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Abstract—We investigate a stochastic signal-processing frame-
work for signals with sparse derivatives, where the samples of a
Lévy process are corrupted by noise. The proposed signal model
covers the well-known Brownian motion and piecewise-constant
Poisson process; moreover, the Lévy family also contains other
interesting members exhibiting heavy-tail statistics that fulfill the
requirements of compressibility. We characterize the maximum-
a-posteriori probability (MAP) and minimum mean-square error
(MMSE) estimators for such signals. Interestingly, some of the
MAP estimators for the Lévy model coincide with popular signal-
denoising algorithms (e.g., total-variation (TV) regularization).
We propose a novel non-iterative implementation of the MMSE
estimator based on the belief-propagation algorithm performed
in the Fourier domain. Our algorithm takes advantage of the fact
that the joint statistics of general Lévy processes are much easier
to describe by their characteristic function, as the probability
densities do not always admit closed-form expressions. We
then use our new estimator as a benchmark to compare the
performance of existing algorithms for the optimal recovery of
gradient-sparse signals.

Index Terms—Lévy process, stochastic modeling, sparse-signal
estimation, non linear reconstruction, total-variation estimation,
belief propagation (BP), message passing.

I. INTRODUCTION

ESTIMATION of signals from incomplete or distorted
measurements is a fundamental problem in signal pro-

cessing. It inevitably arises during any realistic measurement
process relying on some physical acquisition device.

Consider the problem of estimating a signal x 2 Rn from
a noisy vector y = x + n 2 Rn where the components of
n are independent and distributed with a known probability
distribution. If we suppose that the components of the vector
x are also independent, then the estimation problem becomes
separable and reduces to n scalar estimation problems. In
practice, however, due to correlations between the components
of x, simple pointwise techniques are suboptimal and more
refined methods often perform significantly better. In this
paper, we consider the problem of estimating signals with
sparse derivatives. We take continuous-domain perspective and
propose Lévy processes [1]–[4] as a natural approach to model
such signals. The fundamental defining property of Lévy
process is that it has independent and stationary increments.
Therefore, the application of a finite-difference operator on
samples of a Lévy process decouples it into a sequence of
independent random variables. Interestingly, the class of Lévy
processes is in one-to-one correspondence with the class of
infinitely divisible distributions. Such distributions typically
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exhibit a heavy-tail behavior that has recently been proven
to fulfill the requirements of compressibility [5]. Therefore,
Lévy processes can be considered as the archetype of sparse
stochastic signals [3].

A. Contributions
Many recent algorithms for the recovery of sparse signals

can be interpreted as maximum-a-posteriori (MAP) estimators
relying on some specific priors. From this Bayesian perspec-
tive, state-of-the-art methods based on gradient regularizers,
such as total-variation (TV) [6] minimization, implicitly as-
sume the signals to be sampled instances of Lévy processes [7,
Section II]. In this paper, we investigate the minimum-mean-
squared error (MMSE) estimator for Lévy processes. The per-
formance of the estimator can be interpreted as a lower-bound
on the MSE for the problem of recovery of gradient-sparse
signals. Unfortunately, due to high-dimensional integration,
MMSE estimators are computationally intractable for general
signals. By considering the Lévy signal model, we propose a
novel method for computing MMSE estimator based on the
belief-propagation (BP) algorithm on cycle-free factor graphs
[8]–[10].

The main contributions of this work are as follows:
• Bayesian formulation of the signal recovery problem

under the Lévy hypothesis for a general “signal+noise”
measurement model. With this formulation, we are able to
derive an equivalence between MAP estimators for Lévy
processes and some existing algorithms for the recovery
of sparse signals.

• Characterization of the MSE optimal solution and the
determination of performance bounds. We show that the
MMSE estimator can be computed directly with the BP
algorithm. The algorithm also obtains the marginals of
the posterior distribution, which allows us to estimate
the MSE of the reconstruction and provide confidence
intervals.

• Development of a novel frequency-domain message-
passing algorithm specifically tailored to the MMSE
estimation of Lévy processes. Some of the sparsest priors
considered here do not have closed-form probability
density functions. Indeed, they are represented in terms
of their characteristic function obtained by the Lévy-
Khintchine theorem [1], [2]. The frequency-domain algo-
rithm allows us to use the characteristic function directly
without any numerical inversion.

• Experimental evaluation and comparison with standard
solutions such as LMMSE, `1-minimization, and `

p

-
relaxation [11]. In particular, the availability of MMSE
allows us to benchmark these estimators on signals with
desired properties such as sparsity.
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. . .

. . .

1 2 3

4

n

Sparse Lévy
Process Sampling Componentwise

Measurement Channel

Available
Measurements

Unknown
Samples

Fig. 1. Signal model considered in this work. The continuous-domain
Lévy process x(t) is sampled, and the resulting vector z 2 Rm is passed
through a separable measurement channel py|z(y|z) to yield y 2 Rm. We
investigate the estimation of interpolated vectors x 2 Rn

, n � m, from noisy
measurements y.

B. Outline

The paper is organized as follows: In Section II, we in-
troduce our signal and measurement model. In particular, we
review the theory of Lévy processes and their connection to
sparse estimation. In Section III, we characterize the Bayesian
MAP and MMSE estimators. In Section IV, we illustrate the
connections between the MAP estimator for Lévy processes
and standard variational approaches. In Section V, we provide
closed-form formulae for evaluating the MMSE under the
assumption of AWGN. In Section VI, we present the belief
propagation algorithm as an efficient way to compute the
MMSE estimator. We then introduce a new frequency-domain
algorithm particularly well suited for Lévy processes. In
Section VII, we provide numerical experiments demonstrating
the applications of the method.

