
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. ?, NO. ?, MONTH YEAR 1

Low Rank and Sparse Decomposition for Image
and Video Applications

Nematollah Zarmehi, Student Member, IEEE, Arash Amini, Senior Member, IEEE, and Farokh Marvasti, Senior
Member, IEEE

Abstract—The matrix decomposing into a sum of low-rank
and sparse components has found extensive applications in many
areas including video surveillance, computer vision, and medical
imaging. In this paper, we propose a new algorithm for recovery
of low rank and sparse components of a given matrix. We have
also proved the convergence of the proposed algorithm. The
simulation results with synthetic and real signals such as image
and video signals indicate that the proposed algorithm has a
better performance with lower run-time than the conventional
methods.

Index Terms—Background modeling, Gradient Projection
(GP), low rank recovery, sparse, smoothed `0 norm, video, video
surveillance.

I. INTRODUCTION

THE decompotion of a matrix into low-rank and sparse
(sometimes referred to as noise) components is used in

various applications such as background extraction in video
surveillance [1], [2], removing shadows and specularities from
face images [3]–[5], data compression [6], matrix rigidity
in computational complexity [7], link prediction in social
networks [8], and subspace clustering [9]. A common math-
ematical model in these applications is to assume a low-rank
matrix Lo ∈ Rm×n for the signal of interest which is corrupted
by a sparse (noise) matrix Eo ∈ Rm×n:

Y = Lo + Eo, Y ∈ Rm×n, (1)

where Y is the available data matrix. The recovery problem
here refers to extracting Lo and Eo from their mixture Y.
Oftentimes, the primary goal is to achieve an estimate of the
low-rank component Lo; however, the sparse component Eo

might also carry some information such as the moving objects
in the video surveillance example. As the noise component is
not necessarily Gaussian, the conventional recovery techniques
based on Tikhonov regularizers [10] are no longer applicable
here. Further, we assume that the rank of Lo and the sparsity
number of Eo are unknown.

A. Approach

Considering the data model in (1), this paper proposes an
algorithm for recovery of low rank and noise components of

Manuscript received on December xx, 2017.
The authors are with the Advanced Communication Research Institute

(ACRI), Electrical Engineering Department, Sharif University of Technol-
ogy, Tehran, Iran. (e-mail: zarmehi n@ee.sharif.edu, aamini@sharif.edu, mar-
vasti@sharif.edu).

a given matrix Y by suggesting an optimization problem that
approximates the following optimization problem:

P0 : argmin
L,E

rank(L) + λ‖E‖0,

subject to Y = L + E,
(2)

where rank of L is number of non-zero Singular Values (SVs)
of L, ‖E‖0 denotes the entry-wise `0-(pseudo) norm of the
noise matrix E. The noise component E is assumed to be
sparse; however, no further information about its support set
or the distribution of its non-zero elements is available.

B. Related Works

Principal Component Analysis (PCA) [11] is possibly the
most popular technique to extract the low-rank component
when the noise component is Gaussian. It is known that the
solution to

min
L

‖E‖F ,

subject to

{
rank(L) ≤ r,
Y = L + E,

,
(3)

is found by the first r principal components of Y; the
computational approach is via finding the Singular Value
Decomposition (SVD) of Y and zeroing the min(m,n) − r
right hand SVs. In (3), ‖.‖F denotes the Frobenius norm. PCA
works well for high dimensional data that approximately form
a low dimensional linear subspace. A typical example is when
a low dimensional set of data is contaminated with a high
dimensional Gaussian noise. Although the outcome is of high
dimensions, the energy is mainly concentrated in the subspace
of the original data. PCA gets the optimal solution when
the noise components (the entries of E) are i.i.d. Gaussian.
Moreover, in this method, r should be known. However, it is
also known that PCA fails to recover the low-rank component
when just a single entry is substantially perturbed (sparse
noise). Indeed, this type of noise is very common in real
applications dealing with image and video signals. There are
several techniques to make PCA robust against sparse noise
[12]–[16]. The Principal Component Pursuit (PCP) introduced
in [3] is one of the successful methods that can deal with
sparse perturbations with unknown support and arbitrarily
large magnitudes. Under certain conditions, the solution to
the following convex optimization is guaranteed to yield the
original low-rank component:

P1 : argmin
L,E

‖L‖∗ + λ‖E‖1,

subject to Y = L + E,
(4)

2 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. ?, NO. ?, MONTH YEAR

where ‖.‖∗ is the nuclear norm and λ > 0 is a weighting factor
balancing the sparsity and the rank. In this optimization prob-
lem, the rank and the `0-norm of P0 in (2) are approximated
by the nuclear norm and the `1-norm, respectively. For PCP
to be successful, the rank of Lo and the sparsity level of Eo

need to be sufficiently small; furthermore, Lo and Eo should
be incoherent. An Augmented Lagrange Multiplier (ALM)
algorithm is proposed to solve P1 [17], [18]. Interestingly,
it is shown in [19] that P1 with suitable λ can recover the
low-rank component even when the noise is not so sparse.
Although P0 is a non-convex optimization problem and finding
its minimizer is difficult task, it might lead to a suitable result
in many instances that P1 fails. For example, one can simply
verify that P1 fails to recover the original low rank component
when

Y =

 0 2 3
2 0 6
3 6 0

 =

 1 2 3
2 4 6
3 6 9

︸ ︷︷ ︸

L0

+

 −1 0 0
0 −4 0
0 0 −9

︸ ︷︷ ︸

E0

.

(5)

Apart from convex relaxation approach [20]–[23], non-
convex surrogates of low-rank functions are also introduced
in the literature [24]–[26]. In [27], an empirical Bayesian ap-
proach is proposed for non-convex rank minimization using a
variational approximation and marginalization. In this method,
the log-determinant function is used to replace the rank
function. Moreover, this method assumes a direct Gaussian
prior on low-rank matrix. A low-rank matrix factorization
model for matrix completion is proposed in [28], [29] whose
implementation is called Low-rank Matrix Fitting (LMaFit).
The LMaFit algorithm follows a non-linear and non-convex
model which is solved using a non-linear successive over-
relaxation algorithm. An Alternating Direction Method of
Multipliers (ADMM) for matrix separation based on low-
rank factorization is proposed in [30] which uses the LMaFit
algorithm. This method is limited to the problems where
the sparse matrix does not dominate the low-rank matrix in
magnitude.

In this paper, unlike the common approach of approximating
the rank with the nuclear norm and relaxing the `0-norm
with the `1-norm, we adopt a smoothing technique which
has been recently used for sparse representation [31], [32].
This technique consists of sequentially approximating the `0-
norm with the family of smoothed `0-norm functions [33].
We explain more details in Section II-B. We also analytically
study the convergence of the proposed algorithm and compare
it with the state-of-the-art methods under different scenarios
and apply it to real applications such as background modeling
in video surveillance and removing shadows and specularities
from the face images. We shall show by simulations that the
proposed algorithm has better performance and lower run-time
than the previous works. We believe that our double-smoothing
technique as well as the mathematical analysis is rather new.

