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Abstract

In this paper, we investigate the problem of recovering the frequency components

of a mixture of K complex sinusoids from a random subset of N equally-spaced

time-domain samples. Because of the random subset, the samples are effectively

non-uniform. Besides, the frequency values of each of the K complex sinusoids

are assumed to vary continuously within a given range. For this problem, we

propose a two-step strategy: (i) we first lift the incomplete set of uniform sam-

ples (unavailable samples are treated as missing data) into a structured matrix

with missing entries, which is potentially low-rank; then (ii) we complete the

matrix using a weighted nuclear minimization problem. We call the method a

weighted lifted-structured (WLi) low-rank matrix recovery. Our approach can

be applied to a range of matrix structures such as Hankel and double-Hankel,

among others, and provides improvement over the unweighted existing schemes

such as EMaC and DEMaC. We provide theoretical guarantees for the proposed

method, as well as numerical simulations in both noiseless and noisy settings.

Both the theoretical and the numerical results confirm the superiority of the

proposed approach.
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1. Introduction

Mixture of complex exponential functions are observed in many real-world

applications such as medical imaging [1], astronomical imaging [2], millimeter-

wave imaging [3], and artworks [4, 5]. For instance, in many imaging systems,

the optical point spread function can be fairly approximated by a mixture of a5

few exponential functions. Therefore, the measurements observed in an imag-

ing system are mainly a combination of a few exponential components. Even if

these mixtures are of fairly high dimension, their representation in the Fourier

domain consists of a small number of spikes. The spectral estimation challenge

is to decompose such a mixture into exponential elements or, simply, to sepa-10

rate the Fourier spikes. As we observe analog signals through digital sensing

devices, the sampling resolution is a limiting factor in properly detecting and

separating exponential components in a mixture. There is extensive literature

within the signal processing community for surpassing the limits imposed on

the physical resolution using processing techniques, which are generally known15

as super-resolution algorithms [6]. The technique proposed in [7] is a famous

grid-less example that relies on sparse recovery and compressed sensing tools. In

this work, equally-spaced samples are employed to separate the components us-

ing a convex optimization in the line spectral estimation problem. The authors

of [8] consider a similar scenario but with random samples. For this setting, a20

probabilistic guarantee for the number of required samples for perfect recovery

is provided. For perfect recovery, both [7] and [8] require a minimum phase

separation between the complex sinusoid components (minimum distance be-

tween the spikes). Inspired by the matrix pencil algorithm in [9], [10] proposed

the EMaC method using matrix completion to reduce this minimum required25

separation. The method uses a Hankel lifting structure that transforms uniform

samples of exponential mixtures into a low-rank matrix. Once lifted, the recov-
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ery of missing samples can be treated as completing a low-rank matrix, which

is a well-studied problem [11]. This approach is further extended in [12] for the

larger class of signals with finite rate of innovation. In [13], the problem of low-30

rank Hankel matrix recovery for random Gaussian projections is investigated,

and a lower bound for sample complexity (with high probability) is derived. Be-

sides the low-rank property of the matrix, most matrix completion techniques

require the available entries to be uniformly spread within the matrix. For the

case of non-uniform samples, a two-phase sampling-recovery strategy is pro-35

posed in [14]. However, the method does not work for structured matrices (such

as Hankel matrices).

Contributions: In this work, we consider the problem of separating exponential

signals from a mixture of non-uniform samples. The proposed spectral estima-

tion approach is comprised of two steps. We first lift the samples/measurements40

to a structured low-rank matrix with missing samples. Next, we propose a gen-

eral approach to enhance matrix completion by using a measurement-adaptive

weighting scheme in which the weights reflect the relative significance of the sam-

ples. The lifting operation encompasses Hankel, double-Hankel, wrap-around

Hankel, Hankel-block-Hankel, Toeplitz, and multi-level Toeplitz structures as45

special cases. While our approach bears similarity to the atomic norm mini-

mizations (ANM) in [15, 16], we do not require the statistics of the sources. In-

stead, we take advantage of the the concept of leverage scores studied in [14] for

determining the sample weights based on their informativeness. We refer to this

approach as “weighted lifted-structure (WLi) low-rank matrix recovery”. We50

show that the weighting scheme of [14] reduces the number of measurements re-

quired for estimating the exponential components. After having presented the

weighted lifted-structured low-rank matrix completion in some generality, we

consider Hankel and double-Hankel structures as special cases (similar to EMaC
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[10], and DEMac [17], respectively), resulting in WLi-EMaC and WLi-DEMaC55

methods. The simulation results show that the weighted methods require much

fewer samples to recover the input vector than the unweighted scheme.

Note well: This paper is the first part of a two-part submission. In this

part, we mainly discuss the theoretical perspective of the weighted recovery in

a lifted-structure completion problem. In Part II [18], we focus on the specific60

application of DOA estimation using the theoretical results derived here.

Organization: in Section 2, we introduce lifting operator. The problem for-

mulation is provided in Section 3. The weighted matrix completion problem

is described in Section 4. In Section 5, we present the theoretical guarantees

for the weighted approach. Numerical simulations are provided in Section 6.65

Finally, we conclude the paper in Section 7. Notations: We use lowercase

letters, lower and upper-case boldface letters to represent scalars, vectors, and

matrices respectively. We further show linear operators and their adjoints by

calligraphic notations such as X and X †, where the superscript in the latter

stands for the adjoint operator. Moreover, XT and XH denote the transpose and70

Hermitian of a matrix X, respectively. X�Y and 〈X,Y〉 show the Hadamard

(element-wise) product and inner product of two equi-size matrices X and Y,

respectively. We denote the spectral, Frobenius, and nuclear norms of a matrix

X by ‖X‖, ‖X‖F and ‖X‖∗, respectively. Similarly, ‖X‖1 and ‖X‖∞ stand for

the element-wise `1 and `∞ norms of X (treating X as a vector). ‖X‖∞→∞75

is defined as maxi∈[N ]

∑
j |xi,j | where xi,j denotes (i, j) element of matrix X.