C. Notations

Throughout the paper, we typeset matrices in an uppercase
boldface, vectors in a lowercase boldface, and scalars in
italic typeface. Random and deterministic quantities are not
distinguished typographically. We use p

x

and p

y|x to indicate
probability distribution functions (pdf), and p̂

x

and p̂

y|x to
denote the corresponding characteristic functions. The pdf of
a Gaussian random variable x ⇠ N (µ, �

2
) will often be

denoted as G(x � µ; �

2
). The symbol d

= indicates equality
in distribution so that, for any two random variables, we have
that x

d

= y if Prob (x  a) = Prob (y  a) for all a 2 R.

II. SIGNAL AND MEASUREMENT MODEL

In this section, we describe the signal model summarized
in Figure 1. We first give a powerful, yet simple continuous-
domain stochastic formulation of the signal. The one-to-
one mapping between our model and the extended family
of infinitely divisible distributions is discussed. We finally
describe the measurement model and provide examples of
typical measurement channels.

A. Lévy Processes

Stochastic processes are often used to model random signals
with the Brownian motion and the Poisson process being
two most common examples. Lévy processes—often seen
as analogues of random walks in continuous time—extend
those two processes to a larger family of distributions. They
represent a fundamental and well-studied class of stochastic
processes [1], [2]. Let {x(t) : t � 0} be a continuous-time
stochastic process. It is called a Lévy process if

1) x(0) = 0 almost surely;
2) for each n 2 N and 0  t1 < t2 < · · · < t

n

< 1 the
random variables {x(t

k+1)� x(t

k

) : 1  k  n� 1} are
independent;

3) for each 0  t1 < t2 < 1, the random variable x(t2) �
x(t1) is equal in distribution to x(t2 � t1);

4) for all ✏ > 0 and for all t1 � 0

lim

t2!t1

Prob (|x(t2) � x(t1)| > ✏) = 0.

Together, Properties 2) and 3) are commonly referred to as the
stationary-independent-increments property, while Property 4)
is called the stochastic continuity.

One of the most powerful results concerning Lévy processes
is that they are in one-to-one correspondence with the class
of infinitely divisible probability distributions. The random
variable x is said to be infinitely divisible if, for any positive
n 2 N, there exist i.i.d. random variables y

(1)
, . . . , y

(n) such
that

x

d

= y

(1)
+ · · · + y

(n)
.

In other words, it must be possible to express the pdf p

x

as
the n-th convolution power of p

y

. In fact, it is easy to show
that the pdf of the increment u

t

= x(t + s) � x(s) of length
t of any Lévy process is infinitely divisible

u

t

d

= x(t)

d

= u

(1)
t/n

+ · · · + u

(n)
t/n

,

where each

u

(k)
t/n

= x

✓

kt

n

◆

� x

✓

(k � 1)t

n

◆

.

The increments u

(k)
t/n

are of length t/n and are i.i.d. by the
stationary-independent-increments property. Conversely, it has
also been proved that there is a Lévy process for each infinitely
divisible probability distribution [1].

The fundamental Lévy-Khintchine formula provides the
characteristic function of all infinitely divisible distributions:
p

u

is an infinitely divisible probability distribution if and only
if its characteristic function can be written as

p̂

u

(!) =E
⇥

e

j!u

⇤

= exp

⇣

ja! � 1
2b!

2

+

Z

R\{0}

�

e

j!z � 1 � jz! |z|<1(z)

�

v(z)dz

⌘

,

where a 2 R, b � 0, and where |z|<1 is an indicator function.
The function v � 0 is the Lévy density satisfying

Z

R\{0}
min

�

1, z

2
�

v(z)dz < 1.

The representation of p̂

u

by a triplet (a, b, v(·)) is unique.
In this paper, we limit our attention to even-symmetric Lévy
densities v(z) = v(�z), which results in the simplified Lévy-
Khintchine formula

p̂

u

(!) = exp

⇣

ja!� 1
2b!

2
+

Z

R\{0}

�

e

j!z � 1

�

v(z)dz

⌘

. (1)
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Fig. 2. Sample paths of Lévy processes discussed in this paper.

B. Examples of Lévy Processes

We now give examples of a few Lévy processes that are
particularly interesting for us. Sample paths of these processes
are summarized in Figure 2. Without loss of generality, we
assume an increment u = x(s) � x(s � 1) for some fixed
s � 0.

1) Brownian Motion: By setting a = 0 and choosing the
Lévy density v(z) = 0, we obtain the familiar Brownian mo-
tion that has stationary independent increments characterized
by

p̂

u

(!) = e

� 1
2 b!

2

, (2)

with b � 0. This implies that the increments of the resulting
Lévy process are Gaussian random variables with mean 0 and
variance b, which corresponds to u ⇠ N (0, b). We illustrate
in Figure 2(a) a single realization of a Brownian motion.

2) Compound Poisson Process: Let {z
k

: k 2 N} be a
sequence of i.i.d. random variables with distribution p

z

and
let n(t) ⇠ Poisson(�) be a Poisson process of intensity � >

0 that does not depend on any z

k

. The compound Poisson
process y is then defined as

y(t) =

n(t)
X

k=1

z

k

,

for each t � 0. This is a Lévy process obtained by setting the
parameter triplet to (0, 0, v(z) = �p

z

(z)), which results in the
characterization of increments

p̂

u

(!) = e

�(p̂z(!)�1)
, (3)

where p̂

z

is the Fourier transform of p

z

. On finite inter-
vals, the sample paths of the process are piecewise-constant
(Figure 2(b)), while the size of the jumps is determined by
p

z

[2]. Compound Poisson processes are piecewise-constant
signals for which TV-like estimation algorithms are well
suited [12]. The parameter � controls the sparsity of the signal;

it represents the rate of discontinuities. Compound Poisson
processes are of special importance in Lévy-Itō decomposition
of Lévy processes. The latter decomposition expresses any
Lévy process as the sum of three processes, two of which are
Brownian motion and Compound Poisson. More details are
provided in Appendix A.

