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Abstract

In this paper, we consider the designing of a new set of Uniquely Decodable Codes (UDC) for

uncoded synchronous overloaded Code Division Multiple Access (CDMA) for the number of codes

exceeding the assigned code length. For the construction, the proposed recursive method at iteration-

k generates a matrix that can be classified into k orthogonal subsets of different dimensions. Out of

them, all besides the largest (binary Hadamard) one are ternary in nature. There resides an inbuilt twin

tree structured cross-correlation hierarchy that facilitates an advantageous balance between the auto and

intergroup cross-correlation for the signatures in a subset. This opportunity is further leveraged by the

proposed multi-stage detector to maintain the uniquely decodable (errorless) nature of the matrices for

noiseless transmission. The simple logic of matched filtering serving as the basic designing block of the

decoder provides an enormous saving over the complexity of optimum Maximum Likelihood Decoder

(MLD). For the noisy channel, we derive the theoretical expression of the average Bit Error Rate (BER)

for the individual subset. Also, we explain the role of the two factors (cardinality of the subset, and net

level of interference) in being responsible for the non-uniformity in the order of their error performance.
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I. INTRODUCTION

The errorless transmission of the synchronous Code Division Multiple Access (CDMA) using

the linear decoders like Matched Filter (MF) can be guaranteed for the noise free channel if

we consider the orthogonal matrix (set) like Hadamard (also Uniquely Decodable (UD)) for

the purpose of encoding. This aspect further features for its Bit Error Rate (BER) close to that

of the optimum when the channel becomes noisy. However, one of the major limitation of the

orthogonal matrices is its square dimension that restricts its value to the code length or spreading

gain of the signature.

To overcome this capacity hard limit, numerous UD [1]–[14], and non-UD [15]–[21] con-

struction based systems have already been proposed. For the non-UD based approaches like O/O

CDMA, PN/O CDMA [15], improved O/O CDMA [16], the maximization in system capacity is

achieved by collaborating two different sets of code (signature). But, it strictly disapproves for

the errorless decoding. As the reason, the significant level of the Multiple Access Interference

(MAI) induced due to the non-zero level of the peak cross-correlation among the signatures is to

be held responsible, which hardly abides any purposeful hierarchy or pattern. Therefore, several

non-linear iterative decoders [22]–[25] utilizing the technique of serial, and parallel interference

cancellation [26]–[28] exist which aims to improve the error performance by partial minimization

of the MAI. Nevertheless, their participation also leads to the rise in complexity, and deprives

the feasibility of its practical realization. Later, the technique of reusing [29], [30] the Welch

Bound Equality (WBE) [31] sequences for different users with different wave forms in [32] leads

to the significant maximization in capacity, and simplification of the receiver too. However, its

implementation becomes doubtful due to the non-scalable [33] nature of the WBE sequences.

Under the above constraints, there still exists feasible alternative towards the designing of

the errorless matrices for overloaded CDMA in terms of the UD Codes (UDC). A matrix C

is considered as UD over x, if for x1 6= x2, the inequality Cx1 6= Cx2 is true, where x1 and

x2 denote two different input vectors. In other words, a UD matrix is injective in nature or

there exists one-to-one mapping between the input, and output. Several binary [1]–[3], [5], [7],

[13], [14], and ternary [4], [9]–[12] UD matrices with different approaches of construction can

be found with significant overloading factor (�), which for the code matrix CN⇥M is usually

defined as the ratio: M/N for M > N . Moreover, the use of the ternary UD matrices in context
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of multi-user coding [4], [9]–[12] has drawn significant attention in literature even if they are of

less importance in the coin-weighing problem [34]. In Section II, we discuss them with more

details.

The noisy transmission being a common scenario in practical communication applications

destroys the errorless attribute of the UDC and the overall error performance of the system is

controlled by the cross-correlation property of the code matrices, which is usually best defined

by the term Total Squared Correlation (TSC). For a code matrix C, the TSC can be defined as

the sum of the squared magnitudes of all inner products of the elemental codes i.e., TSC (C)

�
=

MP
i=1

MP
j=1

��cHi cj
��2, where H denotes the conjugate transpose operator. For the real or complex valued

matrices, TSC is lower bounded by TSC (C) �
�
MK
N

�
, where K = max {M,N} for M and

N representing the number of signatures and spreading gain of the codes respectively. For

underloaded (M  N ) CDMA, although TSC is a suitable parameter to evaluate the performance,

it does not hold valid for the overloaded (M > N ) CDMA system. It is because TSC being a

total measure of correlation lags attention to the users, individually. While, within a particular

code set, the net level of peak cross-correlation among the signatures shows random variation,

their decoding also gets affected non-uniformly. Therefore, the study of the correlation level of

signatures individually or group-wise is preferable than that of TSC. One of such approach is

presented in [20] where a new set of binary matrices (not UD) following a linear combination

approach are proposed with a tree structured cross-correlation. Further, this hierarchy of cross-

correlation becomes useful to propose an optimal tree detector, where a conditional weight

estimate table guides for the process of decoding. To note, the complexity of this algorithm

is bounded to the low-order-polynomial subjected to the condition that the tree must follow a

uniform hierarchy in construction i.e.; the number of child nodes emanating from each node is

constant for each level of the tree.

In this paper, we consider the designing of a new set of UDC for overloaded CDMA that

addresses two crucial problems. The first one concerns, if unlike the code sets in [1], [5]–[7], [9]–

[11], [13], [14] the existence of multiple orthogonal subsets within a single UD set is feasible,

and if so, what general criterion is to be followed for its recursive construction. The second one

is about the designing of the low complex decoder. In response to the first, we identified the

unique fundamental matrix (C1 i.e., for k = 1) of construction from the existing literature [4],
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[9]–[11] and develop a whole new perspective for the recurrent design of the proposed matrices.

The proposed construction being recursive results in a UD matrix of dimension (Mk, Nk) for

Mk > Nk that can further be split into k = log2Nk number of orthogonal subsets (one binary

(Hadamard) and (k�1) ternary) of varied dimension. In response to the second, a uniform twin-

tree structured cross-correlation is realized for the whole matrix due to the linear dependency

lying in the formation of the larger subsets from the smaller ones. Later, this becomes thoroughly

advantageous in designing the layout of the multi-user detector where the simple logic of matched

filtering serves as the basic block of designing and recovers each subset with no error in the

absence of noise, given that the detector has a priori knowledge of the user’s status (active or

inactive).

