εA and εB ,
P(εA) ≤ P(εA|εcB) + P(εB). On the other hand, via Lemmas
C.3, C.3, C.1, B.3 and B.2, it is shown that the construction
is valid with probability at least 1− ϵ.

APPENDIX D
PROOF OF LEMMA B.2

In order to obtain an upper bound on the operator norm of
BΩ, under the assumptions of theorem 3.1, one can show that

H := BΩB
∗
Ω =

∑
k∈Ω

b(k)b∗(k), (38)

is concentrated around s
n2 H̄ = s

n2

∑
k∈J b(k)b∗(k). Using

the following lemma, an upper bound on the operator norm
of H̄ is computed.

Lemma D.1: (Proof in Section XIII in [35]). If the conditions
of Theorem 3.1 hold, then ∥H̄∥ ≤ 223707 n2 log2 r.

Regarding the fact that s ≤ Csn
2
(
log2 r log n2

ϵ

)−1
in

Theorem 3.1, ∥ s
n2 H̄∥ ≤ C2

B

2 n2
(
log n2

ϵ

)−1
, if CB is set small

enough. One can demonstrate that H concentrates around the
scaled version of H̄ using matrix Bernstein inequality.

Lemma D.2: (Proof in Section XIV in [35]). If the
conditions of Theorem 3.1 hold, then ∥H − s

n2 Ĥ∥ ≤
C2

B

2 n2
(
log n2

ϵ

)−1
with probability at least 1− ϵ/5.

Consequently, one can bound the operator norm of BΩ by
triangle inequality

∥BΩ∥ ≤
√
∥H∥ ≤

√
∥ s

n2
H̄∥+ ∥H − s

n2
H̄∥

≤ CBn
(
log

n2

ϵ

)−1/2
, (39)

which happens with probability at least 1− ϵ/5.

APPENDIX E
PROOF OF LEMMA B.3

Lemma E.1: (Vector Bernstein inequality [36]). Let
u(1), · · · ,u(L) be independent zero-mean random vectors of
dimension d. If ∥u(k)∥2 ≤ B ∀k, we have

P
{ L∑

k=1

∥u(k)∥2 ≥ t

}
≤ exp

(
− t2

8σ2
+

1

4

)
, (40)

for any 0 ≤ t ≤ σ2 where
∑L

k=1 E
[
∥u(k)∥22

]
≤ σ2.

Let us write w̄i1i2(f) and wi1i2(f) in term of b using the
definition of K̄(f) and K(f)

w̄i1i2(f) =
∑
k∈J

(j2πκ)i1+i2ki11 ki22 ck1ck2e
j2πfTkb(k),

wi1i2(f) =
∑
k∈J

δΩc(k)(j2πκ)i1+i2ki11 ki22 ck1ck2e
j2πfTkb(k),

where δΩc is i.i.d. Bernoulli random variable with parameter
p := n2−s

n2 . We apply the result of vector Bernstein inequality
in Lemma E.1 to finite sequences of zero-mean random vectors
of the form

ui1i2(k) := (δΩc(k)− p)(j2πκ)i1+i2ki11 ki22 ck1ck2e
j2πfTkb(k),

to demonstrate that the deviation between wi1i2(f) and the
scaled version of w̄i1i2(f) is small enough with high proba-
bility. For i1, i2 ∈ {0, 1, 2, 3}, one can write

wi1i2(f)− pw̄i1i2(f) =
∑
k∈J

u(k). (41)
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To calculate B in Lemma E.1, one can obtain an upper bound
on ℓ2 norm of u

∥u(k)∥2 ≤ πi1+i2∥c∥2∞ sup
k∈J

∥b(k)∥2 ≤ B :=
7745

m2

√
r,

where the last inequality comes from (23), (22), and choosing
i1 = i2 = 3. Also, To compute σ2 in Lemma E.1,∑

k∈J

E∥ui1i2(k)∥22 =
∑
k∈J

c2k1
c2k2

∥b(k)∥22

· (2πκ)2i1+2i2k2i11 k2i22 E
[
(δΩc(l)− p)2

]
≤ 21r(2m+ 1)2π2i1+2i2∥c∥4∞ ≤ σ2 :=

240× 106r

m2
, (42)

where the first inequality is obtained from Lemma (B.1), (23),
and the fact that variance of Bernoulli model is equal to p(1−
p) ≤ 1. The second inequality comes from (22) for i1 = i2 =
3. By leveraging the result of vector Bernstein inequality in
Lemma E.1, we have