3) Laplace Increment Process: The Lévy process with
Laplace-distributed increment u is obtained by setting the
parameter triplet to

�

0, 0, v(z) = e

��|z|
/|z|
�

, which results in

p̂

u

(!) =

�

2

�

2
+ !

2
, (4)

where � > 0 is the scale parameter of the Laplace distribution.
To obtain the characteristic function (4), we remark that

log (p̂

u

(!)) =

Z

R\{0}

�

e

j!z � 1

�

e

��|z|

|z| dz

= 2

Z 1

0
(cos (!z) � 1)

e

��z

z

dz.

Then, by differentiation with respect to ! and integrating
back using the condition p̂

u

(0) = 1, we obtain (4). The
corresponding pdf is

p

u

(u) =

�

2

e

��|u|
. (5)

An interesting observation is that the Bayesian MAP inter-
pretation of the TV regularization method with a first-order
finite-differences operator inherently assumes the underlying
signal to be a Lévy process with Laplace increments. We give
in Figure 2(c) an illustration of such process.

4) Lévy Flight Process: Stable random variables are such
that a linear combination of two independent such random
variables results in a third stable random variable [1]. In the
symmetric case, they are often referred to as symmetric ↵-
stable random variables and written as u ⇠ S↵S, where
0 < ↵ < 2 is the stability parameter. It is possible to
generate a Lévy process with ↵-stable increments by setting
�

0, 0, v(z) = c

↵

/|z|1+↵

�

, which results in

p̂

u

(!) = e

�⇢|!|↵
, (6)

with ⇢ > 0 and 0 < ↵ < 2. It has been recently shown
that such heavy-tail distributions result in highly compressible
sequences [5]. A sample signal generated from a Cauchy
increment Lévy flight, which corresponds to the ↵-stable
process with ↵ = 1, is illustrated in Figure 2(d).

C. Innovation Modeling

Recently, an alternative system-theoretic formulation of
Lévy processes was proposed in the context of the general
theory of sparse stochastic processes [3], [4]. The authors
specify the Lévy process {x(t) : t � 0} as the solution of
the stochastic differential equation

d

dt

x(t) = w(t), (7)

where the differentiation is interpreted in the weak sense of
distributions. The process w is a non-Gaussian white noise
referred to as continuous-time innovation process. According
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to the formalism developed in [3], the Lévy process is then
generated by integrating the white noise according to

x(t) =

Z

t

0
w(t

0
)dt

0
, (8)

which provides a convenient linear-system interpretation. The
delicate aspect is that the integrator is not BIBO stable and
the white noise does not admit a classical interpretation as a
function. The result confirms that, for all positive k 2 N, the
quantities

u

k

= x(k) � x(k � 1) = Ddx(k)

=

Z

k

k�1
w(t)dt = hrect

�

·� k +

1
2

�

, w(·)i
(9)

are i.i.d. random variables that can be seen as discrete innova-
tions. The symbol h·, ·i denotes an inner product between two
functions, Dd is the finite-difference operator, and rect is the
rectangular function. The fundamental observation is that the
increment is obtained by applying the discrete version of the
derivative to x(t), in an attempt to emulate (7) using discrete
means only.

D. Measurement Model

Consider the measurement model illustrated in Figure 1. The
vector z 2 Rm contains uniformly sampled values of x(t)

z

i

= x(iT

s

), i 2 [1 . . . m], (10)

where T

s

> 0 is the sampling interval. The components of y

are generated by a separable measurement channel given by
the conditional probability distribution

p

y|z(y | z) =

m

Y

i=1

p

y|z(yi | zi). (11)

The measurement channel models distortions affecting the
signal during the acquisition process. This paper addresses
the computation of the estimator bx of the vector x 2 Rn

containing the samples of the original signal x on some
uniform grid

x

k

= x(kT

e

), k 2 [1 . . . n], (12)

where T

e

> 0 is the interpolation interval. We wish to mini-
mize the squared-error of the reconstruction in the situations
when T

s

= m

s

T

e

for some positive m

s

2 N. This implies
that in general n � m. The special case n = m reduces
the problem to signal denoising. In the sequel, we assume
T

s

(m � 1) = T

e

(n � 1) and set T

e

= 1 to simplify the ex-
pressions. In particular, this implies that for any m

s

= T

s

/T

e

we have z

i

= x

ms(i�1)+1 for all i 2 [1 . . . m].
The generality of measurement channel allows us to han-

dle both signal-dependent and independent distortions. Some
common noise models encountered in practice are

1) Additive White Gaussian Noise (AWGN): The mea-
surements in the popular AWGN noise model are given by
y = z + n, where n 2 Rm is a signal independent-Gaussian
vector with i.i.d components n

i

= y

i

� z

i

⇠ N (0, �

2
). The

transitional probability distribution then reduces to

p

y|z(y | z) = G(y � z; �

2
). (13)

2) Scalar Quantization: Another common source of signal
distortion is the analog-to-digital converter (ADC). When the
conversion corresponds to a simple mapping of the analog
voltage input to some uncoded digital output, it can be
modeled as standard AWGN followed by a lossy mapping
Q : R ! C. The nonlinear function Q is often called a
K-level scalar quantizer [13]. It maps the K-partitions of
the real line

�

Q

�1
(c

i

) : i = 1, . . . , K

 

✓ R into the set of
discrete output levels C = {c

i

: i = 1, . . . , K}. This channel
is signal-dependent. It is described in terms of the transitional
probability distribution

p

y|z(y | z) =

Z

Q�1(y)
G(z

0 � z; �

2
)dz

0
, (14)

where Q

�1
(y) = {z 2 R : Q(z) = y} denotes a single parti-

tion.

