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Abstract: With the emerge of social networks and improvements in the Internet speed, the video data has become an ever-
increasing portion of the global internet traffic. Besides the content, the quality of a video sequence is an important issue at the user
end which is often affected by various factors such as compression. Therefore, monitoring the quality is crucial for the video content
and service providers. A simple monitoring approach is to compare the raw video content (uncompressed) with the received data
at the receiver. In most practical scenarios, however, the reference video sequence is not available. Consequently, it is desirable to
have a general reference-less method for assessing the perceived quality of any given video sequence. In this paper, we propose
a no-reference video quality assessment technique based on video features. In particular, we consider a long list of video features
(21 sets of features, each consisting of 1 to 216 features) and examine all possible combinations (221 − 1) for training an Extra
Trees regressor. This choice of the regressor is wisely selected and is observed to perform better than other common regressors.
Our results reveal that the top 20 performing feature subsets all outperform the existing feature-based assessment methods in
terms of the Pearson linear correlation coefficient (PLCC) or the Spearman rank order correlation coefficient (SROCC). Specially,
the best performing regressor achieves PLCC = 0.786 on the test data over the KonVid-1k dataset. We believe that the results of
our comprehensive comparison could be potentially useful for other feature-based video-related problems. The source codes of
our implementations are publicly available.

1 Introduction

With the excessive growth of video content and video applications,
the quality assessment of video sequences has become of great
importance. According to [1], video content will account for 82%
of global internet traffic in 2022 from which 17% is dedicated to
live streams. Depending on the involved processes, the quality of
video sequences might be different. Most notably, optical distortions
imposed by the camera at the time of recording, distortions caused
by the data compression, and the data loss within the communication
channel affect the overall quality. In addition, at the receiving end,
the original/reference video file is rarely available. This eliminates
the possibility of using a full-reference video quality assessment
(FR-VQA) algorithms. In this case, the class of no-reference video
quality assessment (NR-VQA) algorithms is the only option. These
methods predict the quality of a video file according to certain qual-
ity measures (e.g., mean opinion score, or shortly MOS) solely based
on the available data. The prediction procedure oftentimes relies
on the statistical features of the video files. Some of the known
no-reference assessment methods are V-BLINDS [2], VIIDEO [3],
V-CORNIA [4], and STFC [5].

For measuring the performance of an assessment method, it is
common to check the outcome of the method on a database which
is already rated by the users. The LIVE video quality assessment
database [6] has been a frequently-used database for evaluating the
performance of NR-VQA methods in the past. This database con-
tains 10 video files each accompanied with 15 synthetically distorted
versions and the ratings of 38 users. Methods such a [2, 3, 7] have
reported very good performances over this dataset. Aside from the
small size of this dataset, different distortion types are separately
applied to the source files, which is somehow different from the
practical scenarios where a video file usually suffers from multiple
distortion types with various degrees.

Recently, the KonVid-1k database with 1200 video files is made
available [8] which contains real distorted video files. With respect to
the size and distortion types of the files, this database is expected to

provide a more realistic test-bed for NR-VQA methods. It is counter-
intuitive to mention that some of the successful methods on the LIVE
Video Quality database perform poorly on the KonVid-1k database
[8].

Most NR-VQA techniques rely on learning the quality measure
from a training dataset. For the learning process, one can either use
the full video content or its reduced version in form of a number
of features. The latter approach, besides the advantage of less com-
putational cost, can be applied to arbitrary video frame sizes (if the
features are properly chosen). In this paper, we first cover a list of
21 feature sets and consider all 221 − 1 combinations of these fea-
ture sets to train an Extra Trees regressor; we should highlight that
the Support Vector Regressor (SVR) has been the dominant regres-
sor in the existing techniques and the use of Extra Trees regressor in
this work is its first appearance in the VQA-related context. Based
on the achieved performance of the trained regressors, we discuss
how the features can be efficiently selected to achieve good results
while avoiding high computational costs. By dividing the features
into two categories of frame-level (within one video frame) and spa-
tiotemporal (considering the frames over time), we find out that
the statistics of the luma channel is the most informative frame-
level feature (indeed, the most informative among all features). The
results also assign significant weight to frame-level HOSA [9] and
CORNIA scores as features. Furthermore, the most relevant spa-
tiotemporal feature set is generated by the V-BLINDS method. We
also define certain angular-type spatiotemporal features in this paper
that enhance the V-BLINDS features.

1.1 Contributions

In this paper, we present a machine-learning based study on the
problem of NR-VQA. To this end, we provide a list of video fea-
tures employed in the existing NR-VQA methods, as well as some
new features defined in this work. Next, we evaluate the perfor-
mance of NR-VQA models formed by combining different features.
This study consists of evaluating the effect of both the regressor
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Fig. 1: A video file can be viewed in a 3D spatiotemporal space, where two of the axes indicates the spatial dimensions (x and y) and the
third axis represents the time (t). (a) representation of RGB color space in spatiotemporal space. (b) representation of luminance channels in
spatiotemporal space. (c) spatial and spatiotemporal slices of the video.

type and the feature combinations. While the choice of the regres-
sor is often ignored in the NR-VQA literature, we observe that it
has a significant impact on the performance. To identify important
features in predicting the video quality, we perform several experi-
ments and comparisons. Specifically, we find that a success model
needs to have a balanced combination of frame-level and spatiotem-
poral features. We further propose new spatiotemporal features that
could be efficiently combined with frame-level features. In brief, the
contributions of this paper are