Rest of the paper is organized as follows. Section II carries the background study on UD

matrices with special attention towards role of the basis (fundamental) matrix in the construction.

Section III emphasizes on the recursive construction of the proposed matrices followed by

designing of the multi-user decoder in Section IV. In Section V, the analytical error performance

of the system is discussed focusing more towards the explanation of the error performance of the

individual subset. Section VI presents the overview of simulation results. Finally, the conclusion

is presented in Section VII.

II. UD MATRICES: BACKGROUND

A. System Model

The synchronous CDMA system (synchronization corresponding to both bit and chip) using

the ternary UDC matrix with index-k (Ck or CN
k

⇥M
k

) for k 2Z+ can be modeled as

y = r + n (1)

where r = CkRx is the noiseless received vector with R = IM
k

⇥M
k

= Identity Matrix with

diagonal elements representing the amplitudes assuming the system to be perfectly power con-

trolled. x 2 {±1, 0}Mk is the input column vector, and n denotes the vector corresponding

to the AWGN channel with zero mean and variance �2. In an effort to provide an unified

approach of analysis, let us concentrate on the recursive constructions (mentioned in Table I),

for which C1
= B =

1p
2

2

4 H2 |
+

0

3

5= basis matrix. Here, we intend to study the varied
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TABLE I: Recursive Consruction of UDC Sets (Binary or Ternary) with C1 = B in (2) , where B(2k) = 2k�1

k (Eq. 3,

[12]), Y, N, NL, and NY denote ”Yes”, ”No”, ”Noiseless”, and ”Noisy” respectively.

Year Author(s) and publication Type N
k

M
k

�(k) ⇠ S
sum

(k) Decoding

1979 Chang and Weldon [35] Ternary 2k 2k�1(k + 1) Y NL

1982 Ferguson [10] Ternary 2k 2k�1(k + 2) Y NL

1984 Chang [11] Ternary k  B(k) + k Y NL

1995 Khachatrian and Martirossian [13] Ternary 2k k2k�1 + 1 Y NL

1997 Wu and Chang [14] Binary k � k
⇣

log2k�2

2log23

⌘
+ 1

log23
Y NL

1998 Khachatrian and Martirossian [36] Binary 2k 2k�1(k + 1) + i Y NL

2012 Masayekhi and Marvasti [4] Ternary 2k 2k+1 � 1 N NY

interpretations of B existing in different approaches towards the formation of the matrices with

larger dimension.

In the early 1960s, the study of UD matrices in the context of the coin-weighing problem

[34] was introduced. Later, the construction of the binary UD matrices suggested by many

researchers in [35], [37] revealed better scope for the multi-user coding applications. Then,

several explicit constructions were proposed satisfying the asymptotic equality between the �

(or �(k)), and maximal achievable sum capacity (Ssum) for increasing the value of Mk. Note

that a UD construction is said to have the asymptotic equality between �, and Ssum(k) , if and

only if

lim

N
k

!1
�(k)

S
sum

(k) = 1 (Eq. 4.5, Corollary in [9])

where

Ssum(k) =
M

kP
f=0

0

B@
Mk

f

1

CA

2Mk

log2
2Mk0

B@
Mk

f

1

CA

(Theorem 2.1 in [9]).

In the late 1970, construction of the ternary matrices in [9], being equivalent to that of [35]

offers asymptotic equality. Further, the approach of construction in [9] is extrapolated to another

generalized form in [10]. In [11], the designing of the proposed matrix remains valid for arbitrary

values of Nk. In overall, all the matrices presented in Table I [9]–[11], [13], [14], [36] settles

in asymptotic sense (shown by ”Y” in column �(k) ⇠ Ssum (k) ). However, their decoding
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methods are suitable for the noisefree transmission only. The performance of their decoder if

subjected to the noisy transmission fails to present an acceptable level of error performance. So,

for these matrices, the use of the optimum Maximum Likelihood Decoder (MLD) [38] is the

only solicited option. However, the sheer impracticality associated with its implementation, due

to the catastrophic rise in complexity over the linear decoders, convey to look for the suitable

substitutes. The designing of such optimal or sub-optimal decoder, to meet an acceptable level

of BER and simultaneously gain the substantial reduction in complexity is highly challenging

and has drawn the attention of many researchers in the past [20], [39], [40].

Recently, a new recurrent ternary construction [4] has been proposed, where the priority drives

straight towards the designing of simplified decoder for the noisy channel, costing the sacrifice

in asymptotic equality. In fact, the logic of asymptotic equality theoretically explaining the large

capacity of the UD matrices is an inappropriate metric for evaluating the overall performance

of the system for noisy transmission. It is because, unlike the noisefree transmission, the actual

capacity of the system is directly affected by the decoder’s design specifics, when the channel

gets noisy. There also exists few non-recursive methods of construction, which are not listed

in Table I. Out of them, the tensor product based matrix construction introduces a Simplified

MLD (SMLD) [5], [41], where the additional users are usually kept to a suitable minimal value

to ensure better error performance. It is due to the fact that for the noisy channel, the effect of

MAI becomes more prominent, even if its impact remains unnoticed for the noiseless case. In

a way to overcome this challenge, a hierarchy criterion is proposed in [1] that minimizes the

impact of MAI to a suitable extent and brings improvement in the level of BER.

For most of the group based overloaded CDMA models in the literature [5], [15], [16], [32],

the quality of the recovery of any signature is shown to be directly influenced by the extent

to which the intra and inter-group cross-correlations are balanced. This metric being a crucial

factor towards the efficient detection is usually supervised by the method of construction of

the signature matrix. Under such provisions, where sufficient attention also needs to be focused

towards the designing of the improved algorithms for construction, most of the works in the

literature emphasizes the decoder design only. As a result, their systems [1], [2], [5]–[7], [9]–

[16], [24], [25], [36], [42], [43] lag in terms of having a deterministic pattern among the levels

of the elements of the associated cross-correlation (interference) matrix. Subsequently, for most

of them, the final design of the decoder to overcome the effect of the MAI and offer errorless
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detection in the absence of noise, becomes highly complex and loses its feasibility of practical

implementation for noisy transmission.