III. BAYESIAN FORMULATION

We now specify explicitly the class of problems we wish to
solve and identify corresponding statistical estimators. Con-
sider the vector u 2 Rn obtained by applying the finite-
difference matrix D to x in (12). Then, from the stationary
independent increments property of Lévy processes the com-
ponents

u

k

= [Dx]

k

= x

k

� x

k�1, (15)

of the vector u are realizations of i.i.d. random variables
characterized by the simplified Lévy-Khintchine formula (1).
Note that, from the definition of the Lévy process we have
x0 = 0. We construct the conditional probability distribution
for the signal x given the measurements y as

p

x|y (x |y) / p

y|x (y |x) p

x

(x)

/
m

Y

i=1

p

y|z(yi | zi)
n

Y

k=1

p

u

([Dx]

k

),

(16)

where we use / to denote identity after normalization to
unity. The distribution of the whitened elements p

u

is, in
principle, obtained by taking the inverse Fourier transform
p

u

(u) = F�1 {p̂
u

}(u); however, it does not necessarily admit
a closed-form formula. The posterior distribution (16) of the
signal provides a complete statistical characterization of the
problem. In particular, the MAP and MMSE estimators of x

are specified by

b

xMAP = argmax

x2Rn

�

p

x|y (x |y)

 

(17)

b

xMMSE = E [x |y]. (18)

Finding efficient methods to evaluate (17) and (18) is a
common challenge encountered in signal processing.

IV. MAP ESTIMATION

An estimation based on the minimization of some cost func-
tional is a popular way of obtaining the MAP estimator bxMAP.
The availability of efficient numerical methods for convex and
nonconvex optimization partially explain the success of such
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methods [12], [14]–[16]. The MAP estimator in (17) can be
reformulated as

b

xMAP = argmax

x2Rn

�

p

x|y (x |y)

 

= argmin

x2Rn

�

� log

�

p

x|y (x |y)

� 

= argmin

x2Rn
{D (x,y) + R (x)},

(19a)

where

D (x,y) = �
m

X

i=1

log

�

p

y|z(yi | zi)
�

, (19b)

R (x) = �
n

X

k=1

log (p

u

([Dx]

k

)). (19c)

The term D(·) is the data term and R(·) the regularization
term.

In the AWGN, model the MAP estimation reduces to the
popular regularized least-squares minimization problem

b

xMAP = argmin

x2Rn

1
2 ky � zk2 + �

2
n

X

k=1

�

u

([Dx]

k

), (20)

where z 2 Rm is given in (10) and �

u

(x) = � log (p

u

(x)) is
the potential function.

The estimator in (20) clearly illustrates the connections
between the standard variational methods and our stochastic
model. In particular, in the framework of the Lévy process,
the Brownian motion yields the classical Tikhonov regularizer.
The Lévy process with Laplace increments provides the `1-
based TV regularizer. Finally, the Lévy flight process results
in a log-based regularizer that is linked to the limit case of
the `

p

relaxation as p tends to zero [11]. Such regularizers
have been shown to be effective in several problems of the
recovery of sparse signals [12], [15]. In [17] the authors
have proposed an efficient method for solving the regularized-
least-squares-based MAP denoising of Lévy processes. We
also point out that the MAP estimation of compound-Poisson
processes yields a trivial solution due to a point mass at zero.

V. MMSE ESTIMATION IN AWGN
In this section, we present some theoretical results related

to MMSE denoising. For detailed derivation of the results, we
refer the reader to Appendix B. Consider AWGN denoising
problem

y = z + n with z = x, (21)

where each noise component n

i

⇠ N (0, �

2
). Then, for any

distribution on x, it is possible to characterize the MMSE
estimator as

b

xMMSE = y + �

2 r log p

y

(y), (22)

where r denotes the gradient and p

y

is the pdf of the noisy
vector y [18], [19]. Note that p

y

is given by the convolution
p

y

= p

x

⇤ p

n

, where p

x

is the prior and p

n

is the pdf of the
AWGN. Then, MMSE of the estimation problem is given by

MMSE(n) =

1

n

E
⇥

kx� bxMMSEk2
⇤

= �

2
+

�

4

n

Z

p

y

(y)� log p

y

(y)dy,

(23)

. . .
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Fig. 3. Factor-graph representation of the posterior distribution (16) with
ms = 2. In the graph, square factor nodes represent the probability densities
and circled variable nodes represent the unknowns. Functions µ

l
2 and µ

r
2

represent beliefs at the variable node 2.

where � is the Laplacian with respect to y.
Although elegant, Equations (22) and (23) are not tractable

for arbitrary distributions on x. In the special case of Brownian
motion, where the increments are Gaussian random variables,
the MMSE estimator reduces to the well-known Wiener filter,
which is commonly referred to as linear minimum mean-
square error (LMMSE) estimator. As described in Appendix B,
by using the Central Limit theorem argument in the Karhunen-
Loève Transform (KLT) domain, it is possible to obtain the
following asymptotic description of the MMSE

lim

n!1
MMSE(n) =

�

2

q

1 + 4

�

2

�

2
u

. (24)

In general, (24) is not equivalent to the MMSE for non-
Gaussian increments; however it still corresponds to the per-
formance of LMMSE estimator.

VI. MESSAGE PASSING ESTIMATION

A. Exact Formulation

In this section, we specify the MMSE estimator bxMMSE

in (18) for the signals under the Lévy-process model. Unfor-
tunately, due to the high-dimensionality of the integral, this
estimation is intractable in the direct form. However, several
computational methods exist for computing this integral. We
adopt the sum-product belief-propagation (BP) [8] method,
which efficiently approximates the computationally intractable
direct marginalization of the posterior (16). The BP-based
message-passing methods have successfully been used in
numerous inference problems in statistical physics, computer
vision, channel coding, and signal processing [8]–[10], [20]–
[25].