Further, ‖X‖0 is the number of non-zero elements of matrix X. We refer to eNi

as the i-th canonical basis vector in dimensional N . For an integer n, [n] stands

for {1, 2, . . . , n}. We also define the operator diag : CN 7→ CN×N maps a vector

x ∈ CN into a diagonal matrix with diagonal entries as in X. The Greek letter80

Ω always reflects a finite set of the integers and |Ω| denotes its cardinality.
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2. Lifting operator

Fundamental to our approach is the transformation of a vector into a matrix

to gain degrees of freedom. We call this transformation the lifting operator. To

properly define the class of lifting operators considered in this paper, we initially85

introduce the concept of the lifting basis.

Definition 1. We call {An}n∈[N ] ⊆ Cd1×d2 a lifting basis if

1. for all 1 ≤ n ≤ N we have that ‖An‖F = 1,

2. all the non-zero elements of An are positive, real and equal, and

3. Ans are orthogonal:

〈An1
, An2

〉 = tr
(
AT
n1

An2

)
= δ[n1 − n2], (1)

4. and each column of An (for n ∈ [N ]) has at most one nonzero element,

i.e.,

∑
j∈[d2]

( ∑
i∈[d1]

[An]i,j

)2

= 1. (2)

For a lifting basis {An}n∈[N ], Definition 1 implies that the non-zero elements

in An are all equal to 1√
‖An‖0

. This further shows that

‖An‖ ≤ ‖An‖F = 1. (3)

Definition 2. Let {An}n∈[N ] ⊆ Cd1×d2 be a lifting basis according to Definition

1. The linear mapping L : CN 7→ Cd1×d2 defined by

L (x) =
∑
n∈[N ]

an 〈eNn ,x〉An, (4)
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is called a lifting operator, where {an}n∈[N ] ⊆ C are constants. We can check

that L † : Cd1×d2 7→ CN with

M ∈ Cd1×d2 : L †(M) =
∑
n∈[N ]
an 6=0

1
an
〈An,M〉 eNn , (5)

defines the orthogonal back projection from Cd1×d2 into CN .90

By tuning the lifting basis, one can achieve various matrix structures in the

output of the lifting operator, such as Hankel, double-Hankel, wrap-around Han-

kel, Hankel-block-Hankel, Toeplitz, and multi-level Toeplitz. As an example, we

examine the Hankel lifting operator H : CN → Cd×(N−d+1) with d ∈ [N ]:

x =



x1

x2

...

xN


⇒ H (x) :=



x1 x2 . . . xN−d+1

x2 x3 . . . xN−d+2

...
...

. . .
...

xd xd+1 . . . xN


. (6)

It is not difficult to verify that this operator corresponds to

1 ≤ n ≤ d : A
(H )
n :=

∑
i∈[n]

edi e
(N−d+1)
n−i+1

T

√
n

, a
(H )
n :=

√
n,

d+1 ≤ n ≤ N−d+1 : A
(H )
n :=

∑
i∈[d]

edi e
(N−d+1)
n−i+1

T

√
d

, a
(H )
n :=

√
d,

N−d+2 ≤ n ≤ N : A
(H )
n :=

d∑
i=n−N+d

edi e
(N−d+1)
n−i+1

T

√
N−n+1

, a
(H )
n :=

√
N−n+1.

(7)

Our recovery method uses certain values associated with a lifted structure known

as leverage scores. These scores were originally defined in [14] for an adaptive

sampling scheme: if we have observed an incomplete matrix and wish to take

some more samples before starting to estimate the unobserved entries, which el-
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ements are the best options that facilitate the estimation task. For this purpose,95

each matrix element was assigned a score in [14], which was later interpreted

as the sampling probability; i.e., an unobserved entry with a larger leverage

score is more likely to be sampled. It is shown in [14] that for a given recovery

quality, this strategy requires fewer samples compared to the case of observing

the matrix entries uniformly at random. In the matrix completion problem of100

[14], each of the elements of the low-rank matrix M ∈ Cd1×d2 could be observed

independently of other elements; hence, d1 × d2 leverage scores are defined. In

contrast, among d1 × d2 elements of L (x) only N are different (x ∈ CN ). This

means that N different leverage scores are possible. In Definition 3, we gener-

alize the concept of leverage scores to the case of lifted structures with reduced105

degrees of freedom.

Definition 3. Let L be a lifting operator with basis {An}n∈[N ]. For each

x ∈ CN we define leverage scores {µn}n∈[N ] as

µn :=
N

K̃
max

{
‖UHAn‖2F, ‖AnVH‖2F

}
, (8)

where K̃ is the rank of L (x) and Ud1×K̃ΣK̃×K̃(Vd2×K̃)H represents the singu-

lar value decomposition (SVD) of L (x).

For the particular case of low-rank Hankel matrix completion, it is shown

in [10, Theorem 1] that nuclear-norm minimization succeeds in recovering the110

matrix if the number of [random] samples exceeds a threshold that is propor-

tional to maxn{µn}. In this paper, we provide recovery guarantees (noiseless

and noisy cases) for sample sizes that scale with
∑
n µn
N .