C. Outline

The paper is organized as follows: In Section II, we pro-
vide some preliminaries regarding the employed smoothing
technique. In Section III, we explain our proposed algorithm
for the low-rank/sparse decomposition. A discussion on the
uniqueness of the solution and the proof of convergence of the
proposed method are provided in Section IV. The experimental
results are presented in Section V. We test the proposed
algorithm on synthetic and real data such as face images and
video frames. Finally, Section VI concludes the paper.

II. PRELIMINARIES

A. Notations

Throughout the paper, all the scalar variables, column
vectors, matrices, and sets will be denoted by italic lower-case,
boldface lower-case, boldface upper-case, and black-board-
font upper-case letters, respectively. For example, x, x, X, and
X are scalar, vector, matrix, and set, respectively. The elements
of vectors and matrices are denoted by subscripts; i.e., xi is
the i-th element of vector x and ai,j is the element of matrix
A at the intersection of i-th row and j-th column. We also
use [xi]

n
i=1 and [ai,j]

m,n
i=1,j=1 to denote vector x of size n and

matrix A of size m×n, respectively. A sequence is shown by
{xi}∞i=1. AT and Af2 denote the transpose and entry-wise
square of matrix A, respectively. For a matrix A ∈ Rm×n,
efA indicates a matrix with entries {eai,j}m,ni=1,j=1. We shall
use A�B and A�B to denote the entry-wise multiplication
and division of equi-size matrices A and B, respectively. We
further denote the Frobenius, nuclear, `∞, `1, and `0 norms
by ‖.‖F , ‖.‖∗, ‖.‖∞, ‖.‖1, and ‖.‖0, respectively. Finally, for
a matrix A ∈ Rm×n, vec(A) refers to the vector in Rmn
obtained by stacking the columns of the matrix A on bottom
of one another and sum(A) is the sum of all entries of A.

B. The Family of Smoothed `0-norm Functions

Due to non-convexity and discontinuity, `0-norm minimiza-
tion is computationally very challenging. The most popular
remedy in problems that deal with `0-norm minimization is to
replace the `0-norm with `1-norm. Another approach devised
simultaneously in [31] and [32] is to approximate the `0-norm
by a family of smooth functions that tend to the Kronecker
delta function in the limit. Because of the smoothness of
the approximating functions, the resulting cost function also
becomes smooth. In this approach, a zero-mean Gaussian
family of functions is used to approximate the `0-norm of
a vector x ∈ Rn as follows:

‖x‖0 =

n∑
i=1

(
1− δ[xi]

)
= n− lim

δ→0

n∑
i=1

fδ(xi), (6)

where fδ(x) = e−
x2

2δ2 and δ[.] is the discrete delta function.
Besides smoothness, the main property of fδ(·) as an approx-
imation of the Kronecker delta function is that

fδ(x) ≈
{

1 |x| � δ
0 |x| � δ

. (7)

Obviously, the Gaussian function family is not the only
option here. The family of triangular functions, the family

N. ZARMEHI, A. AMINI, AND F. MARVASTI: LOW RANK AND SPARSE DECOMPOSITION FOR IMAGE AND VIDEO APPLICATIONS 3

of truncated hyperbolic functions, and homographic functions
of the form δ2/(x2 + δ2) are also considered for smoothly
approximating the `0-norm [33].

Below, we define a general family {fδ(·)} of functions that
approximate the Kronecker delta function.

Definition 1. Let f : R→ [0, 1] be a smooth function that
1) is analytic, unimodal,
2) f(x) = 1⇔ x = 0, and
3) lim
|x|→∞

f(x) = 0,

then, we define the family {fδ(·)} by fδ(x) = f(x/δ).

III. PROPOSED ALGORITHM

A. Main Idea

We recall that our goal is to recover the low-rank matrix
Lo and the noise component Eo from their mixture Y, by
finding the solution to the P0 problem in (2). We approximate
the rank function and the `0-norm using a family {fδ(·)} of
smooth functions. For the rank of a matrix L ∈ Rm×n, we
use

rank(L) =
∥∥σ(L)∥∥

0

≈ Rδ(L) = hδ(σ(L)) = q −
q∑
i=1

fδ
(
σi(L)

)
,

(8)

where σ(L) = [σ1(L), · · · , σq(L)]T with σi(L) being the
i-th largest SV of L, hδ(al×1) =

∑l
i=1

(
1 − fδ(ai)

)
, and

q = min(m,n). Similarly, the sparsity level (`0-norm) of the
matrix E ∈ Rm×n can be approximated as

‖E‖0 ≈ Sδ(E) = hδ(vec(E)) = mn−
mn∑
i=1

fδ
(
[vec(E)]i

)
.

(9)

As (8) and (9) indicate, Rδ(L) is the smoothed rank function
which estimates the number of non-zero SVs of L, while
Sδ(E) is the smoothed `0-norm function that estimates the
number of non-zero entries of E. Now, we approximate the
problem (2) as follows:

(G) : argmin
L,E

G(L,E, δ) = Rδ(L) + λSδ(E),

subject to Y = L + E.
(10)

We use the Gradient Projection (GP) [34] to solve this
optimization problem. We suggest the updating and projecting
onto the feasible set as follows:

G :

L← L− µi∇LG(L,E, δ)
E← Y − L
E← E− ρi∇EG(L,E, δ)
L← Y −E

(11)

where µi and ρi are the step sizes of the i-th iteration of GP
algorithm.

As δ → 0, Rδ(.) and Sδ(.) result in better approximations
for the rank and sparsity. But for small values of δ, they have
many local minima and the GP algorithm may get trapped in
one of the local minima. Hence, we start with a large δ and
decrease it at each iteration of the algorithm. The output of

the i-th iteration will be used as the initial point for the (i+
1)-th iteration. This is the Graduated Non-Convexity (GNC)
approach for non-convex optimization [35].
Remark 1. One can select a sequence of decreasing δi to get
a better approximation for the rank and sparsity. We decrease
δ during the iterations of the algorithm by δi = αδi−1,
where α ∈ [0.5, 1) is the decreasing factor and δ1 is set to
g‖σ(L̂0)‖∞ where g > 1 is a constant.
Remark 2. In our algorithm, we set the initial point as
(L0,E0) = (λ

1+λY, 1
1+λY) because it satisfies the Karush

Kuhn Tucker (KKT) conditions for the optimization problem
G when δ →∞. To show this, suppose that the SVD of L is
L = Udiag(σ1, · · · , σq)VT . Using the method of Lagrange
multipliers, we have the following Lagrangian function

L(L,E,G) = Rδ(L) + λSδ(E)− sum(G� (Y − L−E)),
(12)

where G is the Lagrange multiplier. The gradients of the
Lagrangian function at L, E, and G are as follows: ∇LL(L,E,G) = −δ2Udiag

(
{f ′δ(σi)}

q
i=1

)
VT + δ2G

∇EL(L,E,G) = −λδ2f ′δ(E) + δ2G
∇GL(L,E,G) = Y − L−E

(13)
Moreover, note that for both homographic and Gaussian
smoothed functions we have

lim
δ→∞

δ2f ′δ(x) = −κx, (14)

where κ = 2, 1 for the homographic and Gaussian families,
respectively. Therefore, when δ →∞, we have ∇LL(L,E,G) = κL + δ2G

∇EL(L,E,G) = λκE + δ2G
∇GL(L,E,G) = Y − L−E

(15)

One can easily check that for (L,E,G) =
(λ

1+λY, 1
1+λY,− λκ

δ2(1+λ)Y), the gradient terms will be
zero.
Remark 3. We use ‖L̂i − L̂i−1‖F ≤ ε as the main stop
criterion, where L̂i and L̂i−1 are, respectively, the estimated
low rank matrices at i-th and (i − 1)-th iterations, and ε is
a predetermined parameter. For the inner loop, we set a fixed
parameter K as the maximum number of iterations. In Section
V, we show that only 3 or 4 iterations is enough for the internal
loop.