In order to apply the BP, we construct the bipartite factor-
graph G = (V, F, E), structured according to the posterior
distribution in (16). We illustrate in Figure 3 an example of
a factor-graph for m

s

= 2. The graph consists of two sets of
nodes, the variable nodes V = {1, . . . , n} (circles), the factor
nodes F = {1, . . . , n + m} (squares), and a set of edges E

linking variables to the factors they participate in. To introduce
the BP algorithm, we define the functions µ

l

i

and µ

r

i

, which
denote the messages exchanged along the edges of the graph.
These messages—often referred to as beliefs—are in fact pdfs
representing the desirable state of the variable node i. We also
define for all i 2 [1 . . . n] and j = 1+(i�1)/m

s

the function

⌘

i

(x) =

(

p

y|z(yj |x), when j 2 N
1, otherwise.

(25)
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Whenever the component x

i

has a corresponding measure-
ment, the function ⌘

i

is equivalent to the channel pdf. Other-
wise, ⌘

i

is equivalent to the constant function.
Given the measurements y 2 Rm and the functions ⌘

i

and
p

u

, the steps of the BP estimation are:
1) Initialization: Set

µ

l

1(x) = p

u

(x), (26a)
µ

r

n

(x) = 1. (26b)

2) Message Updates: For i = 1, . . . , n � 1, compute

µ

l

i+1(x) /
Z

R
p

u

(x � z)⌘

i

(z)µ

l

i

(z)dz, (27a)

µ

r

n�i

(x) /
Z

R
p

u

(z � x)⌘

j

(z)µ

r

j

(z)dz, (27b)

where j = n� i+1. The symbol / denotes identity after
normalization to unity. Since the pdf p

u

is symmetric, the
expressions can be rewritten in terms of the convolutions
µ

l

i+1 / p

u

⇤ ⌘

i

µ

l

i

and µ

r

n�i

/ p

u

⇤ ⌘

j

µ

r

j

.
3) Result: For i = 1, . . . , n, compute

[

b

xMMSE]

i

=

Z

R
xp

xi|y (x |y) dx, (28a)

where the marginal pdf is obtained by

p

xi|y (x |y) / µ

l

i

(x)µ

r

i

(x)⌘

i

(x). (28b)

The proposed update rules recursively marginalize the poste-
rior distribution, reducing intractable high-dimensional inte-
gration into 2n convolutions. It is well-known that BP gives
exact marginal probabilities for all the nodes in any singly
connected graph. Consequently, for our problem the solution
of the algorithm coincides with bxMMSE.

B. Fourier-Domain Alternative

The BP algorithm presented in Section VI-A assumes
availability of a closed-form expression for the pdf p

u

. Unfor-
tunately this form is often unavailable, since the distribution
is defined by its characteristic function p̂

u

obtained by the
Lévy-Khintchine formula (1). When the general shape of the
pdf is unknown, a naı̈ve numerical evaluation of the inverse
Fourier-transform of the characteristic function can lead to
unexpected results. As an example, consider the compound
Poisson process. The characteristic function (3), describing
the distribution of the increments, does not generally admit
a closed-form expression of its inverse Fourier transform.
Moreover, it results in a pdf containing a probability mass
(a Dirac delta function) at zero, which needs to be taken into
account explicitly for a correct numerical inversion.

Fortunately, the BP algorithm presented above can readily
be performed in the frequency domain. The message-update
equations are obtained by the convolution property of the
Fourier transform, which amounts to switching the role of
multiplications and convolutions in (27) and (28b). The final
estimation step is also simplified by applying the moment
property

Z

R
x

n

f(x)dx = j

n

d

n

d!

n

ˆ

f(!)

�

�

�

�

!=0

, (29)

where ˆ

f(!) =

R

R f(x)e

�j!x

dx is the Fourier transform of f .
1) Initialization: Set

µ̂

l

1(!) = p̂

u

(!), (30a)
µ̂

r

n

(!) = �(!), (30b)

where � is the Dirac delta function.
2) Message updates: For i = 1, . . . , n � 1, compute

µ̂

l

i+1(!) / p̂

u

(!) · (⌘̂
i

⇤ µ̂

l

i

)(!), (31a)
µ̂

r

n�i

(!) / p̂

u

(!) · (⌘̂
j

⇤ µ̂

r

j

)(!), (31b)

where j = n� i+1. The symbol / denotes identity after
normalization by the zero frequency component. Note
that, functions ⌘̂

i

represent the Fourier transform of (25).
3) Result: For i = 1, . . . , n, compute

[

b

xMMSE]

i

= j

d

d!

p̂

xi|y (! |y)

�

�

�

�

!=0

, (32a)

where the characteristic function p̂

xi|y (! |y) of the
marginalized posterior is obtained by

p̂

xi|y (! |y) /
�

µ̂

l

i

⇤ µ̂

r

i

⇤ ⌘̂

i

�

(!). (32b)

Note that (32a) and (32b) can be evaluated with a single
integral. This is achieved by reusing convolutions in (31) and
evaluating the derivative only at zero.

C. Implementation

In principle, the BP equations presented above yield the
exact MMSE estimator for our problem. However, due to
the existence of continuous-time integrals in the updates,
they cannot be implemented in the given form. To obtain a
realizable solution, we need to choose some practical discrete
parameterization for the messages exchanged in the algorithm.
The simplest and the most generic approach is to sample the
functions and represent them on a uniform grid with finitely
many samples. In our implementation, we fix the support
set of the functions to [�N

�,✏

�, N

�,✏

�]Z. ✏ > 0 controls the
truncation. We keep only samples such that f(x) � ✏, thus, the
total number of samples for representing the function depends
on both the truncation parameter ✏ and on the sampling
step � > 0. It is given by M

�,✏

= 2N

�,✏

+ 1. The proper
parameter values depend on the distribution to represent and
on the measurements y. Then, both time- and frequency-
domain versions can be obtained by approximating continuous
integrals by standard quadrature rules. In our implementation,
we use Riemann sum to approximate the integrals.