In contrast, our approach to the construction of the matrices carries a well-defined hierarchy

towards providing an appropriate balance over the intra and inter-group MAI of a signature

in a group or subset. Where for the systems in [5], [15], [16], [23], [32], [42] the complete

elimination of the intra-group MAI appears impossible, and becomes a serious concern towards

the complexity rise of the decoder, we easily achieve it due to the orthogonal nature of the

subsets. Likewise, the adverse impact of the inter-group MAI is balanced by strictly keeping

the net level of the cross-correlation on a signature lower than its auto-correlation. In fact, this

logic related to the inter-group MAI also governs the fundamental principle of the Matched

Filter (MF) detector in conventional CDMA, and therefore, can be considered as a scope for

making the overall process of decoding highly simplified. In overall, the proposed model stands

unique by providing a system architecture, where the method of construction and decoding

fully complements each other to serve a common objective, i.e.; efficient recovery of the input

vector with the least complexity. Alternatively, our approach of designing aims at removing the

prevalent gap persisting in all other overloaded CDMA systems, in the form of the absence of a

balanced and deterministic correlation structure to support the errorless detection. Interestingly,

in the present work, we achieve it by leveraging the ternary nature of the matrix to build a

uniform twin-tree structured hierarchy in cross-correlation.

B. Root of Construction: the Basis Matrix

Before proceeding further, this is important to focus on the fundamental matrix that controls

the overall layout of proposed construction. On interesting note, the fundamental (basis) matrix

of our construction (B in (2)) also delivers the same requisites for the construction methods

presented in Table I. More appropriately, for the recursive construction of the matrices in [4],

[9]–[11], [13], C1
= B and the researchers, based on the structure of B, have established their

unique perspective to form the matrices of larger dimensions. In this work, we also propose

a new approach towards the interpretation of B, not only in the method of construction but

also to simplify the process of decoding. For our proposed construction, it is easy to trace that

C1 6= B. However, the so-called fundamental matrix B appears in the intermediate stage during

the recursive formation of C2 from C1 and hence serves the purpose of providing a fundamental
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structure for designing, where

B =

1p
2

2

4 H2 |
+

0

3

5
=

1p
2

2

4 +

+ +

+ � 0

3

5 . (2)

a) Correlation Pattern of the Basis Matrix: First, we analyze the pattern of the cross-

correlation matrix (⇢), associated i.e.;

⇢ = BTB =

2

6664

1 0 1/2

0 1 1/2

1/2 1/2 1/2

3

7775
(3)

In (3), the first, second, and third row of ⇢ denote the cross-correlation coefficient corresponding

to the signature in first, second and third column of B respectively. From (3), we can easily

decipher Det(⇢) = 0, where Det denotes the determinant of the matrix ⇢. Equivalently, the first

two columns of B are correlated to the third one, since the last row of ⇢ can be interpreted as

the linear combination of the scalar-multiplied version of the first two rows.

b) Decoding of the Basis Matrix: Decoding of B from the noisefree received vector r in (1),

if subjected to the logic of MF is not fully errorless. This is due to the presence of an additional

user beyond H2. So, let us split B into two subsets so that the first and second subset are equal

to H2 and (1 0) respectively. Correspondingly, the input vector x can be defined as x = [x1x2],

where x1 = [x11x12] and x2 = [x21]. According to the logic of MF, the decoding of ˆx1 can be

achieved with no error (ˆx1 = x1), where as that of ˆx2 gets erroneous (ˆx2 6= x2). This can be

verified from the expression of z = [z11z12z21] for x = [x11x12x21], where ˆx = sign(z) = sign(⇢x)

e.g.;

z11 = 2x11 + x21, z12 = 2x12 + x21, z21 = x11 + x12 + x21.

As evident from the above expression,

x̂11 = sign(z11) = x11, x̂12 = sign(z12) = x12

holds true irrespective of the value of x21 (interfering user of second subset). In contrast, for all

2

3 combinations of x, the similar outcome is not observed while decoding x̂21 i.e., x̂21 6= x21.

So, as a possible approach towards the errorless recovery of B, the whole process of decoding

can be split into two stages. First, the orthogonal matrix H2 is decoded. Second, we estimate its
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TABLE II: Construction of SMOS (Type I) Matrices for k = 1, 2, 3 e.g., C1 =
⇥
C1

1

⇤
, C2 =

⇥
C2

1

|C2

2

⇤
, C3 =

⇥
C3

1

|C3

2

|C3

3

⇤

C1 = 1p
2

"
+ +

+ �

#

C2

1

= 1p
4

2

66664

+ + + +

+ � + �
+ + � �
+ � � +

3

77775
,C2

2

= 1p
4

2

664

+

0

+

0

+

0

�
0

3

775

C3

1

= 1p
8

2

66666666666664

+ + + + + + + +

+ � + � + � + �
+ + � � + + � �
+

+

+

+

+

�
+

�
+

�

�
+

+

�
�

+ + � � +

+ � � � �
� � + � +

� � � + +

+ � + + �

3

77777777777775

,C3

2

= 1p
8

2

66666664

+

0

+
0

+

0
+

0

+

0

�
0

+

0
�
0

+

0

+
0

�
0
�
0

+

0

�
0

�
0
+

0

3

77777775

,C3

3

= 1p
8

2

66666664

+ +
0

0

0
+
0

0

0

0

0

0
�
0

0

0

3

77777775

interference on the additional user and remove it completely so that decoding of x̂21 can be set

with no error. In Section IV, we exploit the similar logic to devise a multi-stage decoder for the

errorless extraction of multiple subsets within the proposed matrices of larger dimension.

III. SIGNATURE MATRIX WITH ORTHOGONAL SUBSETS (SMOS)

A. Recursive Construction: Type I, Type II, Type III

For SMOS (Type I):

First, we introduce the following recursive mechanism for the construction of SMOS ( Type-I)

CN
k

⇥M
k

for Nk = 2

k where k 2Z+.

• Initialize C0
= [1] and find C1

=

⇣
1p
2
H2⇥2 ⌦ C0

⌘
=

1p
2
H2

• For k > 1, Ck
=

⇣
1p
2
H2⇥2 ⌦ A

⌘
, where A =

h
Ck�1|[100 · · · 0]T 1⇥2k�1

i
.