B. The Proposed Algorithm

Now it is time to present the algorithm. The main algorithm
is shown in Algorithm 1. We name it as the Low rank and
Sparse Decomposition using Smoothed `0-Norm (LSD-SN).

One may use some families of smoothed `0-norm functions
in lines 15 and 17 of the Algorithm 1. In case we are using
the family of homographic smoothed functions, these two lines
would be as follows:

L← L− µiUdiag

{ 2σjδ
4
i

(σ2
j + δ2

i)
2

}q
j=1

VT ,

E← E− ρiλE� δ4 � (Ef2 + δ2)f2,

(16)

4 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. ?, NO. ?, MONTH YEAR

Algorithm 1 LSD-SN
1: input:
2: Data matrix Y ∈ Rm×n
3: Stopping threshold ε
4: Decreasing factor α
5: Step size constants γµ, γρ
6: Maximum number of iterations of the inner loop K
7: initialization:
8: i← 1, e←∞, δ1 ← 4‖σ(L̂0)‖∞
9: λ← 1/

√
max(m,n), L̂0 ← λ

1+λY
10: while e > ε do
11: L← L̂i−1, µi ← γµδ

2
i , ρi ← γρδ

2
i

12: αδ ←
∣∣f−1
δ

(
λ/n2

)∣∣ , βδ ←
∣∣f−1
δ

(
1/mn2

)∣∣
13: for k = 1 : K do
14: [U,Σ,V]← svd(L)
15: L← L− µi∇LRδi(L)
16: E← Y − L
17: E← E− ρiλ∇ESδi(E)
18: E← Tβδ(E)
19: L← Y −E
20: L← Dαδ(L)
21: end for
22: Êi ← E
23: L̂i ← Y −E
24: e← ‖L̂i − L̂i−1‖F
25: i← i+ 1
26: δi ← αδi−1

27: end while
28: L̂o ← L̂i, Êo ← Y − L̂o
29: return L̂o, Êo

and if we are using the family of Gaussian smoothed functions,
then, we have

L← L− µiUdiag

({
σje
−
σ2j

2δ2

}q
j=1

)
VT ,

E← E− ρiλE� ef(−Ef2

2δ2
).

(17)

To distinguish between these two families, we name the first
one as LSD-HSN and the second one as LSD-GSN, where
“H” and “G” denote homographic and Gaussian, respectively.

To better approximate the `0-norm, we threshold the up-
dated matrices E and L in lines 18 and 20 of the Algorithm 1,
respectively. For a matrix X ∈ Rm×n with SVD X = UΣVT ,
the operators Dτ (X) and Tτ (X) are defined as Dτ (X) =
UTτ (Σ)VT , where Tτ (X) = [max(xi,j − τ, 0)]m,ni=1,j=1. This
thresholding expedites the convergence. An example of using
and banning this operator is shown in Fig. 1 which shows the
SNR versus the number of iterations in the outer loop.

IV. CONVERGENCE ANALYSIS

In this section, we provide the proof of convergence of the
proposed algorithm. In Section III, several considerations were
made to avoid GP algorithm getting trapped in local minima.
Hence, it is assumed that the internal loop converges to the
global minimum.

First, consider the following definitions and assumptions.

4 6 8 10 12 14 16 18

Number of Iterations

10
0

10
1

10
2

S
N

R
 (

d
B

)

Using the Thresholding Operator

Banning the Thresholding Operator

Fig. 1. An example of using and banning the thresholding operator (n = 500,
r = 0.05×n, and k = 0.3×n2). The number of iterations refer to the outer
loop.

Definition 2. For ε > 0, define the following set

Sε
∆
=

{
(L,E)

∣∣∣∣∣ (L,E) ∈ argmin
A,B

rank(A) + λ‖B‖0

subject to ‖A + B−Y‖F ≤ ε

}
.

Also, define S0 as

S0
∆
=

{
(L,E)

∣∣∣∣∣ (L,E) ∈ argmin
A,B

rank(A) + λ‖B‖0

subject to ‖A + B−Y‖F = 0

}
.

Definition 3. For each Sε, define v(Sε)
∆
= rank(L) + λ‖E‖0

which is constant for all (L,E) ∈ Sε.

Assumption 1. Assume that Sε is bounded by the Frobe-
nius norm. Moreover, assume that S0 has a unique solution
(L0,E0), i.e., S0 = {(L0,E0)}.
Remark 4. For Sε, we have

∀ ε ≥ 0 : v(Sε) ≤ n+ λn2, and
∀ 0 < ε1 ≤ ε2 : v(Sε1) ≥ v(Sε2).

(18)

The last inequality is true since the ball defined with ε2
contains the ball defined with ε1; and if the feasible set in
an optimization problem is enlarged from a ball of radius r1

to a ball of radius r2, the cost associated to the optimal point
in the feasible set cannot get worse. Therefore, the limit of
v(Sε) as ε → 0 exists. Let lim

ε→0
v(Sε) = v∗. Notice that v(.)

can get finite values. Hence,

∃ εT > 0, ∀ 0 < ε ≤ εT : v(Sε) = v∗ ⇒
∀ ε1, ε2, such that 0 < ε1 ≤ ε2 ≤ εT : Sε1 ⊆ Sε2 ,

that means for 0 < ε ≤ εT , Sε are nested sets.

In Assumption 1, we assumed that Sε is bounded. In the
following Lemma, we prove that it is also closed, thus, it is
compact.

Lemma 1. The set Sε defined in Definition 2 is compact.

N. ZARMEHI, A. AMINI, AND F. MARVASTI: LOW RANK AND SPARSE DECOMPOSITION FOR IMAGE AND VIDEO APPLICATIONS 5

Proof. We show that the limit of every convergent sequence
in Sε is in Sε. Let {(Li,Ei)}∞i=1 be converging sequence (by
the Frobenius norm) and let (L̃, Ẽ) be the limit. Further, let

rank(L̃) = r and ‖Ẽ‖0 = k.