VII. EXPERIMENTAL RESULTS

In this section, we present several experiments with the goal
of comparing various signal-estimation methods. The perfor-
mance of the estimator is judged based on MSE reduction
given by

MSE = 10 log10

✓

1

n

kx� bxk2
◆

, (33)

where x,

b

x 2 Rn.
We concentrate on the four Lévy processes discussed in

Section II-B and set the parameters of these processes as
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Fig. 4. AWGN denoising of (a) Brownian motion, (b) compound Poisson, (c) Lévy process with Laplace increments, (d) Lévy flight processes. We compare
LMMSE, TV regularization, Log regularization, and MMSE. (a) Since linear estimation is optimal for Gaussian signals, both LMMSE and MMSE yield
identical results. (b) The excellent performance of TV regularization is confirmed for piecewise-constant signals. (c) TV regularization results in a MAP
estimator, which leads to a suboptimal MSE performance. (d) Log regularization amounts to the MAP estimator. For such processes, linear estimators
over-smooth the edges resulting in poor performance.

• Brownian Motion: The increments are generated from
a standard Gaussian distribution with u

k

= [Dx]

k

⇠
N (0, 1).

• Compound-Poisson Process: We concentrate on sparse
signals and set the mass probability to P (u

k

= 0) =

e

��

= 0.9. The size of the jumps follow the standard
Gaussian distribution.

• Laplace Increment Process: The increments are generated
from the Laplace distribution of scale � = 1.

• Lévy Flight: We set the distribution of the increments to
be Cauchy (↵ = 1) with scale parameter ⇢ = 1.

A. AWGN Denoising

In the first set of experiments, we consider the denoising of
Lévy processes in AWGN. We compare the performance of
several popular estimation methods over a range of noise levels
�

2. In Figures 4(a)–(d), we perform 1000 random realization
of the denoising problem for each value of �

2 and plot the
average MSE reduction after estimation. The signal length is
set to n = m = 200. The proposed message-passing estimator

is compared with the regularized least-squares estimators

b

x = argmin

x2Rn

1
2 ky � xk2 + ⌧

n

X

k=1

�

u

([Dx]

k

), (34)

where D is the finite-difference matrix and ⌧ > 0 is the regu-
larization parameter optimized for the best MSE performance.

The curve labeled LMMSE corresponds to the MSE optimal
linear estimator, which can be obtained by setting the potential
function �

u

(x) = x

2 [26]. The TV method corresponds to
the potential function �

u

(x) = |x| and can be efficiently
implemented by using the FISTA algorithm described in [16].
The Log estimator corresponds to the potential function
�

u

(x) = log

�

x

2
+ ✏

�

, where the parameter ✏ > 0 controls the
sparsity of the signal. Log-based regularizers have been shown
to outperform traditional `1-based regularizers in various ap-
plications [12], [15]. In our experiments, we fix ✏ = 1, which
corresponds to the MAP estimator for the Lévy flight process
with Cauchy increments. Efficient implementation of the Log-
based denoising was obtained by using the algorithm [17].

It is well known that the LMMSE estimator is linear and
optimal for Brownian motion. In Figure 4(a), it is precisely
matched by the message-passing MMSE estimator. Moreover,



8 MMSE ESTIMATION OF SPARSE LÉVY PROCESSES

TABLE I
MMSE PREDICTION.

Prior Noise (�2) Oracle MSE Predicted MSE
Gaussian 0.1 �10.74 dB �10.73± 5.4⇥ 10�5 dB

1 �3.54 dB �3.49± 5.9⇥ 10�5 dB
10 1.85 dB 1.95± 6.5⇥ 10�5 dB

Cauchy 0.1 �10.37 dB �10.34± 0.03 dB
1 �1.54 dB �1.53± 0.11 dB

10 6.15 dB 6.22± 0.21 dB

we have observed that—even for n = 200—the asymptotic
prediction (24) closely matches the simulation results (within
0.06 dB). Since the curve for the asymptotic prediction is
hidden under LMMSE and MMSE, we have omitted it from
Figure 4(a). The worst performance is observed for TV
regularization, which yields piecewise-constant solutions by
removing small variations of the signal. The performance
of the Log-based method is significantly better; it preserves
important details by allowing small variations of the signal.

In Figure 4(b), we observe excellent MSE performance of
TV for compound Poisson processes over many noise levels.
It is well known that TV estimators yield a piecewise-constant
solution, which makes it ideally matched for such signals. In
this experiment, we have also measured the average running
times for all the algorithms. For example, for �

2
= 1 the

average estimation times for LMMSE, TV, Log, and MMSE
were 0.03, 0.05, 0.01, and 0.29 seconds, respectively. The
theoretical implications of the compound Poisson process is
extensively discussed in [7].

In Figure 4(c), we observe a surprisingly poor performance
of TV, which corresponds to the MAP estimator for Lévy pro-
cesses with Laplace increments. This highlights the fact that,
in some situations, a MAP estimator can result in suboptimal
MSE performance.

In Figure 4(d), we observe that LMMSE performs poorly
for a Lévy flight process. It fails to preserve signal edges,
which results in a suboptimal MSE performance for all noise
levels. Both TV and Log methods are known to be edge-
preserving. In fact, they obtain solutions close to the MMSE
estimator (within 0.2 dB for Log). For such signals, Log-based
regularizers yield the MAP estimator.

The message passing algorithm considered in this paper
computes the marginals of the posterior distribution. The
algorithm yields the MMSE estimator by finding the mean
of the marginalized distribution. But the posterior distribution
actually provides much more information. For example, the
algorithm can predict the MSE of the reconstruction by
computing the variance of the posterior

Var [x

k

|y] = E
⇥

x

2
k

|y
⇤

� ([

b

xMMSE]

k

)

2
,

where [

b

xMMSE]

k

is given in (32). The second moment can be
evaluated by using the moment property (29).