• We explore the effect of the regressor on the outcome of the NR-
VQA on a small-size problem. The best performing regressor (Extra
Trees regressor) is then used for the remaining large-size problems.
• We introduce new spatiotemporal features by considering the
video content as a 3D cube; some of these features later appear in
high-performance NR-VQA feature combinations.
• We study the performance of all possible subsets of the features to
identify the significance of each feature in the overall performance
of a NR-VQA method; in particular, we report the performance of
the pairs of the feature sets to introduce the best matching features.
• We investigate the importance of each feature group through a
decision tree based regressor. The feature groups achieving the high-
est scores in this experiment are interpreted as most relevant feature
groups in predicting video quality. Interestingly, the results match
that of the comprehensive feature subset experiment (feature groups
appearing in the top performing subsets).
• We introduce several feature subsets with small size that perform
very well; the restriction on the size of the feature subsets helps us
to cut the unnecessary computational cost.
• The top 20 performing feature subsets have competitive per-
formance with the state-of-the-art feature-based NR-VQA (even
deep-learning approaches)

1.2 Structure of the paper

We first review the related works in Section 2. Next, we describe the
proposed method in Section 3 and provide experimental results in
Section 4. Finally, the paper is concluded in section 5.

2 Related Works

In most of the previous studies of NR-VQA, the quality measure
of Mean Opinion Score (MOS) is predicted by applying the SVR
method on a set of statistical features extracted from the video data.
For instance, [2] uses Natural Video Statistics (NVS), frame-level
Natural Scene Statistics (NSS) (i.e., features introduced in [10]), and
a number of defined motion-related features.

In [3], the statistics of frame differences directly determine the
quality measure (without regression). Although remarkable perfor-
mance is reported on the LIVE VQA database, the performance of
this method on the KonVid-1k database is disappointing [11].

A video file can be considered as the concatenation of multiple
images. Based on this fact, the image quality assessment technique
in [4] is applied in [12] to get the video quality metric by aggregation
of frame-by-frame quality metrics.

A set of five features (i.e., average frame blurriness, average frame
contrast, average frame colorfulness, average spatial information in
frames, and average temporal information) is introduced in [11] to
predict the MOS via SVR. Since most of the feature extractions in
[11] are performed frame-by-frame, in order to consider temporal
variations, a number of spatiotemporal features are added to the pre-
vious five features in [5]. Similarly, two types of regressions (namely,
a SVR and a neural network) are trained in [13] by using a set of
features from spatiotemporal slices. The NARVAL model in [14],
also combines frame-level and video-level features. A modified ver-
sion of this model called BB-NARVAL takes advantage of natural
scene statistics reported in [2, 15]. In [16], the frame-level features
are divided into two computational categories of low-complexity and
high-complexity; the low-complexity features are extracted from all
the frames, while the high-complexity features are extracted from
only a subset of the frames. Low-complexity and high-complexity
features are concatenated into a single feature vector for train-
ing a SVR and a random forest regression (named TLVQM-SVR
and TLVQM-RFR, respectively). In [17], several feature-based NR-
VQA models are employed to extract statistical video features which
are then combined to train a quality prediction SVR.

The deep-learning approaches for video quality assessment are
quite recent due to their high computational requirements. In [18,
19], a 2D convolutional neural network (CNN) with recurrent neu-
ral networks are proposed. A 3D-CNN with recurrent units is also
presented in [20]. Combining the feature-based techniques and deep-
learning approaches, [21] uses a pooling of the frame-level feature
maps of Inception-V3[22] and Inception-ResNet-V2[23] to train a
SVR for each model. Several slices of the spatiotemporal cube are
used to train a CNN in [24] which generates the overall score by
averaging over the patch scores. In [25], a CNN is employed to
extract frame-level features which are then, fed to a gated recurrent
unit (GRU). Similarly, in [26, 27], hand-crafted frame-level features
are fed to long short-term memory (LSTM) unites. In [28], a deep
neural network is proposed which consists of a quality degradation
learning sub-network (with convolutional layers) and a motion effect
modeling sub-network (with recurrent layers). In [29], several fea-
tures (12 feature values per frame and 108 pooled feature values per
video sequence) are extracted from each video and then, the num-
ber of features are reduced after a feature selection using the Extra
Trees. Finally, a random forest regression is applied to predict the
video quality score. However, no analytical results is reported for
the selected features and the importance of the selected features.
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Table 1 Summary of video features

Feature # features Exe. Time

1 Frame Rate 1 0

2 Spatial Gradient 24 1.9

3 Spatiotemporal Gradient 48 9.9

4 Spatial Laplacian 12 1.8

5 Spatiotempral Laplacian 24 7.3

6 Spatial Gradient Amplitude 12 2.0

7 Spatiotempral Gradient Amplitude 24 10.1

8 Spatial Angular Information 8 2.0

9 Spatiotempral Angular Information 16 10.1

10 Luma Information 12 2.3

11 Chroma Information 24 3.9

12 Temporal Information 12 2.6

13 Colorfulness 42 2.9

14 LMSCN Statistics 216 39.7

15 BRISQUE Scores 6 39.8

16 V.BLINDS 46 771.7
(16_NSS) (37) (99.1)
(16_NVS) (7) (539.5)
(16_Motion) (2) (133.1)

17 VIIDEO features 72 225.4

18 HOSA Scores 6 62.8

19 CORNIA Scores 6 4.5

As explained above, the main distinguishing part in different
feature-based methods (not using deep learning) is the set of used
features. Indeed, the SVR has been the dominant regressor. In this
paper, we consider a collection of features in the existing works
and apply different regressors in a single test. By choosing the best
regressor in this test (Extra Trees), we find the optimal feature-set
selection by an exhaustive search.