According to the above approach, for k = 2, we have A = B. In [9], for the recursive design of

the matrices with higher dimension, the authors interpret the element ’1’ in the vector { 1 0 } in

B as the simple (1⇥1) Identity Matrix and continue the same for the next iterations too. On the

contrary, for the proposed construction, we consider the sequence { 1 0 } as a one dimensional

vector with one element as 1 and the rest as 0. From Table II, it is worth realizable that the
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proposed matrices with index-k has k orthogonal subsets e.g., Ck
=

⇥
Ck

1|Ck
2| · · · |Ck

k

⇤
, where the

value of k is in the logarithmic with the spreading gain i.e.; k = log2Nk. Furthermore, the subset

Ck
i for i = 1, 2, . . . , k owns 2

k�i+1 number of signatures with the effective spreading gain (Nef )

of Nef i =
N

k

2i�1

. In the present context, the effective spreading gain of a signature can be defined

as the total number of non-zero elements (1,-1) present in it. Now, we present Theorem 1 to

prove the UD nature of SMOS (Type I).

Theorem 1: The kth indexed version of the SMOS (Type-I): Ck with Mk signatures and

spreading gain of Nk being classified into k orthogonal subsets is uniquely decodable.

Proof : To prove Ck, in general, to be UD over xk 2 {1, 0,�1}Mk , let us start with C1.

Following Table II, C1
= H2 is orthogonal, which by default also assures for its UD nature.

For C1 being UD, B =

h
C1|[10]T

i
can be shown to be of UD type (Theorem 1 in [36]). Now,

let us extend the above logic to the generalized sense.

If Ck�1 is UD over xk�1 2 {1, 0,�1}Mk�1 e.g., Ck�1xk�1(1) 6= Ck�1xk�1(2), then for A =h
Ck�1|[100 · · · 0]T 1⇥2k�1

i
, A
�
xk�1(1) x1

�
6= A

�
xk�1(2) x2

�
always holds true for x1 6= x2, where

xk�1(2), xk�1(2) 2 {1, 0,�1}Mk�1 , and x1, x2 2 {1, 0,�1}. Following the steps of construction

of SMOS (Type I), as the remaining part, now, all we need to prove is the UD nature of

Ck
=

⇣
1p
2
H2⇥2 ⌦ A

⌘
that is explained below.

For Ck
=

⇣
1p
2
H2 ⌦ A

⌘
=

"
A A

A �A

#
to be injective over {1, 0,�1}Mk , all sums of the

term Ckxk need to be distinct. In other words, Ckxk(1) = Ckxk(2) will be true, if and only

if xk(1) = xk(2). To prove this, let us split the input vectors e.g. xk(1) =

⇥
xk(11)xk(12)

⇤T and

xk(2) =
⇥
xk(21)xk(22)

⇤T , such that

A(xk(11) + xk(12)) = A(xk(21) + xk(22)) and A(xk(11) � xk(12)) = A(xk(21) � xk(22))

Further, addition and subtraction of the above two equations results in Axk(11) = Axk(21) and

Axk(12) = Axk(22) respectively. This in turn implies xk(1) = xk(2) and proves Ck to be uniquely

decodable. ⌅
Under these developments in analysis, let us define the SMOS.

Definition 1: The matrix CN
k

⇥M
k

is said to be SMOS over the input {0, 1,�1}, if the following

conditions are satisfied.

• Ck is uniquely decodable over {0, 1,�1}Mk .
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TABLE III: Construction of SMOS (Type II and III) Matrices for k = 3 e.g., C3 =
⇥
C3

1

|C3

2

|C3

3

⇤

Type II

C3

1

= 1p
8

2

66666666666664

+ + + + + + + +

+ � + � + � + �
+ + � � + + � �
+

+

+

+

+

�
+

�
+

�

�
+

+

�
�

+ + � � +

+ � � � �
� � + � +

� � � + +

+ � + + �

3

77777777777775

,C3

2

= 1p
8

2

66666664

+

+

+
+

0

0
0

0

+

�
+
�
0

0
0

0

+

+

�
�
0

0
0

0

+

�
�
+

0

0
0

0

3

77777775

,C3

3

= 1p
8

2

66666664

+ +
+

0

0
0
0

0

0

�
0

0
0
0

0

0

3

77777775

Type III

C3

1

= 1p
8

2

66666666666664

+ + + + + + + +

+ � + � + � + �
+ + � � + + � �
+

+

+

+

+

�
+

�
+

�

�
+

+

�
�

+ + � � +

+ � � � �
� � + � +

� � � + +

+ � + + �

3

77777777777775

,C3

2

= 1p
8

2

66666664

+

0

0
+

+

0
0

+

+

0

0
�
+

0
0

�

+

0

0
+

�
0
0

�

+

0

0
�
�
0
0

+

3

77777775

,C3

3

= 1p
8

2

66666664

+ +
0

0

0
0
0

0

+

0

0

0
0
0

0

�

3

77777775

• Ck comprises of k orthogonal subsets, such that Ck
=

⇥
Ck

1|Ck
2| · · · |Ck

k

⇤
, where the number

of signatures in Ck
i are N

k

2i�1

• Det(⇢) = 0, for ⇢ = (Ck
)

TCk

• The level of peak auto-correlation of an arbitrary signature in subset-Ck
i must be greater

than the net level of peak cross-correlation, due to the (k � i) successive subsets:

Ck
i+1,Ck

i+2, . . . ,Ck
k. Mathematically, this can be described by

⇢ii(u, u) >
kX

j=i+1

N
k

2j�1X

v=1

⇢ij (u, v) (4)

where

⇢ii =
�
Ck

i

�TCk
i =

2

66664

⇢ii(1, 1) ⇢ii(1, 2) · · · ⇢ii(1, 2
k�i+1

)

⇢ii(2, 1) ⇢ii(2, 2) · · · ⇢ii(2, 2
k�i+1

)

...
...

...
...

⇢ii(2
k�i+1, 1) ⇢ii(2

k�i+1, 2) · · · ⇢ii(2
k�i+1, 2k�i+1

)

3

77775
,

and
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⇢ij =
�
Ck

i

�TCj =

2

66664

⇢ij(1, 1) ⇢ij(1, 2) · · · ⇢ij(1, 2
k�j+1

)

⇢ij(2, 1) ⇢ij(2, 2) · · · ⇢ij(2, 2
k�j+1

)

...
...

...
...

⇢ij(2
k�i+1, 1) ⇢ij(2

k�i+1, 2) · · · ⇢ij(2
k�i+1, 2k�j+1

)

3

77775

We can also construct Two other sets of SMOS, abiding the same definition cited above such

that C0
= [1], C1

=

⇣
1p
2
H2⇥2 ⌦ C0

⌘
=

1p
2
H2. For k > 1, Ck

=

⇥
Ck

1|Ck
2| · · · |Ck

k

⇤
can be

recursively derived from Ck�1
=

⇥
Ck�1

1 |Ck�1
2 | · · · |Ck�1

k�1

⇤
, e.g.; for i = 1, Ck

i =

⇣
1p
2
H2 ⌦ Ck�1

i

⌘

and for 2  i  k, the expressions for Ck
i are presented below.