The capability to predict the MSE of the reconstruction
is useful to complement the solution of the estimator with
a confidence interval. In Table I, the MSE predicted by the
algorithm is presented for Gaussian and Cauchy increment
processes. For comparison, we also provide the oracle MSE
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Fig. 5. Ten-fold interpolation of Lévy processes from AWGN measurements.
From top to bottom: (a) Brownian motion; (b) compound Poisson process; (c)
Lévy process with Laplace increments; (d) Lévy flight process. Surprisingly,
for all priors the optimal estimator appears to be a piecewise linear function.

obtained by comparing the true signal x with bx. The average
predicted MSE is obtained from 1000 random realizations of
the problem. The table also provides the standard deviation
of the predicted MSE values around the mean. This illustrates
the accuracy of the predicted MSE values across noise levels.

B. Signal Interpolation

In Figure 5, we illustrate the interpolation of Lévy processes
from noisy measurements. We assume AWGN of variance
�

2
= 1 and set the interpolation rate to m

s

= T

s

/T

e

= 10.
Given 10 noisy measurements, this results in 91 estimated
values. In the topmost graph, the signal is a Brownian motion
with increments of unit variance. The second graph illustrates
the interpolation of a compound Poisson process. The third
graph illustrates the interpolation of a Lévy process with
Laplace increments. Finally, the bottom-most graph illustrates
the interpolation of a Lévy flight. An interesting observation
is that the MSE optimal interpolator seems to yield piecewise
linear results independently of the process considered. In fact,
it is known that, for the Brownian motion, piecewise-linear
interpolation is optimal [27]. Note that this does not imply
that the estimator is itself linear—in general, it is not.

In Table II, we compare the MSE performance of message-
passing estimators with linear estimators for the interpolation
problem with m

s

= 2. Each value in the table is obtained by
averaging over 1000 problem instances. Note that the Lévy
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TABLE II
INTERPOLATION OF LÉVY PROCESSES: MSE FOR DIFFERENT NOISE

LEVELS.

Prior Noise (�2) LMMSE MMSE
Gaussian 0.1 dB �4.9315 dB �4.9315 dB

1 dB �1.3866 dB �1.3866 dB
10 dB 3.4221 dB 3.4221 dB

Compound Poisson 0.1 dB �11.3233 dB �12.7016 dB
1 dB �6.3651 dB �6.8164 dB

10 dB �1.5267 dB �1.6012 dB
Laplace 0.1 dB �2.4691 dB �2.4724 dB

1 dB 0.2644 dB 0.2279 dB
10 dB 4.9509 dB 4.9406 dB
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Fig. 6. Estimation of the compound Poisson process from quantized
measurements. We compare the standard LMMSE against MMSE, thereby
illustrating the suboptimality of standard linear reconstructions.

flight process was omitted from the table. For the interpolation
problem, the average estimation MSE for this process is not
defined and can only be characterized conditioned on a given
y.

C. Estimation from Quantized Samples

We next consider the highly non linear problem of estimat-
ing Lévy processes from quantized measurements (14). We
generate the compound Poisson process of length n = 200.
An AWGN of variance 0.1 is added to the signal prior to
quantization. The quantizer is uniform with granular region of
length 2kyk1. It is centered at the origin.

In Figure 6, we compare the MSE performance of the
message-passing estimator with the standard LMMSE estima-
tor. The parameter ⌧ of the linear estimator was optimized for
the best MSE performance. In this figure, we plot the mean of
the MSE from 1000 problem instances for several quantization
levels K. For such non linear measurement channels, the
message-passing estimator yields significant improvements
in the reconstruction performance over the standard linear
estimator.

VIII. CONCLUSION

We have presented an in-depth investigation of the Lévy-
process framework for modeling signals with sparse deriva-
tives. We have also characterized the corresponding statistical

estimators. Lévy processes are fundamental members of a
recently proposed continuous-domain stochastic framework
for modeling sparse signals. We have presented a simple
message-passing algorithm for the MMSE estimation of Lévy
processes from noisy measurements. The proposed algorithm
can handle a large class of priors, including those that do not
have closed-form pdfs. Moreover, it can incorporate a large
class of noise distributions, provided that the noise components
are independent among themselves. The algorithm has also the
ability to handle signal-dependent noise. Due to the tree-like
structure of the underlying factor graph, when the messages
are continuous-time functions the message-passing algorithm
obtains the MMSE estimator of the signal. This motivates its
application as a benchmark to judge the optimality of various
existing gradient-based estimators including TV- and Log-
regularization algorithms.

APPENDIX A
LÉVY-ITŌ DECOMPOSITION

For a Lévy process x(t), let p̂

x(t)(!) denote the charac-
teristic function of the random variable x(t). Furthermore,
let (a, b, v(·)) be the Lévy-Khintchine triplet associated with
the random variable x(1), which has the same distribution as
x(t + 1) � x(t), for all t.

For arbitrary integers m, n, the two representations of the
random variable x(m) written as

x(m) =

n�1
X

i=0

x

⇣

(i + 1)

m

n

⌘

� x

⇣

i

m

n

⌘

=

m�1
X

i=0

x(i + 1) � x(i) (35)

show that
⇣

p̂

x(m
n )(!)

⌘

n

=

⇣

p̂

x(1)(!)

⌘

m

. (36)

By using the continuity property in the definition of Lévy
processes, we can further generalize (36) to

p̂

x(t)(!) =

⇣

p̂

x(1)(!)