For all (Li,Ei) in the sequence, we have ‖Li+Ei−Y‖ ≤ ε.
As (L̃, Ẽ) is the limit of sequence {(Li,Ei)}∞i=1, the same
inequality holds for (L̃, Ẽ), i.e., ‖L̃+Ẽ−Y‖ ≤ ε. To prove that
(L̃, Ẽ) ∈ Sε, it is sufficient to show that it is the minimizer of
rank(.)+λ‖.‖0. The sparsity number of Ẽ is k. Since {Ei}∞i=1

converges to Ẽ element-wise, there exists an integer ik such
that for all i ≥ ik, Ei is non-zero at the support elements of Ẽ.
Hence, Ei has at least k non-zero entries. A similar statement
holds for the rank of {Li}∞i=1, as sorted singular vales are
continuous functions of the entries: since {Li}∞i=1 converges
to L̃, there exists an integer ir such that, for all i ≥ ir, Li has
at least r = rank(L̃) SVs. Therefore,

∀ i ≥ max(ik, ir) : rank(Li) + λ‖Ei‖0 ≥ r + λk. (19)

On one hand, v(Sε) = rank(Li)+λ‖Ei‖0 is the minimum cost
value among all pairs of (L,E) that satisfy ‖L + E−Y‖ ≤
ε. On the other hand, the pair (L̃, Ẽ) satisfies the constraint
while its cost does not exceeds v(Sε). Consequently, we shall
have r + λk = v(Sε), which implies that (L̃, Ẽ) ∈ Sε. This
completes the proof.

Lemma 2. The intersection of Sε for 0 < ε ≤ εT consists of
a single element; more precisely,

⋂
0<ε≤εT Sε = S0.

Proof. According to Remark 4 and Lemma 1, for all 0 < ε ≤
εT , Sε are nonempty nested compact sets. As a result of nested
compact sets theorem [36, Theorem 2.36], the intersection is
not empty. Let Ŝ =

⋂
0<ε≤εT Sε and (L̂, Ê) be an arbitrary

pair in Sε; this implies that (L̂, Ê) ∈ Sε or alternatively, ‖L̂+
Ê − Y‖ ≤ ε, for all 0 < ε ≤ εT . Therefore, we conclude
that ‖L̂ + Ê − Y‖F = 0. In addition, according to Remark
4, we have v∗ = v(Ŝ) = v(SεT) ≤ v(S0). However, v(S0) is
the minimum cost value among all pairs of (L,E) that fulfill
‖L + E−Y‖F = 0. This proves that v∗ = v(S0) and (L̂, Ê)
is indeed the unique element of S0. In summary:

(L̂, Ê) =
⋂

0<ε≤εT

Sε = S0

Next, we show that the output (L̂δ, Êδ) of our algorithm at
the iteration corresponding to the value δ, belongs to Sεδ for
some εδ > 0. Furthermore, when δ → 0 we have that εδ → 0.
Since {(L̂δ, Êδ)}δ converge to the optimal solution (L0,E0)
as δ tends to 0.

Theorem 1. Let (L̂δ, Êδ) be the minimizer of the cost
G(L,E, δ) with λ = 1/n2, that is subject to the thresholding
effects described in lines 18 and 20 of Algorithm 1. Then, for

αδ =
∣∣f−1
δ

(
λ/n2

)∣∣ , βδ =
∣∣f−1
δ

(
1/n3

)∣∣ , εδ = αδn+βδn
2

we know that (L̂δ, Êδ) ∈ Sεδ . Moreover, lim
δ→0

εδ = 0.

Proof. Let (Lδ,Eδ) be the minimizer of Rδ(.) + λSδ(.) and
(L0,E0) be the unique solution of S0 with rank(L0) = r0

and ‖E0‖0 = k0; Therefore,

Rδ(Lδ) + λSδ(Eδ) ≤ Rδ(L0) + λSδ(E0) ≤ r0 + λk0, (20)

where the last inequality follows from the fact that Rδ(L) ≤
rank(L) and Sδ(E) ≤ E, for all L and E.

Assume that the SVs of Lδ and the entries of Eδ are
sorted as σ̂1 ≥ · · · ≥ σ̂n and ẽ1 ≤ · · · ≤ ẽn2 , respectively.
Define Iαδ =

{
i ∈ {1, · · · , n} | σ̂i > αδ

}
and Iβδ =

{
i ∈

{1, · · · , n2} | ẽi > βδ
}

. This results in

Rδ(Lδ) + λSδ(Eδ) = n−
n∑
i=1

fδ(σ̂i) + λn2 − λ
n2∑
i=1

fδ(ẽi)

= n−
∑
i∈Iαδ

fδ(σ̂i)︸ ︷︷ ︸
< λ
n2︸ ︷︷ ︸

<n λ
n2 = λ

n

−
∑
i/∈Iαδ

fδ(σ̂i)︸ ︷︷ ︸
≤1︸ ︷︷ ︸

≤n−|Iαδ |

+ λn2 − λ
∑
i∈Iβδ

fδ(ẽi)︸ ︷︷ ︸
< 1
n3︸ ︷︷ ︸

<n2 1
n3 = 1

n

−λ
∑
i/∈Iβδ

fδ(ẽi)︸ ︷︷ ︸
≤1︸ ︷︷ ︸

≤n2−|Iβδ |

> |Iαδ |+ λ|Iβδ | −
2λ

n
.

Since Rδ(Lδ) + λSδ(Eδ) ≤ r0 + λk0, we have

|Iαδ |+ λ|Iβδ | < r0 + λk0 +
2λ

n
,

or (|Iαδ |−r0)+λ(|Iβδ |−k0) <
2
n3 (we recall that λ = 1/n2).

Consequently,

n2 (|Iαδ | − r0 + λ(|Iβδ | − k0))︸ ︷︷ ︸
A

<
2

n
.

Note that both |Iαδ | − r0 and |Iβδ | − k0 are integers. This
reveals that A is also integer. Since 2

n < 1 for n > 2, we
conclude that A ≤ 0, or

|Iαδ |+ λ|Iβδ | ≤ r0 + λk0.

If we threshold the SVs of Lδ and the entries of Eδ by αδ and
βδ , respectively, we get new matrices L̂δ and Êδ for which
we have

‖σ(L̂δ)‖0 + λ‖Êδ‖0 = |Iαδ |+ λ|Iβδ | ≤ r0 + λk0. (21)

Because of the thresholding operators, the sum of L̂δ and
Êδ no longer equal to Y. Hence, we have an error:

Uδ = L̂δ + Êδ −Y.

In the thresholding stage, we threshold at most n SVs of Lδ
and n2 entries of Eδ . Therefore, ‖Uδ‖F ≤ αδn+βδn2 = εδ . If
εδ ≤ εT , (21) demonstrates that the cost of (L̂δ, Êδ) is indeed
optimal and equal to v∗, hence, (L̂δ, Êδ) ∈ Sεδ . It should be
mentioned that based on Definition 2, for any ζ > 0, we can
choose sufficiently small δ such that

αδ =
∣∣f−1
δ

(
λ/n2

)∣∣ < ζ =⇒ lim
δ→0

αδ = 0 and

βδ =
∣∣f−1
δ

(
1/n3

)∣∣ < ζ =⇒ lim
δ→0

βδ = 0.

6 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. ?, NO. ?, MONTH YEAR

-log
10
ǫ

2 4 6 8 10 12

S
N

R
 (

d
B

)

50

100

150

200

250

300

LSD-GSN, r = 0.05n, k = 0.05n
2

LSD-GSN, r = 0.05n, k = 0.1n
2

LSD-HSN, r = 0.05n, k = 0.05n
2

LSD-HSN, r = 0.05n, k = 0.1n
2

Fig. 2. Performance of the proposed algorithm versus stopping threshold ε.