For SMOS (Type II):

Ck
i =

⇣
1p
2
H2 ⌦ Ck�1

iZ | 1p
2
H2 ⌦ Ck�1

iNZ

⌘
for 2  i  k � 1

Ck
i =

⇣
1p
2
H2 ⌦ 1| 1p

2
H2 ⌦ 01⇥2k�1

⌘
for i = k.

where Ck�1
i =

⇥
Ck�1

iNZ |Ck�1
iZ

⇤
and Ck�1

iNZ and Ck�1
iZ denote the sub-matrices of Ck�1

i having all

non-zero (1,-1) and zero elements respectively.

For SMOS (Type III):

Ck
i =

"
Ck�1

i
]Ck�1
i

Ck�1
i �]Ck�1

i

#
for 2  i  k � 1

Ck
i =

1p
2k

"
[10 · · · 0]1⇥2k�1

[0 · · · 01]1⇥2k�1

[10 · · · 0]1⇥2k�1

�[0 · · · 01]1⇥2k�1

#
for i = k.

In the above expression of Ck
i , the notation ]Ck�1

i denotes the matrix, such that its mth element

is formed from the mth element of Ck�1
i where ]Ck�1

im = Ck�1
im (t�Nk�1Tc) with Tc denoting the

chip duration of the signature sequence.

B. Twin Tree Structured Cross-correlation

The designing and performance of any detection algorithm in CDMA is driven by the level

of MAI on its users. For further explanation, the system model in (1) corresponding to Ck
=

⇥
Ck

1|Ck
2| · · · |Ck

k

⇤
can be redefined as

y =

kX

i=1

Ck
i xi + n (5)
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Fig. 1: Uniform Twin Tree Structure for Ck =
⇥
Ck

1

|Ck

2

| · · · |Ck

k

⇤

In this section, our attention is on the correlation structure of SMOS (Type-I) only. However,

the outcome can also be applied to other similar classes (Type II, and III).

The geometric pattern of the subsets in Ck can be shown to have a uniform twin tree structured

cross-correlation as shown in Fig. 1. The nodes of the tree at a particular level (depth) l =

1, 2, . . . , k (i.e., l = k � i + 1) collectively represent a specific subset. The following facts can

be summarized from the pictorial representation.

• There exist two identical (twin) trees, each of which has its origin or root from the smallest

orthogonal subset ( i.e.; Ck
k at the lowest level of the tree, l = 1). The nodes at the highest

level of the tree (i.e., l = k) represent the largest subset: Ck
1.

• Each node (parent) at a level-l generates two nodes (child) for its next higher level (l+ 1).

• All the 2

l nodes at level-l collectively form an orthogonal set and each node at a particular

level is correlated to its child and parent nodes only.

For node-j at level-l (i.e.; cklj), the two child nodes emanated at level-(l+ 1) (i.e.; ck(l+1)(2j�1)

and ck(l+1)(2j)) can be expressed as the linear combination on cklj e.g.,

ck(l+1)(2j�1) = cklj + cklj (t± (

N/2l+1

)Tc) (6)

ck(l+1) (2j) = cklj � cklj (t± (

N/2l+1

)Tc) (7)

IV. MULTI USER DETECTION (MUD)

From the tree hierarchy in Fig. 1, considering the existence of k multiple subsets in Ck, a

signature in subset Ck
i (or Ck

(k�l+1) ) is correlated to each of its root sequence in previous (k� i)
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(or l � 1) subsets: Ck
i+1,Ck

i+1, · · · ,Ck
k. Along with, the correlation also prevails with (2

i � 2)

number of child signatures existing in next (i�1) orthogonal subsets. In particular, corresponding

to each of the code sequence in Ck
i , the subsets Ck

i�1,Ck
i�2, · · · ,Ck

1 carry 2

1, 22, . . . , 2i�1 number

of child signatures respectively. Therefore, major part of the MAI (or intergroup MAI) on a

particular signature in a subset is due to the child signatures. Since the number of child signatures

is usually decided by the level of the subset, a subset with lower level (low value of l or high

value of i) has comparatively more number of child signatures and hence, is subjected to the

higher level of MAI. Equivalently, the following relation summarizes the effect of MAI on

different subsets.

MAICk

1

< MAICk

2

< · · · < MAICk

k

(8)

According to the expression in (8), each signature in the orthogonal subset at the highest level

(of largest size) is subjected to the least level of MAI. Hence, the corresponding subset validates

its candidature to be decoded first.

Fig. 2 (b) shows the overall cross-correlation matrix associated with that of C3 i.e., ⇢3 =

�
C3
�TC3, where the matrix and its respective tree structure are shown by Table II and Fig. 2 (a)

respectively. The row-a or column-a in Fig. 3 presents the correlation coefficients for user-a for

1  a  14. While the non-zero entry in a cell indicates the presence of correlation among the

particular signatures, the cells with no entries implies the orthogonal nature of the signatures

involved.

Now, we attempt to justify the errorless nature of the proposed decoder. So, first, we present

Lemma 1 which further guides to the whole proof in Theorem 2.

Lemma 1: For Ck 2 {±1, 0}Nk

⇥M
k denoting the fully loaded SMOS (Type I), the decoding

of the subset with the least MAI using MF detection is always errofree.

Proof: According to (8), the subset with the least MAI in SMOS Ck is Ck
1. Adopting the

logic of MF, the decision of sign(z1) corresponding to x1 will be errorless, if and only if ˆx1 =

sign(z1) = x1 where

z1 = r
�
Ck

1

�T
=

kX

i=1

⇢1ixi (9)

for ⇢1 = [⇢11|⇢12| · · · |⇢1k] denoting the matrix representing the cross-correlation coefficients

of all the subsets with respect to Ck
1, such that ⇢11 =

�
Ck

1

�TCk
1, ⇢12 =

�
Ck

1

�TCk
2, . . ., ⇢1k =
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(a)

(b)

Fig. 2: (a) Twin tree Structure for C3 (b) Correlation Matrix for C3: ⇢
3

=
�
C3

�
T C3

�
Ck

1

�TCk
k. So, for any signature in Ck

1 (say signature-u), the relation x̂1u = x1u, is true, only if

the following expression on ⇢1 holds valid.