3. Signal Model
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Let the signal of interest y(t) be a linear mixture of K exponential compo-

nents. The samples of this signal (whether available or unavailable) are

yn = y(n) =
∑
k∈[K]

bkz
n
k , n ∈ [N ], (9)

where {bk}k∈[K] ∈ C are the coefficients in the linear mixture and {zk}k∈[K] ∈ C

are the complex basis. Using vectorial notations, we write y = [y1, . . . , yN ]T ∈

CN . In case we have measurement noise, we have access to the noisy samples

(if available)

ỹn = yn + en, (10)

where ỹ = [ỹ1, . . . , ỹN ]T and e = [e1, . . . , eN ]T ∈ CN stand for the measurement

and the noise vectors, respectively. We assume that for each n ∈ [N ], noise

amplitudes are upper-bounded as |en| < η with high probability. This implies

that ‖e‖2 ≤
√
Nη (with high probability). Further, let Ω ⊆ [N ] with |Ω| =

M ≤ N be the index set of available samples, i.e., yn or ỹn is available only if

n ∈ Ω. Mathematically, we denote the vector of available samples as

yΩ = PΩ(y), or ỹΩ = PΩ(ỹ), (11)

for the noiseless and noisy cases, respectively. Here, PΩ : CN → CM stands for115

the orthogonal projection that keeps the elements with index inside Ω. Note

that the energy of the noise content in ỹΩ is upperbounded by
√
|Ω|η =

√
M η

with high probability.

The main challenge with signal model in (9), is to estimate y(t), or equiv-

alently, {bk}k∈[K] and {zk}k∈[K], by observing the noiseless samples yΩ or the120

noisy measurements ỹΩ. In this work, our focus is on the case where K � N .
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This challenge appears in a number of real-world applications, such as magnetic

resonance imaging (MRI) and X-ray computed tomography [19], direction of ar-

rival estimation [20], spike sorting in neural recordings [21], and super-resolution

microscopy [22].125

4. Low Rank interpolation

To recover the unseen samples from the available measurements in subset

Ω, one can use the fact that the rank of the Hankel transform H (y) is upper-

bounded by K which is usually smaller than the size of y [10, 5, 23, 12]. Similar

structures like Toeplitz, wrap-around Hankel, and double-Hankel impose similar130

low-rank properties. To include all these structures in our analysis, we use the

generic L operator defined in (4) that maps samples of exponential mixtures

into low-rank matrices. By choosing L , our next step is to recover L (y) based

on the measurements yΩ (or ỹΩ). In other words, the measurements within

the index set Ω shall be extended to the whole set [N ]. As L (y) is a low-rank135

matrix, this task can be reformulated as a matrix completion problem: the

elements of L (y) associated with Ω are observed (possibly noisy), and we want

to estimate the rest.

In a matrix completion problem, ideally, one searches for a matrix with the

minimum rank that satisfies the constraints. The rank function is, however, both

non-convex and non-smooth. Therefore, the exact rank minimization problem

is generally NP-hard. The common alternative is to relax the rank(·) function

with the nuclear norm [11, 24, 25]. Adopting this relaxation, we shall consider

the following matrix completion problem.

ŷ = argmin
g∈CN

‖L (g)‖∗, s.t. PΩ(g) = yΩ, (12)
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for the noiseless, and

̂̃y = argmin
g∈CN

‖L (g)‖∗, s.t. ‖PΩ(g)− ỹΩ‖2 ≤
√
Mη, (13)

for the noisy case, η > 0 was previously introduced as an upper bound for noise

amplitudes (with high probability).140

4.1. Weighted Matrix Completion

In our scenario, the samples are fixed, and we cannot sample adaptively.

As a result, the conventional interpretation of leverage scores as the sampling

probabilities is useless here [14]. Instead, we try to set two weight matrices

WL ∈ Cd1×d1 and WR ∈ Cd2×d2 such that the recovery of WLL (g)WH
R with

a non-uniform sampling strategy that is consistent with the available samples

(a more rigorous definition will be provided later) requires fewer samples. The

weighted lifted-structured low-rank matrix recovery is defined by incorporating

left and right weight matrices into (12) as

ŷ = argmin
g∈CN

‖WLL (g)WH
R‖∗ s.t. PΩ(g) = yΩ. (14)

Similarly, for the noisy case, we have that

ŷ = argmin
g∈CN

‖WLL (g)WH
R‖∗ s.t. ‖PΩ(g)− ỹΩ‖F ≤

√
Mη. (15)
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The optimization in (15) is convex and can be reformulated into a semi-definite

program (SDP) using Schur complement as in [24], i.e.,

ŷ = min
P,Q

1
2 tr(P) + 1

2 tr(Q)

s.t.

 P WRL H(g)WT
L

WLL (g)WT
R Q

 � 0,

PΩ(g) = yΩ, P,Q � 0,

(16)

where P ∈ Cd2×d2 and Q ∈ Cd1×d1 are Hermitian matrices.

We should highlight that the results in [10] are not directly applicable to

the weighted problem in (14). In the next section, we analyze the weighted

minimization with the general perspective of non-uniform sampling.145

5. Theoretical Guarantee and Main results

In this section, we investigate the conditions under which the uniqueness

of the solution can be guaranteed. Here, we present recovery guarantees for

generic lifting operators L that transform the vector of exponential mixtures

into low-rank matrices (including Hankel, double Hankel, wrap-around Hankel,150

Toeplitz, Hankel-block-Hankel, and multi-level Toeplitz among others).