⌘

t

. (37)

This suggests the Lévy-Khintchine triplet
�

t a, t b, t v(·)) for
the random variable x(t). The triplet can be decomposed as

(ta, tb, 0)

| {z }

BM

+

�

0, 0, tv1(·)
�

| {z }

CP

+

�

0, 0, tv2(·)
�

| {z }

PJ

, (38)

where v1 is an absolutely integrable function, v2 is a pure
singular distribution, and v = v1+v2. The latter decomposition
is achieved by adapting Lebesgue’s decomposition theorem
for distributions corresponding to measures. In (38), the term
BM reveals the Lévy-Khintchine triplet of a Brownian motion
with non-zero mean. Similarly, since v1 is integrable, the term
CP reflects a compound Poisson process. The last term PJ,
due to singular nature of v2, is referred to as the pure jump
component. Note that the decomposition (38) is equivalent to
decomposing the process itself to three independent processes
as

x(t)

d

= x

BM

(t) + x

CP

(t) + x

PJ

(t), (39)

which is known as the Lévy-Itō decomposition.
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APPENDIX B
MMSE ESTIMATION OF LÉVY PROCESSES

A. Derivation of MMSE formula (23)

To prove (23), we start by the definition of MMSE and we
apply the explicit form of bxMMSE = E

x|y {x} to simplify the
equations.

n MMSE(n) = E
n

�

�

x� E
x|y {x}

�

�

2
o

= E
n

�

�

x� y � E
x|y {x� y}

�

�

2
o

= E
n

kx� yk2
o

� E
y

n

�

�E
x|y {x� y}

�

�

2
o

(22)
= n�

2 � �

4E
y

�

kr log p

y

(y)k2
 

= n�

2 � �

4

Z

rT
p

y

(y)r log p

y

(y)dy

= n�

2
+ �

4

✓

Z

p

y

(y)� log p

y

(y)dy

�
n

X

i=1

Z

Rn�1

@

@y

i

p

y

(y)

�

�

�

�

1

yi=�1

dy

dy

i

◆

= n�

2
+ �

4

Z

p

y

(y)� log p

y

(y)dy. (40)

B. Derivation of MMSE Estimator for Brownian Motion

If x is an n-dimensional Brownian motion, we can write
it as x = D

�1
u, where u is an n-dimentional random

vector with distribution N (0, �

2
u

I

n

). Thus, the distribution of
y would be N (0, �

2
I

n

+ �

2
u

D

�1
D

�T
). Now, according to

(22) we have,

b

xMMSE = y + �

2r log p

y

(y) = y + �

2rp

y

(y)

p

y

(y)

= y � �

2
�

�

2
I + �

2
u

(D

T
D)

�1
��1

y

=

⇣

I

n

� �

2
�

�

2
I + �

2
u

(D

T
D)

�1
��1
⌘

y. (41)

This is the so called Winner filter.
Notice that for any Levy process for which the variance of

the steps is �

2
u

, this estimator gives the minimum MSE among
all linear estimators (LMMSE estimator).

C. KLT of Finite-Variance Lévy Processes

While the increments are stationary, the actual Lévy pro-
cesses are not, which complicates their analysis. The autocor-
relation function in the finite-variance case is

E [(x(t1) � E [x(t1)]) (x(t2) � E [x(t2)])]

=

c

2

(|t1| + |t2|� |t2 � t1|) , (42)

where c is a constant [27]. Thus, if we consider the vector
x containing samples of a normalized Lévy process with
increments of unit variance, the covariance matrix of x would
be

E
⇥

xx

T
⇤

= C =

�

D

T
D

��1
, (43)

where, for all i, j 2 [1 . . . n] the components c

ij

= [C]

ij

are
given by

c

ij

=

h

�

D

T
D

��1
i

ij

= min{i, j}. (44)

We are interested in finding the eigenvalues of C�1, where

C

�1
= D

T
D =

8

>

>

>

<

>

>

>

:

2, i = j 6= n

1, i = j = n

�1, |i � j| = 1

0, otherwise.

(45)

Then, by writing the eigenvalue equation of the matrix C as

C

�1
v = �v, (46)

where v = [v1 · · · vn]

T, we obtain the recursive set of
equations
8

>

<

>

:

2v1 � v2 = �v1

�v

i�1 + 2v

i

� v

i+1 = �v

i

, for i = 2, . . . , n � 1

�v

n�1 + v

n

= �v

n

.

(47)

The solution of these equations is given by

v

i

=

1

p

�(� � 4)

 

✓

2��+
p

�(��4)

2

◆

i

�
✓

2���
p

�(��4)

2

◆

i

!

(48)

for i = 1, . . . , n. Finally, by plugging (48) into (47) and
performing some algebraic manipulations, we obtain

� = 4 sin

2

✓

⇡

2

2k � 1

2n + 1

◆

(49)

for k = 1, . . . , n. The entries of the corresponding eigenvec-
tors v

k

=

⇥

v

k

1 . . . v

k

n

⇤T are given by

v

k

i

=

2p
2n + 1

sin

✓

2k � 1

2n + 1

i⇡

◆

, (50)

for k = 1, . . . , n.

D. MMSE of Estimation of Brownian Motion or Equivalently
Performance of LMMSE

MMSE estimator for Brownian motion or the LMMSE
estimator for any finite variance Levy process is equivalent
to the entry-wise MMSE in the KLT domain. In KLT domain
we have

˜

y = V

T
y = ⇤

� 1
2
V

T
u + V

T
n = ⇤

� 1
2
˜

u +

˜

n. (51)

where V =

⇥

v

1| · · · |vn

⇤

and ⇤ = diag(�1, . . . , �n

). No-
tice that since u and n have distributions N (0, �

2
u

I

n

) and
N (0, �

2
I

n

), respectively, and V is a unitary matrix, ˜

u and ˜

n

are also distributed as N (0, �

2
u

I

n

) and N (0, �

2
I

n

).
Now, the MSE of estimating the i

th-entry of ⇤

� 1
2
˜

u from
the i

th-entry of ˜

y, simply is �

2
u

/

⇣

�

2
u

�

2 + �

i

⌘

. Thus, we have

MMSE(n) =

1

n

n

X

i=1

�

2
u

�

2
u

�

2 + 4 sin

2
⇣

⇡

2
2i�1
2n+1

⌘

. (52)



KAMILOV et al.: MMSE ESTIMATION OF SPARSE LÉVY PROCESSES 11

If we tend n to infinity, we get

lim

n!1
MMSE(n) =

Z 1

0

�

2
u

�

2
u

�

2 + 4 sin

2
�

⇡

2 t

�

dt

=

�

2

q

1 + 4

�

2

�

2
u

. (53)
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