Number of Iterations of the Internal Loop (K)

1 2 3 4 5 6 7 8

S
N

R
 (

d
B

)

0

50

100

150

200

250

300

350

LSD-GSN, r = 0.05n, k = 0.05n
2

LSD-GSN, r = 0.05n, k = 0.1n
2

LSD-HSN, r = 0.05n, k = 0.05n
2

LSD-HSN, r = 0.05n, k = 0.1n
2

Fig. 3. Performance of the proposed algorithm versus number of iterations
of the internal loop K. (ε = 10−12, α = 0.8)

This implies that εδ → 0 as δ → 0, as well as εδ ≤ εT for
sufficiently small δ values.

V. NUMERICAL EXPERIMENTS AND APPLICATIONS

In this section, we present numerical experiments and
compare the proposed algorithm empirically with some
well known algorithms. In all numerical experiments, we
use both homographic and Gaussian smoothed functions.
As mentioned before, we use LSD-HSN for the former
method and use LSD-GSN for the latter one. All simulations
are done by MATLAB R2015a on Intel(R) Core(TM) i7-
5960X @ 3GHz with 32GB-RAM. We use SNR(Lo, L̂o) =

20 log10

(
‖Lo‖F /‖Lo − L̂o‖F

)
in dB as the evaluation crite-

rion.

A. Parameter Effects

First, we investigate the effect of the parameters ε, α, and K
on the performance of the proposed algorithm. We produce r-
rank square matrices of dimensions m = n = 100 as the prod-
uct of two n× r matrices, i.e., Lo = ABT where both A and
B are independently sampled from a N (0, 1/n) distribution.

Decreasing Factor (α)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

S
N

R
 (

d
B

)

0

50

100

150

200

250

300

LSD-GSN, r = 0.05n, k = 0.05n
2

LSD-GSN, r = 0.05n, k = 0.1n
2

LSD-HSN, r = 0.05n, k = 0.05n
2

LSD-HSN, r = 0.05n, k = 0.1n
2

Fig. 4. Performance of the proposed algorithm versus decreasing factor α.
(ε = 10−12,K = 3)

The noise component Eo has a support size of k generated
uniformly at random whose values are independently selected
from the set {−1,+1} with equal probabilities. Two random
problems are considered in the following experiments with
different values of rank and sparsity.

1) Effect of ε: To investigate the effect of ε, we vary ε from
10−2 to 10−16 and the recovered SNR is shown in Fig. 2. We
fix other parameters as α = 0.8 and K = 3. As expected, the
proposed algorithm could better recover the low rank matrix
by decreasing ε.

2) Effect of K: To investigate the number of iterations
of the internal loop on the performance of the proposed
algorithm, we change K from 1 to 8 and fix other parameters
as ε = 10−12 and α = 0.8. The results are shown in Fig. 3.
It can be seen that only 3 or 4 iterations is enough for the
internal loop.

3) Effect of α: Finally, the effect of decreasing factor α is
investigated. For this purpose, we set ε = 10−12 and K = 3
and change α from 0.1 to 0.9. Fig. 4 shows the results. It can
be observed that the performance gets better as α is closer to
1.

In the following, we have taken into consideration the ef-
fects of the above parameters to use of the proposed algorithm.

B. Exact Recovery

This subsection presents the numerical results to demon-
strate exact recovery of the proposed algorithm. Similar to
[3], we produce r-rank square matrices of dimensions n =
500, 1000, · · · , 3000 as described in Subsection V-A. In this
subsection, we consider r = 0.05 × n. The noise component
is also generated as described in Subsection V-A. Tables I and
II show the results for k = 0.05 × n2 and k = 0.1 × n2,
respectively. As it can be seen, the proposed algorithm could
exactly recover the low rank and sparse components, however,
because of finite precision we could not get SNR =∞ dB.

C. Comparison

In this subsection, we compare the proposed algorithm with
the Inexact Augmented Lagrange Multiplier (IALM) [17],

N. ZARMEHI, A. AMINI, AND F. MARVASTI: LOW RANK AND SPARSE DECOMPOSITION FOR IMAGE AND VIDEO APPLICATIONS 7

TABLE I
EXACT RECOVERY OF LOW RANK AND NOISE COMPONENTS FOR

RANDOM PROBLEMS. (r = 0.05× n, k = 0.05× n2)

Dimension Rank Sparsity SNR (dB)
n r k LSD-HSN LSD-GSN

500 25 12,500 267.9 262.8

1000 50 50,000 249.5 274.0

1500 75 112,500 255.2 280.5

2000 100 200,000 256.1 251.5

2500 125 312,500 256.8 283.9

3000 150 450,000 256.9 284.6

TABLE II
EXACT RECOVERY OF LOW RANK AND NOISE COMPONENTS FOR

RANDOM PROBLEMS. (r = 0.05× n, k = 0.1× n2)

Dimension Rank Sparsity SNR (dB)
n r k LSD-HSN LSD-GSN

500 25 25,000 254.6 274.7

1000 50 100,000 264.5 291.2

1500 75 225,000 265.2 262.2

2000 100 400,000 265.3 264.3

2500 125 625,000 265.0 265.4

3000 150 900,000 265.5 266.0

LSSD [37], SpaRCS [38], LRSD-TNNSR [39], and LMaFit
[30]. The low rank and sparse matrices are generated in the
same way as explained in Subsection V-A. The main drawback
of the LMaFit algorithm is its limitation to the problems where
the sparse matrix does not dominate the low-rank matrix in
magnitude; for this reason, we compare the proposed method
with the LMaFit algorithm in different setup. Tables III, IV,
and V show the results of comparison with the IALM, LSSD,
SpaRCS, and LRSD-TNNSR methods for r = 0.1 × n2 and
k = 0.2× n2, 0.3× n2, and 0.4× n2, respectively. It is clear
that the proposed algorithm with both the homographic and
Gaussian smoothed functions outperform the other methods.
The IALM, LSSD, and LRSD-TNNSR methods have a high
computation time in terms of run-time. According to the
results of Tables IV and V, the IALM method fails to recover
the low rank and sparse components when the sparsity number
of the noise is high. Moreover, we can see that the LSSD fails
to recover the low rank and sparse components in random
problem setup which may be due to the fact that here, the
noise component has no structure (random structure) while
the LSSD method incorporates the structure sparsity of the
noise component. Another important point is that the SpaRCS
method needs an approximation of the rank and sparsity of
the low rank and sparse components which seems to be unfair
comparing to the other methods.

In the following, we compare the proposed algorithm with
the LMaFit algorithm [30] which is an ADMM based algo-
rithm for matrix separation based on low rank factorization.
The MATLAB code of the LMaFit algorithm is downloaded
from the LMaFit website [29] and the all parameters are
set to their default values. As mentioned before, the LMaFit
algorithm fails to recover the low rank and sparse components

r/n

0.1 0.2 0.3 0.4 0.5

p

0.1

0.2

0.3

0.4

0.5

(a) LSD-HSN
r/n

0.1 0.2 0.3 0.4 0.5

p

0.1

0.2

0.3

0.4

0.5

(b) LSD-GSN

Fig. 5. Phase transition of the proposed algorithm with random noise.

r/n

0.1 0.2 0.3 0.4 0.5

p

0.1

0.2

0.3

0.4

0.5

(a) LSD-HSN
r/n

0.1 0.2 0.3 0.4 0.5

p

0.1

0.2

0.3

0.4

0.5

(b) LSD-GSN

Fig. 6. Phase transition of the proposed algorithm with coherent noise.

when the sparse component dominates the low rank component
in magnitude. Therefore, we do the comparison in a distinct
setup where the non-zero values of sparse component Eo are
chosen from the set {−σ,+σ} with equal probabilities. We
set r = 0.05 × n, k = 0.1 × n2, and σ = 0.1 for this
comparison. The results are shown in Table VI. It is obvious
that the LMaFit algorithm fails to recover the low rank and
sparse components even for σ = 0.1.