P
[
sup
f∈G

∥wi1i2(f)− w̄i1i2(f)∥2 ≥ t, i1, i2 ∈ {0, 1, 2, 3}
]

≤ 9|G| exp
(
−t2

8σ2
+

1

4

)
, for 0 ≤ t ≤ σ2

B
, (43)

by the union bound. The lower bound of probability is equal to

ϵ/5, if t = σ
√
8( 14 + log 45|G|

ϵ ). In the following, it is shown

that this choice of t satisfies 0 ≤ t ≤ σ2

B ,

t

σ
=

√
8

(
1

4
+ log

45|G|
ϵ

)
≤
√

86 + 32 log n+ 8 log
1

ϵ

≤ 0.4
√
n+

√
8 log

1

ϵ
, (44)

where the last inequality comes from the fact that√
86 + 32 log n ≤ n for n ≥ 13. Consequently, t ≤ σ2

B if
Cr and Cs are set small enough in Theorem 3.1. The desired
result is obtained for√

768× 107r

n2

(
1

4
+ log

36× 103n4

ϵ

)
≤ t ≤ Cv

(
log(

n2

ϵ
)
)−1

2 ,

(45)

if Cr is set small enough in Theorem 3.1.

APPENDIX F
PROOF OF LEMMA C.1

The proof involves the same techniques which were first
proposed in [13]. In the following Lemma, it is demonstrated
that matrix Ē is close to the identity matrix, as a result, it is
invertible.

Lemma F.1: (Proof in Section XVII in [35]). If the condi-
tions of Theorem 3.1 hold, then ∥I − Ē∥ ≤ 0.24, ∥Ē∥ ≤
1.24, ∥Ē−1∥ ≤ 1.32.
It is possible to write Ē and E in the terms of bb∗:

Ē =
∑
k∈J

ck1
ck2

b(k)b∗(k), (46)

E =
∑
k∈J

δΩc(k)ck1ck2b(k)b
∗(k). (47)

One can show that E is concentrated around pĒ, which p :=
n2−s
n2 with high probability. the self-adjoint zero mean matrix

X is defined as below:

X(k) := (p− δΩc(k))ck1ck2b(k)b
∗(k), (48)

then,E(X(k)) = (p − E(δΩc(k)))ck1ck2b(k)b
∗(k) = 0. It is

possible to bound the operator norm of X using Lemma B.1
as follows:

∥X(k)∥ ≤ max
k∈J

∥ck1ck2b(k)b
∗(k)∥

≤ ∥c∥2∞ max
k∈J

∥b(k)∥22 ≤ B :=
36r

m2
. (49)

Also,∑
k∈J

E
(
X(k)XT (k)

)
=∥∥∥∥∑

k∈J

c2k1
c2k2

∥b(k)∥22b(k)b∗(k)E
[
(δΩc − p)2

]∥∥∥∥
≤ 21rp(1− p)∥c∥2∞

∑
k∈J

ck1
ck2

b(k)b∗(k)

≤ 36rp

m2
∥Ē∥ ≤ σ2 :=

45rp

m2
, (50)

where the first inequality uses the variance of the Bernoulli
model with parameter p and Lemma B.1, the second stems
from (22) and the definition of Ē and the last one is the result
of Lemma F.1. For an ease notation, t = p

4Cmin

(
log n2

ϵ

)− 1
2

where Cmin := min{1, CE

4 }. By matrix Bernstein inequality
[36], one can write

E

{∥∥∥E−1 − pĒ−1
∥∥∥ ≥ t

}
≤

6r exp

(
−pC2

minm
2

32r

(
45 log

n2

ϵ
+ 3Cmin

√
log

n2

ϵ

)−1
)

≤ 6r exp

(
−C ′

E(n
2 − s)

r log n2

ϵ

)
, (51)

for a numerical constant C ′
E . The lower bound on this prob-

ability is ϵ/5 when

r ≤ C ′
Dn2

2

(
log

30r

ϵ
log

n2

ϵ

)−1

, s ≤ n2

2
, (52)

which hold under the assumption of Theorem 3.1, if Cr and
Cs are set small enough.