3 Proposed method

3.1 Overview

As mentioned earlier, we consider machine learning approaches for
the purpose of no-reference video quality assessment. After describ-
ing several video quality metrics in Section 3.2, we shall train
several regressors. From machine-learning point of view, each stud-
ied method consists of a number of features and a regressor, which
translates the feature values into a single quality score. To distin-
guish between the impacts of the features and the regressors in the
final performance , we consider two experiments. In the first experi-
ment, by including a full list of features, we train various regressors.
The goal of this experiment is to evaluate the effect of the regres-
sor and to identify the best choice. In the second experiment, we fix
the regressor (the best performer in the first experiment) and repeat
the training phase by considering all combinations of the features.
The result of the latter experiment is likely to identify the features
with the highest impact on the quality assessment task. Based on
this experiment, we can also find the frequency of features in the top
performing models and use that as an importance metric for each
feature. In addition, as a special case, we check the performance of
single and pairs of features to provide a better intuition about the
overlapping or complementary nature of the information encoded by
the features. As another metric for the importance of each feature, we
train an Extra Trees regressor and find the mean decrease impurity
(MDI) score [30] over all trees in the trained regressor.

3.2 Video Features

A video file can be considered as a cube of spatiotemporal data
indexed by x, y, and t axes; x and y represent the horizontal and
vertical spatial axes, while t represents the time axis. The standard
frames of the video are simply the xy slices of this cube. Similarly,
one can define xt and yt slices as spatiotemporal frames. As each
video pixel consists of luma and chroma components, we can decom-
pose the video cube into one luma cube and two chroma cubes. For
better illustration, a sample video cube and the mentioned slices are
shown in Figure 1.

In this work, we consider various features extracted from the
frames (xy slices), frame differences (temporal features) or spa-
tiotemporal slices (xt and yt). To make the method independent of
the video length and frame size, we use the statistics of these features
(e.g., mean and variance) instead of their raw values. The summary
of considered features and their execution time∗ are provided in
Table1. The explanation of these features is provided below.

3.2.1 Frame rate: The number of frames within each second of
video. This value is a single-element feature set which can identify
low quality video files, when the frame rate is below the standards.

3.2.2 Spatial Gradient: Each video frame represents an image;
the horizontal and vertical gradients (derivatives) of this image reveal
the edges. For this feature, we apply two 3× 3 filter kernels (hori-
zontal and vertical directions) on the luminance channel of the frame.
Next, we compute the mean and standard deviation for each frame
(4 values in total). The final features in this set are determined by
the minimum, maximum, mean, standard deviation, skewness, and
kurtosis of these values along the video (total of 24 features).

3.2.3 Spatiotemporal Gradient: The introduced spatial gradi-
ent features are directly extracted from the frames. As explained
earlier, we can use spatiotemporal slices (xt and yt) instead of the
frames and apply the same strategy as above to obtain 48 features;
24 for xt slices and 24 for yt slices. While the gradient of the frames
reveal spatial edges, the gradient of the spatiotemporal slices can
reveal scene changes and temporal movements of the objects.

3.2.4 Spatial Laplacian: The Laplacian of a frame is a particu-
lar 2nd order derivative of the data and is known to be rotation and
scale-invariant. We implement the Laplacian operator via a 5× 5 fil-
ter kernel applied to the luminance channel of the frame. We find the
mean and standard deviation of the result over each frame and use
the minimum, maximum, mean, standard deviation, skewness, and
kurtosis of these values along the video as the features (total of 12
features).

3.2.5 Spatiotemporal Laplacian: To provide uniformity along
all the three axes of the video cube, we also include the features
related to the Laplacian of the spatiotemporal slices. Then, similar
to the procedure explained for spatial Laplacian features, we obtain
24 features representing the spatiotemporal Laplacian (12 features
for each of the xt and yt slices).

3.2.6 Spatial Gradient Amplitude: The gradient of an image
is a 2D vector at each pixel (vertical and horizontal derivatives). We
define the amplitude of this vector as the spatial information at a
pixel:

‖g‖ =
√
g2
x + g2

y, (1)

where gx and gy are the horizontal and vertical derivatives of the
luminance channel of the frame at a given pixel, respectively. We
should highlight that the information of the gradient components is
already included in the gradient features. However, the relationship
between the gradient components and their amplitude is nonlinear.

∗On a machine with an Intel(R) Core(TM) i7-8700K CPU over videos of

KonVid-1k dataset (each video has a length of around 8 seconds with 24 -

30 frames per second and 960× 540 resolution.).
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Therefore, the quality estimates of a regressor based on the gradi-
ent amplitude features might be better than the ones based on the
gradient components, and vice versa. Hence, we include both sets
of features. Similar to the previous features, we calculate the mean
and standard deviation of these amplitudes over a frame and report
the minimum, maximum, mean, standard deviation, skewness, and
kurtosis of them along the video as the features (total of 12 features).

3.2.7 Spatiotemporal Gradient Amplitude: We repeat the
above procedure for spatiotemporal xt and yt slices to obtain two
sets of 12 features (24 features in total).