⇢11(u, u) >
kX

i=2

N
k

2i�1X

v=1

⇢1i (u, v) (10)

Note that the expression in (10) fully complies with the attribute of SMOS cited in (4). Here,

the fundamental logic of decoding is governed by the fact that the errorless recovery of the

input data in the multi-user environment in CDMA is feasible, if the level of its auto-correlation

exceeds that of the net cross-correlation on it.

For better realization, let us take a look at the correlation matrix for C3 (⇢3 in Fig. 3). The first
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8 rows or columns indicate the cross-correlation entries for the users of C3
1, which can be denoted

individually as C3
1a for 1  a  8. For an arbitrary user in C3

1, the correlation vector presenting

the non-zero correlation coefficients is found to be {1, 1/21, 1/22}, where the first and the rest indi-

cate the level of auto and peak cross-correlations respectively. Extending the analysis to the gen-

eral case of Ck, the correlation vector of any user in Ck
1 becomes {1/20, 1/21, 1/22, · · · , 1/2k�1}, which

also approves the relation in (10), since 1 > (

1/21 + 1/22 + · · ·+ 1/2k). Now, if we remove Ck
1 from

Ck indicating the successful detection of ˆxk1 then following (8), Ck
2 is to be counted as the subset

with the least MAI and the correlation vector for any user in Ck
2 becomes {1/21, 1/22, · · · , 1/2k�1}.

This verifies the logic associated in (10) too, as 1/21 > (

1/22 + 1/23 + · · ·+ 1/2k). Thus, with the

similar approach of removing a series of subsets from the higher level of the tree (say p subsets:

Ck
1, Ck

2 . . . , Ck
p), we can show the decoding of subset-(p+ 1) to be errorfree. Therefore, for the

proposed code design, it is possible to decoder the subset with the least MAI with no error. ⌅

Theorem 2: For Ck 2 {±1, 0}Nk

⇥M
k being the fully loaded SMOS (Type I), there exists

a feasible model low complex decoder for the error less detection of the input vector x 2

{1,�1}Mk .

Proof: The proof is guided by the outcome from Lemma 1, adopting which the subset of Ck

with the least MAI (i.e., Ck
1) can be decoded with no error. This can be considered as the first

stage of the multi stage decoder. After it is correctly decoded (i.e., ˆx1 = x1), this is possible to

accurately estimate its level of MAI on other (k � 1) subsets i.e., i1 = Ck
1ˆx1. Now, subtraction

of i1 from r (also call r1) generates r2, such that

r2 = r1 � i1 =
kP

i=2
Ck

i xi

is the summed transmitted signal of the matrix with remaining (k � 1) subsets still left to be

decoded:
⇥
Ck

2|Ck
3| · · · |Ck

k

⇤
. According to (8), Ck

2 then becomes the subset under the least MAI.

With reference to Fig. 3, for each of the (

N
k/2) users of Ck

2, the correlation vector becomes

{1/21, 1/22, · · · , 1/2k�1} and validates the relation in (10). Hence, the input vector corresponding to

Ck
2 is also detectable with no error (i.e., ˆx2 = x2) and this becomes the second stage of MUD. On

a recurrent mode, similar interpretation of Lemma 1 is to be carried out sequentially till stage-k

so as to validate the error free decoding of ˆx3, ˆx4, . . . , ˆxk corresponding to Ck
3,Ck

4, . . . ,Ck
k from

r3, r4, . . . , rk denoting the summed data vector for
⇥
Ck

3|Ck
4| · · · |Ck

k

⇤
,
⇥
Ck

4| · · · |Ck
k

⇤
, . . .,

⇥
Ck

k

⇤
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TABLE IV

MUD for Noisy Channel

For stage-i (1  i  k), Estimate

• i
i

= Ck

i�1

x̂k
i�1

• y
i

= y
i�1

� i
i�1

(where y
1

= y, and i
1

= 0
Nk⇥1

)

• z
i

= y
i

Ck

i

• x̂
i

= sign(z
i

)

Finally, x̂ = {x̂
1

, x̂
2

, · · · , x̂
k

} is the decoded vector.

respectively. This completes the proof. ⌅
From the above proofs (Lemma 1 and Theorem 2), the reduced complexity of the decoder’s

design can be speculated. Now, we present a practically implementable design of the decoder

for noisy transmission in Table IV. The only deviation that needs to be noted in the following

steps is the substitution of r (noiseless received vector) by y (the noisy received vector in (1)).

Note 1: Careful observation reveals that the proposed code set Ck is a subset of the UD

matrix generated at the kth iteration of the construction proposed in [11], [36]. This implies

that for these matrices, all the features of the proposed system can be realized, if and only if

the transmission corresponding to the specific signatures (besides Ck) remain inactive. In other

words, the system in [11], [36] can have a low complex decoder for noisy transmission at the

cost of sacrificing the asymptotic equality of �(k) with Ssum(k).

V. PERFORMANCE ANALYSIS

A. Bit Error Rate

While for the noisefree transmission, the proposed MUD guarantees for unique detectability,

existence of error in the recovery of xk is inevitable, when the channel gets noisy. From Table

IV, the elaborated expression of zi corresponding to the subset Ck
i can be written as

zi =
⇣

N
ef

i

N
k

⌘
Ixi +

kX

u=(i+1)

⇢iuxu +

i�1X

v=1

⇢iv(xv � ˆxv) + ni (11)
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where xi is the desired input vector, ⇢iu and ⇢iv denote the cross-correlation matrix of the desired

subset (Ck
i ) with respect to the child subsets (already detected, and denoted as Ck

v) and the root

subsets (to be detected, and denoted as Ck
u). In (11), the terms involving ⇢iu and ⇢iv represent

the sources of MAI where (xv � ˆxv) indicates the error introduced during decoding in previous

(i� 1) iterations and ni =
�
Ck

i

�Tn = AWGN vector with zero mean.