Before proceeding further, let us define the weighted leverage scores as a

generalization of Definition 3.

Definition 4. For given weight matrices WL,WR and an arbitrary vector x ∈

CN , assume that the rank of WLL (x)WH
R is K̃. Further, let Ud1×K̃ΣK̃×K̃(Vd2×K̃)H

be the SVD thereof. For each n ∈ [N ], we define the weighted leverage scores

µ̃n as

µ̃n :=
N

K̃
max{‖PU (An)‖2F, ‖PV (An)‖2F}, n ∈ [N ], (17)

11



where PU (Y) and PV (Y) for arbitrary Y ∈ Cd1×d2 are defines as:

PU (Y) = WH
LU

(
UHWLWH

LU
)−1

UHWLY, (18a)

PV (Y) = YWH
RV

(
VHWRWH

RV
)−1

VHWR. (18b)

5.1. Recovery Guarantees for Non-uniform Random Sampling

We first assume a random sampling scenario in which Ω is formed by selecting155

n ∈ [N ] with probability pn independently of other elements k 6= n. Below, we

provide a set of lower bounds on {pn}s to guarantee perfect (or robust) recovery

with a high probability of using noiseless (noisy) samples.

Theorem 1. Let y ∈ CN be as in (9), and Ω represent a location set of size

M formed by selecting each element n ∈ [N ] with probability pn independent of

other elements. We can recover y from the measurements yΩ = PΩ(y) using

the noiseless setup in (14) with probability no less than 1−N3−b1 if

pn ≥ min

{
1 ,

1

N
max

{
1 , R2

L c µ̃nK̃
2 log(N)

}}
, (19)

and

1

8
√

log(N)
≤ min
i∈[N ]

{
‖Ai‖0 min{‖PU (Ai)‖2F, ‖PV (Ai)‖2F}

}
, (20)

where d1, d2 and K̃ are dimensions and the rank of the lifted structure L (y), re-

spectively. Additionally, µ̃n is the weighted leverage score in (17), the coefficient

RL is defined as

RL =
∑
n∈[N ]

∥∥An �An

∥∥
∞→∞, (21)

and c = 1922(b1 + 1) for b1 ≥ 3.
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Proof. The proof is provided in the appendix.160

Corollary 1. The parameter RL in (21) in Theorem 1 is a function of the lifted-

structure. For instance, RL = O(log (N)) for Hankel, Toeplitz, and double-

Hankel structures. For the wrap-around Hankel structure, however, we have

RL = O(1).

Remark 1. The expected number of observed elements |Ω| in Theorem 1 is no165

less than cR2
L

(∑
n µ̃n
N

)
K̃2 log (N). With Hoeffding’s inequality, it is possible to

check that the actual number of observed elements in this random setting concen-

trates around its expected value and is upper bounded by M ≤ 2cR2
L

(∑
n µ̃n
N

)
K̃2 log (N).

with high probability.

Remark 2. If L is the Hankel structure, we call the resulting method WLi-170

EMaC (because of the similarity of the technique with EMaC in [10]). The

guaranteed sample size for exact recovery using WLi-EMaC and EMaC algo-

rithms are R2
L c
(∑

n µ̃n
N

)
K̃2 log (N) and c1 max{µn}K̃ log4 (N), respectively. As

for the contribution of the leverage scores, we should emphasize that max{µn}

in EMaC is reduced to
∑
n µ̃n
N in WLi-EMaC (the average score instead of the175

maximum score). This reduction is substantial when some complex basis of the

input signal are similar to each other, i.e., zk ≈ zk′ for k, k′ ∈ [K]. In such

cases, few leverage scores become very large, causing a considerable gap between

the maximum and the average leverage scores. Although the guaranteed sample

size scales with K̃2 in WLi-EMaC (compared to K̃ in EMaC), our numerical180

results in the form of the phase transition diagrams in Figure 1 show that the

actual sample size scales with K and not K̃2. We believe there is room for

improvement in our theoretical analysis of the guarantees.

Remark 3. The constraint in (20) captures the incoherence condition in low-

rank recovery problems that reflects both the characteristics of the lifting struc-185
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ture – basis Ai – and the location of the frequencies – PU and PV .

In Theorem 2, a linear error bound for the recovery in terms of the input

noise level is established.

Theorem 2. Let y and Ω be similarly defined to Theorem 1 and assume (19)

holds. Further, let ỹΩ = PΩ(ỹ) be the vector of observed noisy measurements

where the noise term e ∈ CN satisfies ‖PΩ(e)‖2 ≤
√
Mη. Then, with a proba-

bility no less than 1−N3−b1 (b1 ≥ 3), any solution ŷ of (15) satisfies

∥∥∥WL

(
L (ŷ)−L (y)

)
WH

R

∥∥∥
F
≤ c2
√
Mηmin(d1,d2)

minn p2n
, (22)

where c2 < 102 is a fixed constant.

Proof. The proof is provided in the supplementary material, Sec. II.190

Corollary 2. In Definition 4, if WL ∈ Rd1×d1+ and WR ∈ Rd2×d2+ are restricted

to non-negative-valued diagonal matrices, i.e.,

WL = diag
(√
wL,1, . . .

√
wL,d1

)
, WR = diag

(√
wR,1, . . . ,

√
wR,d2

)
, (23)

then, the leverage scores will be bounded by

µ̃nK̃

N
≤ max

{
‖WLAn‖2F∑b N

βK̃
c

k=1 wL,ik

,

∥∥AnWT
R

∥∥2

F∑b N
βK̃
c

k=1 wR,jk

}
, (24)

where wL,i1 ≤ . . . ≤ wL,id1 and wR,j1 ≤ . . . ≤ wR,jd2 are the sorted squared di-

agonal elements of WL and WR, respectively, and β = N
K̃

max
{

1
‖UH‖2 ,

1
‖VH‖2

}
.