Consequently, a lower bound on the smallest singular value
of E can be obtained by triangle inequality,

σmin(E)

p
≥ σmin(I)− ∥I − Ē∥ − 1

p
∥E − pĒ∥ ≥ 0.51, (53)

with high probability. Therefore, E is invertible. [13, Ap-
pendix E] states that for any matrices A and B so that B
is invertible and ∥A−B∥∥B−1∥ ≤ 1

2 one can write

∥A1∥ ≤ 2∥B−1∥,
∥A−1 −B−1∥ ≤ 2∥B−1∥2∥A−B∥. (54)
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Consider A := E and B := pĒ. Using Lemma (F.1) and
conditioned on (51), we have ∥E− pĒ∥

∥∥(pE)−1
∥∥ ≤ 1

2 , with
probability at least 1 − ϵ/5. Based on this and Lemma F.1,
and event (51) we also have

∥E−1∥ ≤ 2
∥∥(pĒ)−1

∥∥ ≤ 4

p
,∥∥E−1 − (pĒ)−1

∥∥ ≤ 2
∥∥(pĒ−1)

∥∥2∥E − pĒ∥

≤ CE

2p

(
log

n2

ϵ

)−1
2 , (55)

with the same probability. Regarding the conditions of Theo-
rem 3.1 s ≤ n2

2 , therefore 1
p ≤ 2. This concludes the proof.

APPENDIX G
PROOF OF LEMMA C.2

It is possible to express Qi1i2(f) and Q̄i1i2(f) in the terms
of h and r:

κi1+i2Q̄i1i2(f) = w̄i1i2(f)T Ē−1

h0
0

 , (56)

κi1+i2Q(f) = wi1i2(f)TE−1

(h0
0

− 1

n
BΩr

)
+ κi1+i2Ri1i2(f). (57)

Qi1i2(f) and Q̄i1i2(f) are related to each other as

κi1+i2Qi1i2(f) = κi1+i2Q̄i1i2(f) + κi1+i2Ri1i2(f)

+ Ii1i21 (f) + Ii1i22 (f) + Ii1i23 (f), (58)

in which

Ii1i21 (f) :=
−1

n
wi1i2(f)TE−1BΩr, (59)

Ii1i22 (f) :=

(
wi1i2(f)− n2 − s

n2
w̄i1i2(f)

)T

E−1

h0
0

 , (60)

Ii1i23 (f) :=
n2 − s

n2
w̄i1i2(f)T

(
E−1 − n2

n2 − s
Ē

)h0
0

 . (61)

In the following Lemma, it is shown that there exist upper
bounds on these terms in the 2D grid G with high probability.

Lemma G.1: (Proof in Section XIX in [35]). If the condi-
tions of Theorem 3.1 hold, under the condition εcB ∩ εcE ∩ εcv ,
the events

εR :=

{
sup
f∈G

∣∣κi1+i2Ri1i2(f)
∣∣ ≥ 10−2

8
, i1, i2 ∈ {0, 1, 2, 3}

}
,

(62)

and

εi :=

{
sup
f∈G

∣∣Ii1i2i (f)
∣∣ ≥ 10−2

8
, i1, i2 ∈ {0, 1, 2, 3}

}
,

(63)

for i ∈ {0, 1, 2, 3} and the 2D equispaced grid G with set size
800n4, happen with probability at most ϵ/5. Consequently, by
triangle inequality

sup
f∈G

∣∣κi1+i2Qi1i2(f)− κi1+i2Q̄i1i2(f)
∣∣ ≤ 10−2

2
, (64)

with probability at least 1 − ϵ/5 under the condition εcB ∩
εcE ∩ εcv .
It has already shown that the deviation between Qi1i2(f) and
Q̄i1i2(f) is small on a fine grid. In the following, this approach
is extended to the whole [0, 1]2.