To determine the probability of error for the jth user of Ck
i , let us rewrite the expression in

(11), such that

zij =
⇣

N
ef

i

N
k

⌘
xij +

kX

u=(i+1)

⇢iu(j)xu +

i�1X

v=1

⇢iv(j)(xv � ˆxv) + ni(j) (12)

where xi =


xi1xi2 · · · x

i
N

k

2i�1

�
, zi =


zi1zi2 · · · z

i
N

k

2i�1

�
, and ni =

⇥
ni(1)ni(2) · · ·ni(N

k

)

⇤
. Following

the central limit theorem, the terms (second and third) contributing to MAI in (12) can be

considered as the secondary source of noise. Hence, this is logical to simplify the expression in

(12) as

zij =
⇣

N
ef

i

N
k

⌘
xij + ⌘ij. (13)

With the expression in (13) representing the communication system model for a single user

BPSK system, we can write the probability of error of the user-j in subset-i as

P ij
e =

1p
2⇡�

1Z

N
ef

i

N
x
ij

e
�
 
⌘2ij
/�2

!

d⌘ij (14)

which on further modification can also be written as

P ij
e =

1

2

erfc

 
N

ef

i

N
xijp
2�

!
= Q

0

BB@

vuut
⇣

N
ef

i

N

⌘2
E

�
x2ij
�

�2

1

CCA . (15)

For better accuracy, the value of �2 in (15) is estimated to be

E (⌘ij
2
) =

kP
u=(i+1)

⇢2iu(j)E (xu
2
) +

i�1P
v=1

⇢2iv(j)E
�
(xv � ˆxv)

2�
+ E

�
ni(j)

2
�

(16)

In (16),

E

�
(xv � ˆxv)

2�
= 0Pc

v
+ 4Pe

v
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where P v
c and P v

e denote the probability of correctness and error in decoding, corresponding to

the binary input. Therefore, the resultant expression for P ij
e is derived to be

P ij
e = Q

0

BBB@

vuuuuut

⇣
N

ef

i

N

⌘2
E

�
x2
ij

�

kP
u=i+1

⇢2iu(j) + 4

i�1P
v=1

⇢2iu(j)P
v
e + E

⇣
n2
i(j)

⌘

1

CCCA
, (17)

where E

�
ni(j)

2
�
= (

N
o/2).

B. Error Performance of Individual Subsets

For the CDMA system employing the ternary matrices, error performance of a user or group

of users using the linear decoder is primarily influenced by two crucial metrics i.e.; the net level

of MAI and the available diversity (spreading gain). Therefore, we may expect the hierarchy of

MAI in (8) and the order of Nef defined as

Nef
1

> Nef
2

> · · · > Nef
k

(18)

to jointly approve for the following order in BER among the k subsets.

BERCk

1

< BERCk

2

< · · · < BERCk

k

, (19)

In the above expressions, Nef
i

and BERCk

i

denote the effective spreading gain and the average

BER for subset Ck
i . Here, this is important to realize that the value of Nef i is directly proportional

to the transmitted power associated with a signature in subset-i. Now, it is worthy to follow the

derived expression in (17) and explain behavior of the curves representing the average BER of

the individual subsets.

For lower values of Eb/No (or higher values of E

⇣
n2
i(j)

⌘
in the denominator in (17)), when

the level of MAI is constant, the order of available diversity (Nef
i

in the numerator) primarily

dominates and results in the order of error performance of the subsets, as shown in (19). On

a closer investigation of the MUD, the flow of the algorithm appears to be sequential i.e.; the

subset with lower value of Nef or at lower level of the tree is recovered only after the decoding

of that with higher value of Nef or at higher level. Consequently, the BER performance of the

latter being improved than that of the former is perceptible. Nevertheless, for the higher values

of Eb/No, there exists the possibility of unusual variation in the order of their BER. Therefore,

the analysis takes a different turn with the following elaboration.



20

For higher values of Eb/No (or lower values of E

⇣
n2
i(j)

⌘
in the denominator in (17)), the

factor that crucially controls the quality of recovery of the immediate next subset (Ck
i+1) is the

net level of MAI, due to the remaining subsets (Ck
i+2, . . .Ck

k). From Lemma 1, this is already

clear that for
⇥
Ck

i+1|Ck
i+2| . . . |Ck

k

⇤
being the decoding matrix, the net level of MAI on Ck

i+1 is

always less than that on Ck
i corresponding to the decoding matrix of

⇥
Ck

i |Ck
i+1| . . . |Ck

k

⇤
. So, the

lowering in level of BER for Ck
i+1 (lowering of first term in denominator in (17)), as compared

to Ck
i is expected over a certain higher range of Eb/No, even if it carries a low order diversity.

This indicates that there exists a high probability that the impact of MAI will dominate over that

of the diversity. As a result, the subsets spaced at the bottom level of the tree will perform better

than that of the top level. The value of Eb/No at which the fall in BER with respect to that of

the subsets at higher level will start, is influenced by its level in the tree hierarchy (hence, the

total level of intergroup MAI) and the value of Nef .

C. Complexity

The proposed decoder deciphers all the k orthogonal subsets of Ck in k sequential stages.

The detection of a particular subset at a specific stage is achieved by simple logic of matched

filtering. Moreover, each stage is followed by an intermediate stage meant for the estimation and

cancellation of the interference due the subsets, already detected. However, the complexity rise

if compared with that of the iterative cancellation techniques involved in [15]–[17], [23], [25],

[42] is found to be highly marginal. Hence, the performance of the decoder as compared to that

of the optimum MLD [38] shows a catastrophic saving in complexity. We recall that the method

of detection using optimum MLD strictly demands the calculation of 2

M
k Euclidean Distance

(ED) vectors of length Nk, adopting which the rise in complexity behaves exponentially with

the value of Nk.

VI. SIMULATION RESULTS

In this section, we focus on the BER versus (Eb/N0) performance of the proposed system,

assuming the channel to be AWGN. The system is supposed to be BPSK modulated and perfectly

power controlled.

Fig. 3 is meant to offer an insight of the efficiency of SMOS as compared to two other class of

codes: binary random and WBE sequences. Where for SMOS (Type- I, II, III), we consider the
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Fig. 3: BER versus (E
b

/N

o

) performance for three different systems of dimension (64⇥ 96): ternary SMOS (Type I, II,

III), binary random and BWBE with iterative decoder.

proposed MUD (as shown in Table IV), an iterative decoder with soft limiting [44] is preferred

for the random and WBE sequences. To have the uniformity in analysis, the matrix dimension for

all is kept at (64⇥ 96) leading to � = 1.5. Simulation of conventional CDMA using Hadamard

matrix of dimension (64⇥ 64) is also included as the performance benchmark. As evident, for

Eb/No < 11 dB, a marginal improvement in BER of the WBE codes as compared to SMOS

is observed. But, for Eb/No > 11 dB, the level of BER of WBE saturates. This is because

the mapping of binary WBE codes unlike the UD matrices lags the invertible characteristic.