Proof. The proof is provided in the supplementary material, Sec. VII.
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5.2. Adjusting the Weight Matrices

On the one hand, Theorems 1 and 2 reveal a linear relationship between the195

guaranteed sample complexity for perfect recovery and the leverage scores. On

the other hand, the leverage scores are upper-bounded in Corollary 2 by the

weight matrices. Therefore, one can adjust the weight matrices such that the

overall leverage scores are minimized; this, in turn, reduces the upper bound on

the sample complexity. In the deterministic setup, the strategy is to interpret200

the actual Ω as a realization of a random sampling set with element-wise prob-

abilities {pn}n∈[N ]. If the probabilistic guarantee works for {pn}n∈[N ], then Ω

as a realization of that random sampling is also suitable with high probability.

Next, we maximize the likelihood of the observed samples by tuning the set

{pn}n∈[N ]. Our approach is to determine weight matrices WL,WR such that

the likelihood of observing Ω attains its maximum point in one of the suitable

random sampling strategies given in (19). This strategy results in

WL,WR = argmax
WL∈Cd1×d1 ,
WR∈Cd2×d2

−
∑
n 6∈Ω

pn ≡ argmin
WL∈Cd1×d1 ,
WR∈Cd2×d2

∑
n 6∈Ω

µ̃n. (25)

By solving the aforementioned optimization problem, we obtain weight matrices

that reduce the sample complicity or, alternatively, increase the reconstruction205

quality. We should note that in cases where prior knowledge about the subspace

of the signal is available (i.e., U and V are known), one can set the weight

matrices to maximize the reconstruction quality [26]. In this work, however,

such information is not available. Instead, in [18, Section 4], we devise an

optimization problem to solve the maximization in (25) and describe the whole210

procedure in detail.
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6. Numerical Simulations

We consider two options for the lifting operator L in this work: Hankel and

double Hankel. We refer to these two implementations of the proposed algo-

rithm as WLi-EMaC and WLi-DEMaC because of their similarity to EMaC and215

DEMaC in [10] and [17], respectively. In the sequel, we present numerical ex-

periments comparing WLi-EMaC and WLi-DEMaC against their non-weighted

counterparts EMaC [10] and DEMaC [17]. We set N = 59 to be an odd integer

which enables us to set the Hankel pencil parameter d1 = d2 = 30 so as to

achieve a square matrix. For the same reason, in the DEMaC structure, we set220

d1 = d2 = 40.

In Figure 1, we plot the phase transition diagram for WLi-EMaC, WLi-

DEMaC, DEMaC, and EMaC algorithms. For these numerical evaluations, all

algorithms are implemented by CVX toolbox with SDPT3 solver in MATLAB

[27]. For each pair of (M,K), the success rates are averaged over 100 Monte225

Carlo trial iterations. A trial is considered successful if it satisfies ‖x−x̂‖F‖x‖F ≤

10−3, where x and x̂ are the ground truth signal and its estimated vector,

respectively. The average success rates for each cell are depicted in Figure 1:

brighter colors mean higher average success rates.

Results in Figure 1 imply that the required sample size M for exact recovery230

with both the Hankel and double Hankel structures is proportional to K in

the noiseless setting. The dashed lines almost depict the transition boundary

between the success and failure cases for weighted versus unweighted strategies.

This reveals that our algorithm performs better than the predicted bound in

Theorem 1, where the required sample size M for exact recovery scales with K2.235

By comparing the phase transitions in Figure 1, we observe that the proposed

weighted approach improves the completion performance for both Hankel and

Double-Hankel structures. Indeed, top row charts in Figure 1 show the supe-
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Figure 1: (a) WLi-DEMaC – (b) WLi-EMaC – (c) DEMaC – (d) EMaC phase transition
diagrams in Section 6 as a function of the number of samples – x axis–, M in (11), and the
sparsity level – y axis–, evaluated as number of frequency components (K) in (9). In (a)
and (c), the dotted brown and the dashed blue lines approximately show the boundary of the
transition between the success and failure cases for WLi-DEMaC and DEMaC, respectively.
Similarly, in (b) and (d) dotted green and dashed red lines show the transition boundary
between the success and failure cases for WLi-EMaC and EMaC, respectively.

riority of the WLi-DEMaC and the WLi-EMaC algorithms over the DEMaC

and the EMaC algorithms, respectively. Also, Figure 1 indicates that the Dou-240

ble Hankel structure results in better reconstructions compared to the simple

Hankel structure.
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7. Conclusion

In this paper we proposed a novel approach for recovering the summation

of exponential functions closely related to the line spectral estimation problem.245

The proposed approach comprised of three steps: 1) lifting the observed samples

to a chosen structured matrix such as Hankel or Toeplitz, 2) tuning the left and

right weighting matrices based on the sample informativeness, and 3) solving a

weighted matrix completion problem to find the missing samples. For a given

choice of the lifting structured matrix, this weighting approach generalizes other250

low-rank matrix completion techniques in the literature, such as EMaC (Hankel)

and DEMaC (double Hankel). Both theoretical analysis and numerical results

showed that the weighted lifted (WLi-) approach outperforms the case without

weighting. In other words, WLi-EMaC and WLi-DEMac outperform EMaC and

DEMaC in terms of NMSE.255
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Appendix A. Proof of Theorem 1

In this appendix, we shall present the proof of Theorem 1. We do so by330

analyzing the dual problem.