Lemma G.2: (Proof in Section XXI in [35]). If the condi-
tions of Theorem 3.1 hold, then

κi1+i2 |Qi1i2(f)− Q̄i1i2(f)| ≤ 10−2, i1, i2 ∈ {0, 1, 2, 3}.
(65)

[0, 1]2 is divided into two domains

Snear =
{
f | ∥f − fi∥∞ ≤ 0.09

}
,

Sfar = [0, 1]2 \ Snear. (66)

[12] proved that |Q̄(f)| ≤ 0.9866 for f ∈ Sfar. One can
leverage the result of Lemma G.2 and triangle inequality to
obtain |Q(f)| ≤ |Q̄(f)|+ 10−2 ≤ 1, for f ∈ Sfar.
Also, [12] demonstrated that the following Hessian matrix is
negative definite in domain f ∈ Snear, so |Q̄(f)| ≤ 1 in this

domain, H̄ =

[
Q̄20(t) Q̄11(t)
Q̄11(t) Q̄02(t)

]
. More precisely, Q̄20 ≤

−1.4809m2, Q̄02 ≤ −1.4809m2 and |Q̄11| ≤ 1.4743m2. It
is possible to rewrite the elements of the matrix H̄ for Q(f)
and bring matrix H , then using the result of Lemma G.2. One
can write

Q20(f) ≤ −1.5209m2, |Q11(f)| ≤ 1.5143m2, (67)

by (23). If the matrix H is concave, then Q(f) < 1. A
sufficient condition for concavity of this matrix is Tr(H) < 0
and det(H) > 0. We can write

Tr(H) = Q20(f) +Q02(f),

det(H) = |Q20(f)||Q02(f)| − |Q11(f)|2. (68)

By (67), it is easy to see that Tr(H) < 0 and det(H) > 0,
so the Hessian matrix H is negative definite in the domain
Snear. This concludes the proof.

APPENDIX H
PROOF OF LEMMA C.3

One can recast the coefficient Ck in terms of h and r. Let
k be an arbitrary element of Ωc

Ck = ck1ck2

(
r∑

i=1

αie
j2πfT

i k

+ i2πκk1

r∑
i=1

β1ie
i2πfT

i k + i2πκk2

r∑
i=1

β2ie
i2πfT

i k

)

= ck1ck2b(k)
∗

α
β1

β2

 = ck1ck2b(k)
∗E−1

(h0
0

−1

n
BΩr

)

= ck1ck2

(
⟨pE−1b(k),h⟩+ 1

n
⟨B∗

ΩE
−1b(k), r⟩

)
,
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where P ∈ Rr×3r is the projection matrix that retains the first
r entries of a vector. To bound |Ck|, a bound on PE−1b is
obtained as below

∥PE−1b(k)∥22 ≤ ∥P ∥2∥E−1∥2∥b(k)∥22 ≤ 1344r ≤ 0.072n2

log 40
ϵ

,

where the last inequality is achieved under the conditions of
Theorem 3.1 when Ck is set small enough and the second
one is a combination of Lemmas B.1 , C.1 and the fact that
∥P ∥2 = 1. Also, we have

∥B∗
ΩE

−1b(k)∥22 ≤ ∥BΩ∥2∥E−1∥2∥b(k)∥22

≤ 1344rn2C2
B ≤ 0.072n2

log 40
ϵ

, (69)

where the second inequality stems from Lemmas B.1 and B.2
and the last one comes from the assumption of Theorem 3.1
if Cr is set small enough.

One can obtain ϵ/10 for the minimum probability of the
following events by Hoeffding’s inequality

|⟨PE−1b(k),h⟩| > 0.07n, |⟨B∗
ΩE

−1b(k), r⟩| > 0.07n2.

Using ∥c∥∞ ≤ 1.3
m and the union bound, we have |Ck| ≤

2.62

n2

(
0.07n + 0.07n

)
≤ 1

n , with probability at least 1 − ϵ/5.
This concludes the proof.
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