3.2.8 Spatial Angular Information: As we included the fea-
tures related to the components of the gradient and its amplitude
separately, it is logical to include a number of features that describe
the angle of the gradient. Indeed, the direction of the gradient vector
at each pixel reveals the local orientation of the edges, and human
visual system is sensitive to angles [31]. We initially define the
gradient angle at each pixel as

θg = tan−1 ( gy
gx

)
.

Next, we discard the pixels at which the gradient amplitude value
is below a threshold (this threshold is set as 20). This is due to the
fact that the orientation of the gradient vector does not carry much
information when the gradient amplitude is small. For the remaining
pixels, we calculate the mean and standard deviation over the frame
and report the mean, standard deviation, skewness, and kurtosis of
them along the video as the features (total of 8 features). It is worth
mentioning that the angular information is differently represented in
[31].

3.2.9 Spatiotemporal Angular Information: Similar to the
previous parts, we repeat the procedure for spatial angular features
on xt and yt slices to obtain 16 spatiotemporal angular features (two
sets of 8 features).

3.2.10 Luma Information: The RGB representation of image
pixels is one of the popular representations in which the color and
brightness information are simultaneously encoded. The decompo-
sition into brightness and color information is also very common for
encoding video frames. The luma, the luminance, or the brightness
component includes the morphological and geometrical content of
the video. For instance, the sharpness (or blurriness) of the frames
could be directly inferred from the luma channel. For this purpose,
we compute the mean and standard deviation of the luminance chan-
nel of each video frame. Then, we report the minimum, maximum,
mean, standard deviation, skewness, and kurtosis of these values
along the video as the features (total of 12 features). It is conceptu-
ally possible to define the luma channel for xt and yt slices; however,
we ignore such spatiotemporal luma features in this paper.

3.2.11 Chroma Information: Complementary to the luma
channel, each video frame (xy) consists of two chroma compo-
nents that encode the color content of the frame. The quality metrics
related to the color content are oftentimes derived from these com-
ponents. To provide uniformity with the luma channel, we derive
the mean and standard deviation for each of the chroma components
separately, and use the minimum, maximum, mean, standard devia-
tion, skewness, and kurtosis of these values along the video as the
chroma-related features (total of 24 features).

3.2.12 Temporal Information: The difference between neigh-
boring pixels within a single frame is considered as spatial infor-
mation and is properly captured using the derivative-type operators
(such as gradient). In contrast, the temporal information of the video
is understood as the pixel variations along the t axis. To extract the
temporal features, we first subtract each luma frame from its pre-
vious luma frame in a pixel-by-pixel fashion (pixels at the same
spatial locations). Next, we form the temporal features by evaluat-
ing the mean and standard deviation of each difference frame, and
then, evaluating the minimum, maximum, mean, standard deviation,
skewness, and kurtosis of these values along the video (total of 12
features).

3.2.13 Colorfulness: The introduced chroma features mainly
capture the intensity histogram of the present colors in the video.
The colorfulness metric M (3) in [32] measures how varied the col-
ors are in a video file. To define this metric, let rg = R−G and
yb = 0.5(R+G)−B, where R, G and B stand for the red, green,
and blue components of each pixel. Now, we have:

M (3) = σrgyb + 0.3µrgyb, (2)

where

σrgyb =
√

Var(rg) + Var(yb) (3)

µrgyb =
√

mean(rg)2 + mean(yb)2. (4)

(Var and mean are acting over the values of each xy frame) To
provide a more comprehensive set of colorfulness features, we keep
Var(rg), mean(rg), Var(yb), mean(yb), σrgyb and µrgyb in addi-
tion to the overall colorfulness measure M (3). For each of these
seven frame-level values, we evaluate the minimum, maximum,
mean, standard deviation, skewness, and kurtosis along the video
(total of 42 features).

3.2.14 LMSCN Statistics: The Luma information explains the
statistics of the brightness globally over the frames. For a local
(spatially) measure of brightness we use the luminance channel in
the form of Mean Subtracted Contrast Normalized (MSCN). For
a mathematical description, let F (i, j) represent a M ×N frame
(luminance channel) with i ∈ {1, 2, ...,M}, j ∈ {1, 2, ..., N}. The
MSCN frame F̂ (i, j) is defined as

F̂ (i, j) =
F (i, j)− µ(i, j)

σ(i, j) + C
, (5)

where µ(i, j) and σ(i, j) are the weighted local mean and standard
deviation of the frame

µ(i, j) =

3∑
k=−3

3∑
l=−3

wk,lF (i+ k, j + l), (6)

σ(i, j) =

√√√√ 3∑
k=−3

3∑
l=−3

wk,l[F (i+ k, j + l)− µ(i, j)]2, (7)

and C = 1 is a regularizing constant to avoid instability. The
7× 7 weight matrix w =

[
wk,l

]
|k|,|l|≤3

mimics a symmetric 2D
Gaussian filter with

wk,l =
e−

18
49 (k2+l2)∑

|k|,|l|≤3 e−
18
49 (k2+l2)

.

The 18
49 constant is chosen such that the main lobe of the Gaussian

filter (±3σ) fits within the 7× 7 window.
The histogram of F̂ (i, j) is known to be fairly described by the

Generalized Gaussian Distribution (GGD) of the form[10, 15]:

f(x;α, β) =
α

2βΓ( 1
α )

exp
(
− |x|

α

βα
)
,

where Γ(.) is the gamma function. Besides, F̂ (i, j)× F̂ (̃i, j̃) for
|i− ĩ|+ |j − j̃| = 1 also fairly follows an Asymmetric Generalized
Gaussian Distribution (AGGD):

f(x; γ, βl, βr) =


γ

(βl+βr)Γ( 1
γ )

exp
(
− |x|

γ

βγl

)
,∀x ≤ 0,

γ
(βl+βr)Γ( 1

γ )
exp

(
− xγ

βγr

)
,∀x ≥ 0.