D. Phase Transition Between Rank and Sparsity

This subsection is devoted to empirically investigate the
performance of the proposed algorithm with different values of
rank and sparsity. The low rank matrices of size m = n = 200
are generated by the same approach explained in Subsection
V-A. For obtaining the phase transition between rank and
sparsity, each simulation generates 20 random problems and
a solution declared successful if the recovered L̂o satisfies
SNR(Lo, L̂o) ≥ 60 dB. In the phase transition plot, the
gray color indicates the recovery rate. Moreover, the white
and black colors represent 100% success and failure areas,
respectively, while the gray areas show a success probability
between 0% to 100%. It should be noted that while, we plot
the results in terms of rank or sparsity level, these values were
not revealed to the algorithm (no prior information is used in
the decomposition procedure). We consider two experiments
for this purpose.

1) Random Noise: In this experiment, the noise matrix
Eo has a support that obeying a Bernoulli distribution with
random signs. Each entry of noise matrix takes on values
of {0,−1,+1} with probabilities of {1 − p, p/2, p/2}. The
phase transition of this experiment is depicted in Fig. 5. As
expected in most phase-transition curves, the gray area shrinks
at high dimensions (asymptotic sharp phase transition). One

8 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. ?, NO. ?, MONTH YEAR

TABLE III
COMPARISON WITH THE IALM [17], LSSD [37], AND SPARCS [38]. (r = 0.1× n, k = 0.2× n2)

Dimension SNR (dB) Time (s)
n LSD-HSN LSD-GSN IALM [17] LSSD [37] SpaRCS [38] LRSD-TNNSR [39] LSD-HSN LSD-GSN IALM [17] LSSD [37] SpaRCS [38] LRSD-TNNSR [39]

500 259.1 259.2 60.8 -19.0 42.2 86.3 56.4 53.5 162.4 77.2 3.2 69.0

1000 258.6 293.5 233.3 -23.9 36.2 87.0 131.0 133.1 371.9 352.4 33.5 153.4

1500 258.4 291.9 247.8 -21.1 39.3 86.7 283.2 284.2 735.7 969.1 97.7 390.3

2000 258.2 290.6 247.5 -24.0 38.2 89.6 498.2 464.8 906.4 1806.6 210.8 921.3

2500 258.1 289.6 247.2 -24.8 41.0 89.2 734.6 670.0 1331.1 7691.2 416.6 1747.6

3000 258.4 288.9 247.6 -25.4 40.4 88.5 1037.6 929.4 1746.1 4960.4 836.5 3743.8

TABLE IV
COMPARISON WITH THE IALM [17], LSSD [37], AND SPARCS [38]. (r = 0.1× n, k = 0.3× n2)

Dimension SNR (dB) Time (s)
n LSD-HSN LSD-GSN IALM [17] LSSD [37] SpaRCS [38] LRSD-TNNSR [39] LSD-HSN LSD-GSN IALM [17] LSSD [37] SpaRCS [38] LRSD-TNNSR [39]

500 205.69 276.5 12.4 -6.6 36.0 51.2 61.1 61.1 61.7 134.2 3.9 74.9

1000 247.8 284.3 12.8 -6.1 36.1 53.5 245.2 251.1 250.2 381.9 35.5 162.5

1500 249.0 283.0 12.8 -6.5 36.0 55.9 444.2 409.3 401.3 897.1 109.8 412.4

2000 249.2 286.1 12.8 -6.8 36.5 55.4 660.5 627.4 654.1 1657.3 241.8 960.5

2500 249.6 287.3 12.8 -6.0 37.6 56.1 913.4 837.9 876.6 2772.2 536.9 1887.2

3000 249.2 287.9 12.8 -6.4 38.2 55.9 1194.7 1081.7 1122.8 4282.3 875.3 3947.4

TABLE V
COMPARISON WITH THE IALM [17], LSSD [37], AND SPARCS [38]. (r = 0.1× n, k = 0.4× n2)

Dimension SNR (dB) Time (s)
n LSD-HSN LSD-GSN IALM [17] LSSD [37] SpaRCS [38] LRSD-TNNSR [39] LSD-HSN LSD-GSN IALM [17] LSSD [37] SpaRCS [38] LRSD-TNNSR [39]

500 221.8 255.8 3.5 -14.9 19.7 48.8 168.5 168.0 227.2 99.3 4.1 84.5

1000 221.8 259.3 3.6 -14.1 21.8 48.7 68.2 62.5 83.8 420.4 37.4 182.6

1500 221.9 257.4 3.8 -14.0 23.1 49.1 286.7 271.2 367.3 941.3 116.5 510.9

2000 221.8 256.0 3.8 -13.5 23.4 48.7 1101.3 1068.6 1466.0 1828.8 258.7 1006.8

2500 223.3 255.0 3.8 -13.3 23.7 48.4 1647.5 1589.3 2164.9 4216.0 543.3 2077.5

3000 224.7 254.1 3.9 -12.0 23.0 48.1 2292.5 2144.6 3033.1 6019.1 922.8 4152.4

TABLE VI
SNR COMPARISON BETWEEN THE PROPOSED ALGORITHM AND LMAFIT

ALGORITHM [30]. (r = 0.05× n, k = 0.1× n2)

Dimension (n) LSD-HSN LSD-GSN LMaFit [30]
500 303.8 311.1 -2.76

1000 303.2 309.9 -5.7

1500 301.1 308.7 -7.5

2000 301.6 307.8 -8.7

2500 301.6 307.4 -9.6

3000 301.7 306.6 -10.4

can see that the phase transition of the proposed algorithm
for both homographic and Gaussian smoothed functions are
almost the same. Furthermore, for all pairs of (p, r/n) less
than (0.26, 0.35), the low rank matrix could be recovered
successfully.

2) Coherent Noise: Unlike the previous experiment, in this
experiment, we assume that the noise components are coherent
with the low rank matrix. First, a random binary mask M is
generated that takes on values of 0 and 1 with probabilities 1−
p and p, respectively. Then, the noise matrix Eo is generated
as Eo = M � sgn(Lo). Fig. 6 shows the phase transition of
this experiment. Although this experiment seems to be hard,

the successful area (white-colored area) of the phase transition
plot is not so tight.

E. Applications

There are many applications in which one needs to recover
a low rank matrix from the corrupted observations. Here, we
consider two applications, removing shadows and specularities
from face images and background modeling, and compare our
method with ALM [13], LSSD [37], SpaRCS [38], LRSD-
TNNSR [39], and RASL [40].