Therefore, by no means, it is possible to reduce the BER below the error floor, even not by

enhancing the Eb/No to infinite. In contrast, for SMOS, the gradual approach of the BER level

to zero with increase in Eb/No is justified. Also, in spite of the varied architectures involved

in constructions, the coveted equality in the level of error performance for all the three types

of SMOS is shown. Hence, onwards, for all other simulations, we consider the SMOS (Type I)

only and this is not uncommon to expect the Type- II and III to carry the similar performance

profile.

In Fig. 4, the variation in error performance of SMOS (Type-I), subjected to the increase in

value of � (for k = 6 or Nk = 64) is presented. We start with the largest subset of C6
64⇥126
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Fig. 4: Variation in BER versus (E
b

/N

o

) for SMOS (Type I) with increase in matrix dimension for k = 6 i.e., N
k

= 64:

C
64⇥64

=
⇥
C6

1

⇤
, C

64⇥96

=
⇥
C6

1

|C6

2

⇤
, C

64⇥112

=
⇥
C6

1

|C6

2

|C6

3

⇤
, C

64⇥120

=
⇥
C6

1

|C6

2

|C6

3

|C6

4

⇤
, C

64⇥124

=
⇥
C6

1

|C6

2

|C6

3

|C6

4

|C6

5

⇤
,

C
64⇥126

=
⇥
C6

1

|C6

2

|C6

3

|C6

4

|C6

5

|C6

6

⇤
corresponding to � = 1, 1.5, 1.75, 1.875, 1.94, 1.97.

(i.e., C6
1) and subsequently, smaller subsets (C6

2, C6
3, C6

4, C6
5, C6

6) are added one-by-one in order

to realize six different enhanced loading conditions: � = 1.5, 1.75, 1.875, 1.94, 1.97. For C6
1,

the error performance being identical to that of H64 is obvious, since C6
1 = H64. The further

degradation in the level of BER with the increase in � is due to the hike, both in the level of

MAI and number of stages involved in decoding.

Fig. 5 (a) and (b) illustrates the error performance of the individual subsets of C6
= C64⇥126 =

⇥
C6

1|C6
2|C6

3|C6
4|C6

5|C6
6

⇤
, when the detection is achieved by the proposed MUD and the conven-

tional MF decoder respectively. While the curves in Fig. 5 (b) validates the expression in (8),

their behavior in Fig. 5 (a) shows an unprecedented variation over the range of Eb/No. This is

already explained in detail in Section V (B). In Fig. 5 (b), the dramatic lowering in the level of

BER of C6
1 is best explained by Lemma 1.

Fig. 6 illustrates the impact of the detection error introduced at one stage of the MUD in

affecting the average error performance of the subsequent stages. In Fig. 6 (a) and (b), we

show the average and the minimum level of the BER performance for the individual subsets

respectively. To validate the tendency of the curves for the minimum level of BER, we follow
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(a) (b)

Fig. 5: BER versus E

b

/N

o

for individual subsets of C
64⇥126

=
⇥
C6

1

|C6

2

|C6

3

|C6

4

|C6

5

|C6

6

⇤
for synchronous transmission for (a)

proposed MUD (b) matched filter decoder

the statement of Lemma 1. It is just because Lemma 1 serves as the fundamental layout towards

the designing of the proposed MUD, following whose extrapolation for the noisy transmission,

the subset under the least MAI can be efficiently decoded with the minimum probability of

error. So, in order to plot for the subsets C6
1, C6

2, C6
3, C6

4, C6
5, and C6

6, we selected the decoding

matrices
⇥
C6

1|C6
2|C6

3|C6
4|C6

5|C6
6

⇤
,
⇥
C6

2|C6
3|C6

4|C6
5|C6

6

⇤
,
⇥
C6

3|C6
4|C6

5|C6
6

⇤
,
⇥
C6

4|C6
5|C6

6

⇤
,
⇥
C6

5|C6
6

⇤
,
⇥
C6

6

⇤

respectively, such that each subset following the tree hierarchy of the corresponding matrix is

under the least level of MAI. It further implies that in order to plot the minimum level of BER

of a particular subset of C64⇥126, we assume the subsets at the higher levels of the tree structure

(if any) to be inactive (not transmitting). With this approach, our intention is to neglect the effect

of MAI on the subsequent stages of MUD due to the detection error induced in previous stages

(second term in the denominator in (17)). Still, in both the cases, the behavior of the subsets

hardly shows any noticeable deviation as far as their order among the BER is concerned over a
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(a) (b)

Fig. 6: For individual subsets of C
64⇥126

: (a) average BER versus E

b

/N

o

for (b) minimum BER versus E

b

/N

o

fixed span of Eb/No. Indirectly, this confirms that for the lower and higher values Eb/No, it is

the two factors only: the value of Nef and the net level of MAI on the subset, which controls

this order. On the other hand, it also validates the fact the propagation error from one to next

stage hardly has any command over this order, even though it has a marginal impact on the

overall error performance of the subsets.

VII. CONCLUSION

We investigated the problem of designing a new set of UD matrices for overloaded synchronous

CDMA system that carries multiple orthogonal subsets. Based on the study of literature, we

identified the basis matrix and built up an unique perspective towards the construction of the

proposed matrix that comprises of multiple orthogonal subsets. While the orthogonality of each

subset ensured for the zero intra-group MAI, the existing inter-group MAI among the subsets

is balanced by the advantageous pattern of the twin-tree structured cross-correlation hierarchy.
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As a result, the linear decoding logic of matched filtering became efficient to support as the

fundamental block of the decoder for the errorfree recovery for the noiseless channel and strongly

retained its low complexity even for the noisy case. While analyzing the error performance, we

emphasized more on the individual subsets than that of the overall matrix and observed the non-

uniformity in their order. The impact of the spreading diversity and MAI being jointly responsible

for the unusual behavior of the BER curves was clearly explained with reference to the derived

expression of the average error performance. Moreover, the superiority in BER of the proposed

code set over the binary random and WBE sequences was also shown through simulation. By

and large, it may be concluded that imposing an efficient correlation structure on the signature

set in CDMA can not only bring a dramatic reduction in complexity of the decoder but also

guarantee for the better error performance.

In the future studies, we will investigate on other feasible matrix constructions with the tree-

structured hierarchy of correlation. Along with, the system design involving more complicated

wireless communication system with multi-path (or fading) channel, higher order modulation

will also be considered.
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