The mean of this distribution is given by η = (βr − βl)
Γ( 2
γ )

Γ( 1
γ )

. The

parameters (γ, βl, βr, η) for four orientations of pairing in addition

IET Image Processing, pp. 1–10
4 © The Institution of Engineering and Technology 2022



(a) (b)

Fig. 2: (a) PLCC and (b) SROCC of the ground-truth MOS and the predicted MOS by considering up to two subsets of features. The results
are achieved using 5-folded cross-validation. The main diagonals represents single group feature subsets. The brighter (darker) cells have lower
(higher) scores.

to (α, β) form a total of 18 statistical parameters. We further con-
sider the image in two scales, the original one and a down-sampled
version by factor two. We estimated the involved parameters (except
for η) using a moment-matching approach [33]. Finally, we form
the features based on these 36 parameters by finding the minimum,
maximum, mean, standard deviation, skewness, and kurtosis along
the video (total of 216 features).

3.2.15 BRISQUE Scores: BRISQUE [15] is one of the well-
known methods in estimating the quality of an image. Here, we
evaluate the BRISQUE score for each frame and generate 6 cor-
responding features by computing the minimum, maximum, mean,
standard deviation, skewness, and kurtosis of the scores along the
video.

3.2.16 V.BLINDS features: As described earlier, the V.BLINDS
method [2] uses three groups of video features: frame-level Nat-
ural Scene Statistics (NSS) [10]), Natural Video Statistics (NVS),
and some motion-related features. Here, we consider these fea-
ture groups separately (referred to as #16_NSS, #16_NVS, and
#16_Motion).

3.2.17 VIIDEO features: The method of [3] called VIIDEO
estimates the quality based on the MSCN of frame differences. The
method generates 12 parameters for any 3 consecutive frames. Here,
we produce 72 features by evaluating the minimum, maximum,
mean, standard deviation, skewness, and kurtosis of these parameters
along the video.

3.2.18 HOSA Scores: HOSA is another NR-IQA method
introduced in [9]. Similar to BRISQUE features, we extract the
HOSA score of each frame and generate 6 related features by evalu-
ating the minimum, maximum, mean, standard deviation, skewness,
and kurtosis of the scores along the video.

3.2.19 CORNIA Scores: We repeat the previous step by
replacing HOSA with CORNIA; the latter NR-IQA method is intro-
duced in [4] and provides a quality score for each frame. We generate
6 CORNIA-related features by evaluating the minimum, maximum,

mean, standard deviation, skewness, and kurtosis of this scores along
the video.

4 Experiments and Discussion

In this section, we explain our experiments and discuss our results.
First, we describe our experimental setup in Section 4.1. Next, we
evaluate and analyze different regresssor models in Section 4.2.
Finally, we discuss the results in Section 4.3.

4.1 Experimental setup

As stated previously, we use the KonVid-1k video dataset[8] to train
and test the models in our experiments. KonVid-1k dataset includes
1200 in-the-wild and public domain video sequences with the diver-
sity in terms of content and quality. Each video in this dataset has
a length of around 8 seconds with 24 - 30 frames per second and
960× 540 resolution. The videos are annotated in 5-point absolute
category rating (ACR) scale (1 for low quality, up to 5 for high
quality) using a crowd-working platform with a total number of 642
workers from 64 countries; each video has received a minimum of
50 judgments. We first extract all the features listed in Section 3.2
(total of 611 features) for each of the video sequence in this dataset.
We use the extracted features to train our regressors. The implemen-
tations of regression models are based on the scikit-learn package
[34] in Python. The source codes of our experiments are publicly
available∗.

4.2 Evaluating and Analyzing regressor models

In our first experiment, we combine all these features into a single
quality score using each of the following 9 regressors: Support Vec-
tor Regressor (SVR), Decision Tree, Random Forest, Extra Trees,

∗https://github.com/otroshi/FeatureBased-NRVQA
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Table 2 The performance of different regressors in terms of Pearson linear
correlation coefficient (PLCC), Spearman rank order correlation coefficient
(SROCC), and root mean square error (RMSE) using 10-folded cross-validation.

Regressor Train Data Test Data
↑PLCC ↑SROCC ↓RMSE ↑PLCC ↑SROCC ↓RMSE

SVR 0.601 0.604 0.103 0.535 0.536 0.109

Decision Tree 0.981 0.972 1.7× 10−5 0.576 0.588 0.116

Random Forest 0.977 0.975 0.032 0.760 0.757 0.082

Extra Trees 0.999 0.999 6.6× 10−6 0.771 0.767 0.081
Gradient Boosting 0.999 0.999 0.007 0.753 0.750 0.083

AdaBoost 0.913 0.901 0.056 0.756 0.754 0.083

XGBoost 0.752 0.753 0.110 0.676 0.671 0.114

MLP 0.716 0.701 0.088 0.532 0.529 0.109

Gaussian Process 0.999 0.999 0.006 0.752 0.753 0.083

Gradient Boosting, AdaBoost[35], XGBoost[36], multi-layer per-
ceptron (MLP)†, and Gaussian Process algorithms. For each case,
we employed a 10-folded cross-validation and evaluated the Pear-
son linear correlation coefficient (PLCC), the Spearman rank order
correlation coefficient (SROCC), and the root mean square error
(RMSE) of the estimated score (using the test data). The results
are reported in Table 2. This table indicates that the Extra Trees
regressor has the best performance according to both metrics. In
fact, the Extra Trees regressor is a decision-based algorithm with an
ensemble learning approach. Other ensemble learning-based models
such as Random Forest, AdaBoost, and Gradient Boosting achieve
comparable (but slightly worse) performances.