1) Removing Shadows and Specularities from Face Images:
If there are enough images from a face with different lumi-
nances, shadows, and specularities, one can use the low rank
and noise recovery method to get rid of such noises from the
faces because this dataset has also low dimension [3]–[5]. We
have selected three face images from the Extended Yale Face
Database B (B+) dataset [41]. The results are shown in Fig.
7. The run-times of the LSD-HSN, LSD-GSN, ALM, LSSD,
SpaRCS, LRSD-TNNSR, and RASL algorithms are 3.7, 3.6,
11.1, 65.9, 2.0, 5.1, and 12.3 seconds, respectively.

2) Background Modeling from Surveillance Video: In video
surveillance applications, one needs to detect any activity
or change in the successive frames [1], [3]. Each group of
picture (GOP) of video has a main background. Therefore,

N. ZARMEHI, A. AMINI, AND F. MARVASTI: LOW RANK AND SPARSE DECOMPOSITION FOR IMAGE AND VIDEO APPLICATIONS 9

(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 7. Examples of removing shadows and specularities from face images
using low rank and sparse decomposition method. (a) Original images. (b)
Results of ALM. (c) Results of LSSD. (d) Results of SpaRCS. (e) Results of
LRSD-TNNSR. (f) Results of RASL. (g) Results of LSD-HSN. (h) Results
of LSD-GSN.

we get a low rank matrix if vectorize all frames of a GOP
and put them in a matrix. In this way, any activity on the
foreground can be modeled as a sparse noise that can be
separated from the main background. To show this, we used
the proposed method, ALM, LSSD, and SpaRCS, LRSD-
TNNSR, and RASL methods to model the background of two
selected video sequences, Hall of a business building [42] and
a nominal sequence introduced in [43]. Fig. 8a shows three
frames from the original Hall video. Figs. 8b, 8d, 8f, 8h, 8j,
8l, and 8n show the low rank component (background) and
Figs. 8c, 8e, 8g, 8i, 8k, 8m, and 8o show the sparse component
(moving object), respectively. The results for the second video
sequence is shown in Fig. 9. It should be mentioned that in this
application, the primary low rank and the noise components
are not purely low rank and sparse, respectively. Although
we can not see considerable differences between the results,
the proposed algorithm has lower run-time. The run-times
of the LSD-HSN, LSD-GSN, ALM, LSSD, SpaRCS, LRSD-
TNNSR, and RASL methods are 135.3, 128.5, 252.4, 2786.2,
199.6, 155.9, and 1442.7 seconds, respectively.

VI. CONCLUSION

A new algorithm for recovery of low rank and noise
components of a given data matrix was proposed. Unlike
the state-of-the-art methods that have approximated the `0-
norm of the rank and sparsity with nuclear norm and `1-norm,
here, we approximated the `0-norm by families of smoothed
`0-norm functions. The GP method is used for solving the
minimization problem. Many considerations were made to
avoid GP algorithm getting trapped in the local minima points.
The convergence of the proposed algorithm was analytically
provided. The proposed algorithm was compared with the
Augmented Lagrange Multiplier (ALM) based method and
LMaFit method. For the synthetic signals, the simulation
results indicated that the proposed algorithm could exactly
recover the low rank and noise matrices at much less com-
plexity in terms of run-time; in some cases, the ALM-based
method and LMaFit method failed to recover the low rank
and sparse components. We have also applied the proposed
algorithm for two real applications: background modeling for
video surveillance and removing shadows and specularities
from face images. We have also compared all results with

those the ALM method. In general, the proposed algorithm
had better performance at lower run-time.

ACKNOWLEDGMENT

The author would like to thank Dr. Pedram Pad for his help
of reviewing the proof of convergence.

REFERENCES

[1] K. Min, Z. Zhang, J. Wright, and Y. Ma, “Decomposing background
topics from keywords by principal component pursuit,” in Proceedings of
the 19th ACM International Conference on Information and Knowledge
Management. New York, NY, USA: ACM, 2010, pp. 269–278.

[2] S. Javed, A. Mahmood, T. Bouwmans, and S. K. Jung, “Spatiotemporal
low-rank modeling for complex scene background initialization,” IEEE
Transactions on Circuits and Systems for Video Technology, vol. PP,
no. 99, pp. 1–1, 2016.

[3] E. J. Candès, X. Li, Y. Ma, and J. Wright, “Robust principal component
analysis?” J. ACM, vol. 58, no. 3, pp. 11:1–11:37, Jun. 2011.

[4] J. Wright, G. Arvind, R. Shankar, P. Yigang, and Y. Ma, “Robust
principal component analysis: Exact recovery of corrupted low-rank
matrices via convex optimization,” in Advances in Neural Information
Processing Systems 22. Curran Associates, Inc., 2009, pp. 2080–2088.

[5] N. S. Aybat, D. Goldfarb, and S. Ma, “Efficient algorithms for robust
and stable principal component pursuit problems,” Computational Op-
timization and Applications, vol. 58, no. 1, pp. 1–29, 2014.

[6] J. Hou, L. P. Chau, N. Magnenat-Thalmann, and Y. He, “Sparse low-
rank matrix approximation for data compression,” IEEE Transactions
on Circuits and Systems for Video Technology, vol. 27, no. 5, pp. 1043–
1054, May 2017.

[7] L. G. Valiant, Graph-theoretic arguments in low-level complexity.
Berlin, Heidelberg: Springer Berlin Heidelberg, 1977, pp. 162–176.

[8] K. Min, Z. Zhang, J. Wright, and Y. Ma, “Estimation of simultaneously
sparse and low rank matrices,” in 29th International conference on
machine learning, 2012, pp. 1351–1358.

[9] L. Han and X.-L. Liu, “Convex relaxation algorithm for a structured
simultaneous low-rank and sparse recovery problem,” Journal of the
Operations Research Society of China, vol. 3, no. 3, pp. 363–379, 2015.

[10] A. N. Tikhonov, “Solution of incorrectly formulated problems and the
regularization method,” Soviet Math. Dokl., vol. 4, pp. 1035–1038, 1963.

[11] I. Jolli, Principal Component Analysis. Springer-Verlag, 1986.
[12] P. Huber, Robust Statistics. Wiley, New York, 1981.
[13] F. D. la Torre and M. J. Black, “A framework for robust subspace

learning,” International Journal of Computer Vision, vol. 54, no. 1, pp.
117–142, 2003.

[14] R. Gnanadesikan and J. R. Kettenring, “Robust estimates, residuals, and
outlier detection with multiresponse data,” Biometrics, vol. 28, no. 1,
pp. 81–124, 1972.

[15] Q. Ke and T. Kanade, “Robust L1 norm factorization in the presence of
outliers and missing data by alternative convex programming,” in IEEE
Conference on Computer Vision and Pattern Recognition (CVPR 2005),
June 2005.

[16] M. A. Fischler and R. C. Bolles, “Random sample consensus: A
paradigm for model fitting with applications to image analysis and
automated cartography,” Commun. ACM, vol. 24, no. 6, pp. 381–395,
June 1981.

[17] Z. Lin, M. Chen, L. Wu, and Y. Ma, “The augmented Lagrange
multiplier method for exact recovery of corrupted low-rank matrices,”
UIUC Technical Report UILU-ENG-09-2215, November 2009.