More specifically, we will construct an appropriate dual certificate; the exis-

tence of this certificate guarantees that the solution to the problem. To prove

the uniqueness of the solution, we use the well-studied golfing scheme, first used

in [25] to verify the existence of an approximate dual certificate. As the first

step, we define the sampling operator An for any matrix M ∈ Cd1×d2 as follows:

An(M) =
〈
M,An

〉
An = tr

(
MTAn

)
An. (A.1)
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Let Ω be a random subset of [N ] such that the element 1 ≤ n ≤ N appears in

Ω with probability pn independent of other elements. We define the projection

operator onto Ω as

AΩ =
∑
n∈[N ]

δn
pn
An. (A.2)

where δn is equal to 1 for n ∈ Ω and zero elsewhere and pn is sampling prob-

ability of n-th element. We can check that E[AΩ] = A, where A stands for∑N
n=1An. It is also simple to verify that

‖AΩ‖ =
∥∥∥ ∑
n∈[N ]

δn
pn
An
∥∥∥ ≤ 1

minn{pn} . (A.3)

The projection definition of AΩ implies that for all Ω, the operator AΩ is

a self-adjoint operator. Now, we reformulate the main problem in (14) as a

matrix recovery problem in the lifted domain (L ). We define U and V as

the left and right unitary matrices in the reduced SVD of WLL (M)WH
R =

UΣVH. Moreover, for every Y ∈ Cd1×d2 , PU and PV are defined as PU (Y) =

WH
LU

(
UHWLWH

LU
)−1

UHWLY and PV (Y) = YWH
RV

(
VHWRWH

RV
)−1

VHWR

respectively. A simple matrix multiplication shows that for all Y, we have

UHWLPU (Y) = UHWLY, (A.4)

PV (Y)WH
RV = YWH

RV. (A.5)

We define the orthogonal operator as A⊥ = I − A where I is the identity

operator. Then the tangent space T with respect to WLL (M)WH
R = UΣVH

is defined as

T := {WH
LUYH

1 + Y2V
HWR : Y1 ∈ Cd1×K̃ ,Y2 ∈ Cd2×K̃}. (A.6)
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Also, the projection of a matrix Z ∈ Cd1×d2 onto the tangent space is denoted

by PT (Z) and we have:

PT (Z) = PU (Z) + PV (Z)− PU (PV (Z)). (A.7)

We can now rewrite weighted lifted-structured low-rank matrix recovery prob-

lem in (14) in form of the following general matrix completion problem:

M̂ = argmin
M∈Cd1×d2

‖WLMWH
R‖∗ s.t. QΩ(M) = QΩ(L (y)), (A.8)

where QΩ is defined as QΩ = AΩ + A⊥. Using (A.3), we can bound ‖QΩ‖ as

‖QΩ‖ ≤ ‖AΩ‖+ ‖A⊥‖ ≤ 1
minn pn

+ 1.

We further have E[QΩ] = E[AΩ] + A⊥ = A + A⊥ = I. As it can be seen

in (A.8), scaling weight matrices does not change the problem’s solution, and335

the matrices only need to be normalized. Hence, for simplicity of the proof, we

assume ‖WL‖F = ‖WR‖F = 1.

To prove the exact recovery of the convex optimization, it suffices to produce

an appropriate dual certificate, as stated in the following lemma.

Lemma 1. For a given Ω, let the sampling operator QΩ fulfills

‖PT − PTQΩPT ‖ ≤
1

2
, (A.9)

if there exists a matrix G satisfying

Q⊥Ω(G) = 0, (A.10)

‖PT (G−WH
LUVHWR)‖F ≤

1

5‖QΩ‖
, (A.11)
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and

‖PT⊥(G)‖ ≤ 1

2
, (A.12)

then, M is the unique solution to (A.8).340

Proof. The proof is provided in the supplementary Section III.

Lemma 1 will be satisfied, when it is sufficiently incoherent respect to the

tangent space T . we bound the fluctuation of PTAΩPT in the following lemma.

Lemma 2. For a constant 0 < ε ≤ 1
2 , if pn ≥ c0 µnr log(N)

N for each n ∈ [N ] we

have

‖PT − PTQΩPT ‖ ≤ ε (A.13)

with probability exceeding 1−N−b1 for sufficiently large c0 ≥ 56
3 (b1 + 1).

Proof. See supplementary Section IV.345

In what follows, we show there exist a dual certificate G such that it satisfies

conditions in (A.11) to (A.12) with high probability.

Appendix A.1. Dual Certificates Construction

We construct the dual certificate by using the golfing scheme introduced in

[25]. Let ε < 1
e be a small constant, and define L := log 1

ε
(N2‖QΩ‖). Let us

form L independent subsets {Ω`}L`=1 of [N ] by choosing the elements 1 ≤ n ≤ N

with probability qn := 1 − (1 − pn)
1
L independent of each other. Further, let

Ω = Ω1 ∪ · · · ∪ ΩL. We first check the probability that a given 1 ≤ n ≤ N

belongs to Ω:

P[n ∈ Ω] = 1−
∏
`∈[L]

(1− pn)
1
L = pn. (A.14)
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Hence, Ω fulfils the required element-wise probabilities. Next, we construct the

dual certificate matrix G as

G :=
∑
`∈[L]

QΩ`(F`), (A.15)

where F` = PT (I − QΩ`)PT (F`−1) and F0 = WH
LUVHWR. Since F` ∈ Ω, we

conclude that Q⊥
Ω

(G) = 0; i.e., G satisfies the first condition of Lemma 1 for Ω.