Next, we fix the regressor as Extra Trees and focus on the subset
of features. As V.BLINDS features (number 16 in our list in Section
3.2) consist of 3 groups of features, we can think of having 21 sets
of features (instead of 19) and examine all possible 221 − 1 ≈ 2e6
non-empty subsets. To increase the reliability of the regression out-
come, we apply a 5-folded cross-validation; i.e., we randomly divide
the dataset into 5 equal parts, use any 4 of them for the training and
leave the fifth for the test. The average performance (over 5 possi-
bilities of selecting the training files) is then reported. This implies
that there are 5× (221 − 1) regression procedures involved in our
experiment. This is a computationally heavy task, but allows us to
identify influential sets of features and feature combinations. The
regression tasks combined (after the feature extraction procedure)
took 550 hours (about 23 days) with a multiprocessing implemen-
tation on an Intel(R) Xeon(R) CPU E5-2695 v3 with 32 cores and
2.30 GHz frequency. In Tables 3 and 4, we show the top 20 fea-
ture subsets in terms of the achieved PLCC and SROCC metrics,
respectively. The check-marks in these tables stand for the inclu-
sion of a feature group in the considered subset. Tables 3 and 4 also
include the complexity of each model in term of the average execu-
tion time for computing the corresponding features for videos in the
KonVid-1k dataset∗.

Besides the top 20 scorers shown in Tables 3 and 4, we have also
shown the performance of pairs of feature groups in Figure 2. The
main diagonal of the tables in this figure represent the performance
of single feature groups. It is interesting to mention that PLCC and
SROCC value of 0.72 is attainable with only two feature groups
(#10 and #19), while the best achievable values among all subsets
is less than 0.79 (for both metrics).

In another experiment, we train an Extra Trees regressor with all
the extracted features and find the importance of each feature accord-
ing to the number of splits in the trees. For this end, we calculate the
mean decrease impurity (MDI) score [30] over all trees in the trained
regressor. We consider the maximum MDI score for each feature in
a group as the feature group importance score which is reported in

†The MLP used in this experiment has 3 hidden layers each with 500

neurons and tanh activation function. The network was optimized by

Adam optimizer[37] with an adaptive learning rate. Please note that this

structure was achieved by experiment.
∗Each video in this database has a length of around 8 seconds with 24 -

30 frames per second and 960× 540 resolution.

Figure 3. As this figure shows, the feature groups #19, #18, and #10
have higher importance scores in the regressor structure.

4.3 Discussion

While SVR has been the dominant choice for the purpose of video
quality assessment, our experiments show that the corresponding
PLCC and SROCC values could be easily improved by replacing
the regressor (see Table 2). In particular, our experiments shows that
the Extra Trees regressor achieves the best performance among a
number of well-known regressor well ahead of the SVR. In other
words, by using a better regressor, it is possible to achieve a con-
siderable performance gain. To the best of our knowledge, this fact
is widely ignored in the existing methods. We should highlight that
the Extra Trees method is a tree-based regressor which utilizes an
ensemble learning approach. The results in Table 2 indicate that
other ensemble-learning-based regressors such as Random Forest,
Gradient Boosting, and AdaBoost are also possible alternatives to
Extra Trees.

By adopting the Extra Trees regressor in our second experiment,
we are indeed, selecting the best performing regressor according
to both PLCC and SROCC metrics. The results in Tables 3 and
4, besides identifying the best performing feature subsets, show
that with as few as 8 feature groups (rows 4 and 1 in Tables 3
and 4, respectively) out of the total of 21, it is possible to surpass
the performance of a full-feature setup. It is worth mentioning that
232, 071 and 63, 859 feature subsets achieved a performance supe-
rior to the full-feature setup according to SROCC and PLCC metrics,
respectively. It seems that the PLCC metric is a more restricting per-
formance criterion as there are 63, 498 feature-subsets that surpass
the full-feature setup with both metrics. In an attempt to determine
the feature groups with higher impact (in the VQA task), we have
evaluated the frequency of appearance of each feature group in the
63, 498 feature-subsets that result in a better performance than the
full-feature setup (according to both metrics). The result is shown in
Figure 4. As expected from the list of top 20 feature subsets, the fea-
ture groups of #10, #19, and #16_NVS have the highest frequency.
It is interesting to mention that feature groups #10 and #19 have
appeared in all the 63, 498 feature-subsets. Additionally, these two
feature groups (#19 and #10) are among the top MDI scorers accord-
ing to Figure 3. Besides, these two groups include spatial features
while the #16_NVS group includes the spatiotemporal features.