[18] X. Yuan and J. Yang, “Sparse and low-rank matrix decomposition via
alternating direction methods,” Optimization Online, November 2009.

[19] A. Ganesh, J. Wright, X. Li, E. J. Candès, and Y. Ma, “Dense error
correction for low-rank matrices via principal component pursuit,” in
2010 IEEE International Symposium on Information Theory, June 2010,
pp. 1513–1517.

[20] H. Ji, C. Liu, Z. Shen, and Y. Xu, “Robust video denoising using low
rank matrix completion,” in 2010 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, June 2010, pp. 1791–1798.

[21] J. F. Cai, E. J. Candes, and Z. Shen, “A singular value thresholding
algorithm for matrix completion,” SIAM J. on Optimization, vol. 20,
no. 4, pp. 1956–1982, March 2010.

[22] J. Yao, X. Liu, and C. Qi, “Foreground detection using low rank
and structured sparsity,” in 2014 IEEE International Conference on
Multimedia and Expo (ICME), July 2014, pp. 1–6.

10 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. ?, NO. ?, MONTH YEAR

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l) (m) (n) (o)

Fig. 8. Background modeling results on a 176×144 video sequence. (a) Original frames. (b) Low rank component (ALM). (c) Sparse component (ALM). (d)
Low rank component (LSSD). (e) Sparse component (LSSD). (f) Low rank component (SpaRCS). (g) Sparse component (SpaRCS). (h) Low rank component
(LRSD-TNNSR). (i) Sparse component (LRSD-TNNSR). (j) Low rank component (RASL). (k) Sparse component (RASL). (l) Low rank component (LSD-
HSN). (m) Sparse component (LSD-HSN). (n) Low rank component (LSD-GSN). (o) Sparse component (LSD-GSN).

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l) (m) (n) (o)

Fig. 9. Background modeling results on a 360×240 video sequence. (a) Original frames. (b) Low rank component (ALM). (c) Sparse component (ALM). (d)
Low rank component (LSSD). (e) Sparse component (LSSD). (f) Low rank component (SpaRCS). (g) Sparse component (SpaRCS). (h) Low rank component
(LRSD-TNNSR). (i) Sparse component (LRSD-TNNSR). (j) Low rank component (RASL). (k) Sparse component (RASL). (l) Low rank component (LSD-
HSN). (m) Sparse component (LSD-HSN). (n) Low rank component (LSD-GSN). (o) Sparse component (LSD-GSN).

[23] M. Rahmani and G. K. Atia, “High dimensional low rank plus sparse ma-
trix decomposition,” IEEE Transactions on Signal Processing, vol. 65,
no. 8, pp. 2004–2019, April 2017.

[24] X. Ding, L. He, and L. Carin, “Bayesian robust principal component
analysis,” IEEE Transactions on Image Processing, vol. 20, no. 12, pp.
3419–3430, December 2011.

[25] C. Lu, J. Tang, S. Yan, and Z. Lin, “Nonconvex nonsmooth low rank
minimization via iteratively reweighted nuclear norm,” IEEE Transac-
tions on Image Processing, vol. 25, no. 2, pp. 829–839, February 2016.

[26] T. H. Oh, Y. Matsushita, I. Kweon, and D. Wipf, “A pseudo-bayesian
algorithm for robust pca,” in Advances in Neural Information Processing
Systems 29, D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and
R. Garnett, Eds. Curran Associates, Inc., 2016, pp. 1390–1398.

[27] D. Wipf, “Non-convex rank minimization via an empirical bayesian
approach,” in Proceedings of the Twenty-Eighth Conference on Uncer-
tainty in Artificial Intelligence, ser. UAI’12. Arlington, Virginia, United
States: AUAI Press, 2012, pp. 914–923.

[28] Z. Wen, W. Yin, and Y. Zhang, “Solving a low-rank factorization
model for matrix completion by a nonlinear successive over-relaxation
algorithm,” Mathematical Programming Computation, vol. 4, no. 4, pp.
333–361, Dec 2012.

[29] Y. Zhang, “LMaFit: low-rank matrix fitting,” 2009, [Online]. Available:
http://www.caam.rice.edu/ optimization/L1/LMaFit.

[30] Y. Shen, Z. Wen, and Y. Zhang, “Augmented lagrangian alternating
direction method for matrix separation based on low-rank factorization,”
Optimization Methods Software, vol. 29, no. 2, pp. 239–263, March
2014.

[31] G. H. Mohimani, M. Babaie-Zadeh, and C. Jutten, “Fast sparse represen-
tation based on smoothed `0 norm,” in Proceedings of 7th International
Conference on Independent Component Analysis and Signal Separation
(ICA2007), LNCS 4666, September 2007, pp. 389–396.

[32] J. Trzasko and A. Manduca, “Highly undersampled magnetic resonance
image reconstruction via homotopic `0 -minimization,” IEEE Transac-
tions on Medical Imaging, vol. 28, no. 1, pp. 106–121, January 2009.

[33] H. Mohimani, M. Babaie-Zadeh, and C. Jutten, “A fast approach for
overcomplete sparse decomposition based on smoothed `0 norm,” IEEE
Transactions on Signal Processing, vol. 57, no. 1, pp. 289–301, January
2009.

[34] D. P. Bertsekas, Nonlinear Programming. Belmont, MA, USA: Athena
Scientific, 1999.

[35] A. Blake and A. Zisserman, Visual Reconstruction. Cambridge, MA,
USA: MIT Press, 1987.

[36] W. Rudin, Principles of mathematical analysis, 3rd ed. New York:
McGraw-Hill Book Co., 1976, international Series in Pure and Applied
Mathematics.

[37] X. Liu, G. Zhao, J. Yao, and C. Qi, “Background subtraction based on
low-rank and structured sparse decomposition,” IEEE Transactions on
Image Processing, vol. 24, no. 8, pp. 2502–2514, August 2015.

[38] A. E. Waters, A. C. Sankaranarayanan, and R. Baraniuk, “SpaRCS:
Recovering low-rank and sparse matrices from compressive measure-
ments,” in Advances in Neural Information Processing Systems 24.
Curran Associates, Inc., 2011, pp. 1089–1097.

[39] Z. Xue, J. Dong, Y. Zhao, C. Liu, and R. Chellali, “Low-rank and
sparse matrix decomposition via the truncated nuclear norm and a sparse
regularizer,” The Visual Computer, May 2018.

[40] Y. Peng, A. Ganesh, J. Wright, W. Xu, and Y. Ma, “RASL: Robust
alignment by sparse and low-rank decomposition for linearly correlated
images,” in Computer Vision and Pattern Recognition (CVPR), 2010
IEEE Conference on, June 2010, pp. 763–770.

[41] A. S. Georghiades, P. N. Belhumeur, and D. J. Kriegman, “From few
to many: illumination cone models for face recognition under variable
lighting and pose,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 23, no. 6, pp. 643–660, June 2001.

[42] “Statistical modeling of complex background for foreground ob-
ject detection,” 2016, [Online]. Available: http://perception.i2r.a-
star.edu.sg/bk model/bk index.html. [Accessed: 10-May-2016].

[43] Y. Sheikh and M. Shah, “Bayesian modeling of dynamic scenes for
object detection,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 27, no. 11, pp. 1778–1792, November 2005.