In addition, we have that PT (F`) = F` =
(
PT − PTQΩ`PT

)
(F`−1). Besides,

from (2), we know that

∥∥∥PT − PTQΩ`PT
∥∥∥ ≤ ε < 1

2
, (A.16)

with a probability no less than 1−N−b1 . To bound
∥∥PT (G−F0

)∥∥
F

, we use a

similar technique as in [10] to obtain PT (G−F0) = −PT (FL). The latter holds

due to q` ≥ p`
L ≥ c0R

2
L
µ̃`K̃

2

N . Now, we are able to write

‖PT
(
G− F0

)
‖F = ‖PT

(
FL
)
‖F ≤ εL‖PT (F0)‖F <

1

5‖QΩ‖
, (A.17)

with a probability no less than 1 − LN−b1 . This shows that G satisfies

condition (A.11) of Lemma 1 with high probability.350

Appendix A.2. Some relevant lemmas

We begin by defining the following two norms for the matrix M ∈ Cd1×d2

for a given set of lifting basis {An}n∈[N ]:
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‖M‖A,∞ := max
n∈[N ]

∣∣∣∣N〈An,M〉
K̃µ̃n

√
ωn

∣∣∣∣, (A.18a)

‖M‖A,2 :=

√√√√ ∑
n∈[N ]

|N〈An,M〉|2

K̃µ̃nωn
, (A.18b)

where we have defined ωn := ‖An‖0.

We now state three inequalities regarding the norms in (A.18): Lemma 3,355

Lemma 4, and Lemma 5. Generally, these proofs rely on matrix concentration

inequalities in [10, Appendix A].

Lemma 3. Suppose M is a complex-valued d1 × d2 matrix. If pn ≥ c0 µ̃nK̃
2 log(N)
N

for all n ∈ [N ], then

∥∥(QΩ − I
)
M
∥∥ ≤√ 2(b2+1)

c0K̃RL
‖M‖A,2 + 2(b2+1)

3c0K̃RL
‖M‖A,∞,

holds with a probability at least 1 − N−b2 , where c0 ≥ 2(b2 + 1) and RL =∑
n∈[N ]

∥∥An �An

∥∥
∞→∞.

Proof. See supplementary Section V.360

We further control ‖.‖A,2 and ‖.‖A,∞ norms of
(
PTQΩ − PT

)
in the next

two lemmas.

Lemma 4. For c0 ≥ 16(b3 + 1) and arbitrary M ∈ Cd1×d2 , we have

∥∥(PTQΩ − PT
)
(M)

∥∥
A,2 ≤ 2

(√ 2(b3+1)

c0K̃RL
‖M‖A,2 + 2(b3+1)

3c0K̃RL
‖M‖A,∞

)
,

with a probability no less than 1 − N−b3 , given that pn ≥ c0
µ̃nRL K̃2

N log(N)

for n ∈ [N ].

Proof. See Supplementary Section VI.365
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Lemma 5. Suppose we have that

1

8
√

log(N)
≤ min
i∈[N ]

{
‖Ai‖0 min{‖PU (Ai)‖2F, ‖PV (Ai)‖2F}

}
. (A.19)

Then, for c0 ≥ 144(b4 + 1) and arbitrary M ∈ T , we have

∥∥∥(PTQΩ − PT
)

(M)
∥∥∥
A,∞

≤
√

72
(√

2(b4+1)
c0

‖M‖A,2 + 2(b4+1)
3c0

‖M‖A,∞
)
,

with probability at least 1−N−b4+1, given that pn ≥ c0 µ̃nK̃
2

N log(N) for n ∈ [N ].

Proof. The proof is provided in Supplementary Sec. 7 of this document.

In the next subsection we find the upper bound on ‖PT⊥(G)‖ by using the

stated lemmas and defined norms in (A.18).

Appendix A.3. Upper bound derivation370

Having introduced the norms in (A.18) and the lemmas in Sec. Appendix

A.2, we can now return to our main objective: upper bounding ‖PT⊥(G)‖.

Note that all lemmas in Sec. Appendix A.2 hold for some universal constant

c0. For convenience, in the remainder of the proof we shall take the value of c0

for which all bounds in these lemmas hold, that is, we take

c0 ≥ max
{

2(b2 + 1) , 16(b3 + 1) , 144(b4 + 1) , 53
3 (b1 + 1)

}
. (A.20)

Recalling (60) (in the main manuscript), we have

‖PT⊥(G)‖ ≤
∑
`∈[L]

‖PT⊥QΩ`PT (F`−1)‖. (A.21)
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Next, we bound each term in the right hand summation of (A.21) as

‖PT⊥QΩ`PT (F`−1)‖ =
∥∥(PT⊥(QΩ` − I)PT

)
(F`−1)‖

≤
∥∥((QΩ` − I)PT

)
(F`−1)‖ = ‖(QΩ` − I) (F`−1)‖

(a)

≤
√

2(b2+1)

c0K̃RL
‖F`−1‖A,2 + 2(b2+1)

3c0K̃RL
‖F`−1‖A,∞

≤ ‖F`−1‖A,2 + ‖F`−1‖A,∞
c1
√
K̃RL

, (A.22)

with probability 1−N−b2 where in (a) we use Lemma 3 and for

c1 = min

{
3c0
√
K̃RL

2(b2+1) ,
√

c0
2(b2+1)

}
.