As explained earlier, the list of considered features could be gen-
erally divided into two categories of spatial (#1, #2, #4, #6, #8, #10,
#11, #13, #14, #15, #16_NSS, #18, #19) and spatiotemporal (#3, #5,
#7, #9, #12, #16_NVS, #16_Motion, #17). Indeed, the spatiotem-
poral features play the main role in distinguishing the video quality
assessment from image quality assessment. The results in Table 3
and Table 4 indicate that all the top scoring feature subsets are com-
posed of both categories. For better clarification, the best performing
feature subsets composed solely of spatial features achieve PLCC
and SROCC values of 0.759 and 0.758, respectively, and are ranked
1, 672, 515th and 1, 642, 710th overall. We further observe that fea-
tures in the same category do not have the same importance level; for
instance, the spatial HOSA features (#19) are dominantly used in all
the top 20 feature subsets, while the spatial LMSCN features (#14)
rarely appear in top scoring feature subsets. The statistical features of
the luma channel are also among the important spatial features (#10
and #16_NSS); note that the luma LMSCN features (#14) are rarely
used mainly because other luma features (#10 and #16_NSS) are
included as popular substitutions. A similar observation is also valid
for spatiotemporal features: #16_NVS, #16_Motion and #9 (which
is introduced in this paper) are among popular spatiotemporal fea-
tures within top performing subsets, while VIIDEO features (#17)
are not equally popular. It should be highlighted that besides the
choice of the features, their combinations also play a significant role
in determining the overall performance.

Next, we consider the performance of single features and pairs
of features. The main diagonal of tables in Figure 2 show the perfor-
mance of single features in predicting the MOS values. Interestingly,
in both cases of PLCC and SROCC the LMSCN features (#14, and
consisting of 216 features) have the best performance achieving the
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Table 3 The top 20 feature subsets in terms of PLCC using a 5-folded cross-validation. The regressor is Extra Trees and the check-marks indicate the inclusion of
a feature group in a feature subset. The execution time (Exe. Time) refers to the average time in seconds for computing the corresponding features for the videos in
KonVid-1k dataset.

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14 #15 #16_NSS #16_NVS #16_Motion #17 #18 #19 PLCC Exe. Time

1 X X X X X X X X X 0.786 853.3

2 X X X X X X X X X 0.785 853.2

3 X X X X X X X X X X 0.784 855.3

4 X X X X X X X X 0.784 720.3

5 X X X X X X X X 0.784 790.6

6 X X X X X X X X 0.784 853.3

7 X X X X X X X X X X X 0.784 728.1

8 X X X X X X X X X X X 0.784 897.0

9 X X X X X X X X X X X X 0.784 852.9

10 X X X X X X X X X X 0.783 761.8

11 X X X X X X X X X X 0.783 849.2

12 X X X X X X X X X X 0.783 847.0

13 X X X X X X X X X X 0.783 897.0

14 X X X X X X X X X X X X 0.783 898.9

15 X X X X X X X X X X X 0.783 851.1

16 X X X X X X X X X X 0.783 188.5

17 X X X X X X X X X X X X 0.783 861.0

18 X X X X X X X X X X X 0.783 859.2

19 X X X X X X X X X X 0.782 762.9

20 X X X X X X X X X 0.782 725.9

Table 4 The top 20 feature subsets in terms of SROCC using a 5-folded cross-validation. The regressor is Extra Trees and the check-marks indicate the inclusion of
a feature group in a feature subset. The execution time (Exe. Time) refers to the average time in seconds for computing the corresponding features for the videos in
KonVid-1k dataset.

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14 #15 #16_NSS #16_NVS #16_Motion #17 #18 #19 SROCC Exe. Time

1 X X X X X X X X 0.787 790.6

2 X X X X X X X X X 0.786 794.3

3 X X X X X X X X X X X X 0.786 1067.8

4 X X X X X X X X X X 0.785 796.5

5 X X X X X X X X X 0.785 699.9

6 X X X X X X X X X X X X 0.785 847.1

7 X X X X X X X X X X 0.785 1017.8

8 X X X X X X X X X 0.785 701.8

9 X X X X X X X X X 0.785 853.2

10 X X X X X X X 0.785 659.3

11 X X X X X X X X X X X X X 0.785 847.8

12 X X X X X X X X X X X 0.784 799.0

13 X X X X X X X X 0.784 793.2

14 X X X X X X X 0.784 657.5

15 X X X X X X X X X X X X X 0.784 1031.6

16 X X X X X X X X X 0.784 853.3

17 X X X X X X X X X 0.784 611.2

18 X X X X X X X X 0.784 659.2

19 X X X X X X 0.784 657.3

20 X X X X X X X X X X X 0.784 704.9
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Fig. 3: Feature group importance using the feature MDI scores.

Fig. 4: Frequency of appearance of each feature group in mod-
els which have better performance than full-feature setup (63, 498
models).

value 0.65 (either PLCC or SROCC). We should recall that these
features are spatial and appeared rarely in the top 20 feature subsets.
This shows that by considering other collection of luma features, one
can outperform the LMSCN features; however, with restriction on
the number of feature families, LMSCN family is among the bests.
Another observation regarding the diagonal of the tables is that the
spatial features are generally superior than the spatiotemporal ones.
In other words, the performance of top 20 feature subsets are pri-
marily based on spatial features, and spatiotemporal features have
incremental role; i.e., we do not expect a huge degradation of the
performance if we model the video data as a collection of unrelated
images (frames). With a similar pattern, we observe that the high-
est performance among the pairs of feature families (non-diagonal
elements in Figure 2) belong to (#10,#19) (luma information and
CORNIA scores) with PLCC and SROCC values of 0.72. Again,
both features are spatial and the pair has a small performance gap
compared to the top feature subsets (0.78).