Thus,

‖PT⊥(G)‖ ≤ 1

c1
√
K̃RL

∑
`∈[L]

(
‖F`−1‖A,2 + ‖F`−1‖A,∞

)
(A.23)

holds with probability no less than 1−LN−b2 . Since F` =
(
PT−PTQΩ`

)
(F`−1),

we use Lemmas 4 and 5 to recursively bound ‖PT⊥QΩ`PT (F`−1)‖ as

‖F`‖A,2 + ‖F`‖A,∞ ≤
(√ 8(b3+1)

c0
+
√

144(b4+1)
c0

)
‖F`−1‖A,2 (A.24a)

+
( 4(b3+1)

3c0
+ 2
√

72(b4+1)
3c0

)
‖F`−1‖A,∞ ≤

‖F`−1‖A,2 + ‖F`−1‖A,∞
c2

, (A.24b)

with probability no less than 1−N−b3 −N−b4+1, where

c2 = min

{
1√

8(b3+1)
c0

+
√

144(b4+1)
c0

, 1
4(b3+1)

3c0
+

2
√

72(b4+1)
3c0

}
.
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By applying (A.24a) multiple times, we conclude that

‖PT⊥(G)‖ ≤ ‖F0‖A,2 + ‖F0‖A,∞
c1
√
K̃RL

∑
`∈[L]

c1−`2 , (A.25)

with probability no less than 1 − LN
∑4
i=2N

−bi . We further bound ‖F0‖A,∞

and ‖F0‖A,2 to simplify (A.25). To bound ‖F0‖A,∞, we first recall that

‖F0‖A,∞ = max
n∈[N ]

∣∣∣ 〈An ,

F0︷ ︸︸ ︷
WH

LUVHWR 〉N
√
ωnµ̃nK̃

∣∣∣. (A.26)

In addition, we know

〈An ,W
H
LUVHWR〉 = 〈UHWLAn , VHWR〉

=
√
ωn
〈
UHWLAn , VHWRAR

n

〉
=
√
ωn
〈
UHWLPU (An) , (PV (AR

n )WH
RV)H

〉
. (A.27)

where AR
n is d2 × d2 right diagonal version of An, in which for each column

its diagonal element is equal to norm-one of that column. AR
n comes from the

fact that Ans are orthonormal basis.

∥∥UHWLPU (An)
∥∥

F
≤ ‖UH‖︸ ︷︷ ︸

≤1

‖WL‖F︸ ︷︷ ︸
=1

‖PU (An)‖F︸ ︷︷ ︸
≤
√
µkK̃

N

, (A.28)

and

∥∥(PV (AR
n )WH

RV)H
∥∥

F
≤ ‖VH‖︸ ︷︷ ︸

≤1

‖WR‖F︸ ︷︷ ︸
=1

‖PV (AR
n )‖F︸ ︷︷ ︸

≤
√
µkK̃

N

. (A.29)

Now, if we apply the Cauchy-Schwartz inequality in (A.27) by using (A.28) and
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(A.29), we obtain

∣∣∣〈An ,W
H
LUVHWR〉

∣∣∣ ≤ √ωkµkK̃
N

. (A.30)

By plugging this result into (A.26), we get ‖F0‖A,∞ ≤ 1. For bounding ‖F0‖A,2,

we use

‖F0‖2A,2 =
∑
n∈[N ]

N |〈An,F0〉|2

ωnµ̃nK̃
=
∑
n∈[N ]

µ̃nK̃
N

(
N |〈An,F0〉|√

ωnµ̃nK̃

)2

≤
∑
n∈[N ]

µ̃nK̃

N
≤
∑
n∈[N ]

‖PU (An)‖2F + ‖PV (An)‖2F (A.31)

By invoking (24), we further bound
∑
n∈[N ] ‖PU (An)‖2F as

∑
n∈[N ]

‖PU (An)‖2F ≤
∥∥∥ ∑
n∈[N ]

(An �An)
∥∥∥
∞→∞

‖PU (1)‖2F

≤
∑
n∈[N ]

‖An �An)‖∞→∞︸ ︷︷ ︸
RL

K̃ ≤ RL K̃. (A.32)

A similar approach shows that
∑
n∈[N ] ‖PV (An)‖2F ≤ K̃RL . Hence,

∑
n∈[N ]

|〈An,F0〉|2N
ωnµ̃nK̃

≤

2K̃RL , or ‖F0‖2A,2 ≤ 2K̃RL . We now get back to (A.25):

‖PT⊥(G)‖ ≤
√

2K̃RL + 1

c1
√
K̃RL

∑
`∈[L]

c1−`2 ≤ 2
√

2

c1

∑
`∈[L]

c1−`2 (A.33)

for qn ≥ c0R
2
L
µ̃n
N K̃2, or equivalently pn ≥ c0R

2
L
µ̃n
N K̃2 log(N). For c2 ≥ 2 and

c1 ≥ 12, we can conclude that

‖PT⊥(G)‖ ≤ 2
√

2
c1

(
1 +

∞∑
`=1

( 1
2 )`
)
≤ 4
√

2
c1
≤ 1

2
, (A.34)

with probability at least 1−LN
∑4
i=2N

−bi . Therefore, if pn ≥ c0R2
L
µ̃n
N K̃2 log (N)
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for n ∈ [N ], with probability no less than 1 − LN
∑4
i=1N

−bi , matrix G is a

valid dual certificate. As a result, from Lemma 1, the solution of weighted

lifted-structured low-rank matrix recovery problem is exact and unique, with

high probability.375
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