To compare the results presented in this paper with the existing
methods for video quality assessment, we have reported the PLCC
and SROCC value of existing methods applied to the KonVid-1k
database as well as the top performing feature subsets in Table 5. We
should mention that except for the result of the proposed methods,
the reported values of other methods on the KonVid-1k database are
directly reported from the literature∗[5, 13, 14, 16–18, 20, 24–28]. In
this table, the method names shown in italic are based on deep learn-
ing approaches. Within the subgroup of feature-based methods (not

∗Recently, [38] discovered that the actual results by implementing the

methods in [21] are significantly worse than the ones reported in the

original paper. Therefore, the methods of [21] are excluded from our

comparison.

Table 5 Comparison of No-Reference Video Quality Assessment methods on
KonVid-1k Database. The method names shown in italic are based on deep
learning approaches. (The values of PLCC and SROCC for the existing methods
are directly reported from the references in the last column.)

Method PLCC SROCC Reference

VIIDEO[3] -0.015 0.031 [5]
V.BLINDS[2] 0.565 0.526 [5]
FC Model [11] 0.492 0.472 [5]
STFC Model [5] 0.639 0.606 [5]
FRIQUEE[44] 0.740 0.740 [16]
HIGRADE[45] 0.720 0.730 [16]
BRISQUE[15] 0.626 0.654 [18]
NIQE[10] 0.546 0.544 [18]
STS-MLP [13] 0.407 0.420 [13]
STS-SVR [13] 0.680 0.673 [13]
GM-LOG[46] 0.663 0.658 [17]
V.CORNIA[12] 0.747 0.765 [13]
NARVAL [14] 0.689 N/A [14]
BB-NARVAL [14] 0.761 N/A [14]
TLVQM-SVR [16] 0.770 0.780 [16]
TLVQM-RFR [16] 0.740 0.740 [16]
VIDEVAL [17] 0.780 0.783 [17]
F-ET-PLCC-1st [proposed] 0.786 0.784 [Ours]
F-ET-SROCC-1st [proposed] 0.784 0.787 [Ours]

VSFA [18] 0.744 0.755 [18]
3D-CNN [20] 0.781 0.771 [20]
3D-CNN+LSTM [20] 0.808 0.800 [20]
RIRNet [28] 0.781 0.775 [28]
MDTVSFA [25] 0.786 0.781 [25]
F-RNN[26] 0.683 0.710 [26]
DNet[27] 0.596 0.591 [27]
STS-CNN100 [24] N/A 0.733 [24]
STS-CNN200 [24] N/A 0.735 [24]
PaQ-2-PiQ [47] 0.601 0.613 [17]
KonCept-512 [48] 0.749 0.735 [17]

using deep learning), Table 5 confirms that the proposed extra trees
(F-ET) regression technique has the best performance. Furthermore,
the proposed technique includes multiple choices (feature subsets)
that achieve better performances compared to the existing methods;
thus, one has partial flexibility in choosing the features. We also
observe that the proposed feature-based method is superior to 7 of
the total of 11 models based on deep learning. Moreover, the pro-
posed model is 0.08 and 0.06 behind the best performing models in
terms of PLCC and SROCC, respectively. While we acknowledge
the performance gain of the best performing deep learning mod-
els, we should highlight that this gain is achieved at the expense
of considerably higher computational cost both in the training and
testing stages. Roughly speaking, a neural network with competitive
results involves at least 50, 000, 000 degrees of freedom (coeffi-
cients that should be learned), which complicates the training phase
(both processing and storage requirements). In addition, the compu-
tational cost of the such neural networks for evaluating the overall
output score for a given input (evaluating the score for a test video)
is well above the simple regression techniques. This fact is com-
monly ignored as neural networks are widely implemented using
parallel processing techniques which is not the case for regression
techniques. All in all, the deep learning approaches are able to pro-
vide better results but with considerably more computational cost;
in fast settings such as real-time video quality assessment, this com-
putational cost might not be feasible. Another issue which requires
attention is the small size of the training set in most available video
datasets; the KonVid-1k which is by far the largest database, con-
tains only 1200 video files [39–43]. Thus, a neural network with
large number of parameters that is trained on this dataset is likely to
be a tailored solution just for this database which cannot be easily
adapted to other settings.
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5 Conclusion

We studied the problem of no-reference video quality assessment
with a machine-learning-based approach. First, we extracted several
statistical features from all the video sequences in the KonVid-1k
dataset. Next, we trained several models using different types of
regressors with all the extracted features. The results showed that the
change in the algorithm of regression may considerably affect the
performance. We found Extra Trees regression to achieve the best
performance. However, Support Vector Regressor (SVR) is mostly
used in the prior works. To the best of our knowledge this is the first
work to investigate several types of regressions for the purpose of
video quality assessment. Next, we considered all possible selections
of features, and evaluated the models using 5-folded cross-validation
for each selection of feature subsets. This experiment helped us to
identify the best selections of extracted features which achieved a
better performance compared to the previous methods reported on
KonVid-1k database. Moreover, the results show the importance of
each feature subset in assessment of video quality. It also shows the
common or complementary information of different feature subsets.
The combinations of spatial and spatiotemporal feature subsets are
among the best feature selections. We further evaluated the MDI
scores for each feature, and accordingly found an importance score
for each feature group. The results are consistent in identifying most
important feature groups for the NR-VQA task.
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