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Reconstruction of Binary Shapes from Blurred
Images via Hankel-structured Low-rank Matrix
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Abstract—With the dominance of digital imaging systems, we
are often dealing with discrete-domain samples of an analog
image. Due to physical limitations, all imaging devices apply a
blurring kernel on the input image before taking samples to form
the output pixels. In this paper, we focus on the reconstruction
of binary shape images from few blurred samples. This problem
has applications in medical imaging, shape processing, and image
segmentation. Our method relies on representing the analog
shape image in a discrete grid much finer than the sampling
grid. We formulate the problem as the recovery of a rank r
matrix that is formed by a Hankel structure on the pixels. We
further propose efficient ADMM-based algorithms to recover
the low-rank matrix in both noiseless and noisy settings. We
also analytically investigate the number of required samples for
successful recovery in the noiseless case. For this purpose, we
study the problem in the random sampling framework, and show
that with O(r log4(n1n2)) random samples (where the size of the
image is assumed to be n1 × n2) we can guarantee the perfect
reconstruction with high probability under mild conditions. We
further prove the robustness of the proposed recovery in the noisy
setting by showing that the reconstruction error in the noisy case
is bounded when the input noise is bounded. Simulation results
confirm that our proposed method outperform the conventional
total variation minimization in the noiseless settings.

Index Terms—Binary shape, Hankel structure, Low-rank ma-
trix recovery.

I. INTRODUCTION

The shape images are a subclass of general images that
consist of two levels: inside and outside of the shape. Such
binary structures appear in a number of applications such as
medical imaging [1], millimeter-wave imaging [2], artworks
(e.g., cutouts Figure 1) [3], quality monitoring in manufac-
turing, document analysis [4], astronomical imaging [5] and
image segmentation [6]. Due to physical non-idealities of
imaging devices, the digital measurements of binary shapes
are no longer binary. More explicitly, the binary-valued points
of the analog shape image are mixed in a weighted form within
the acquisition device before creating the output digital image.
Besides, due to the sampling effect of the digital acquisition
device, the boundaries of the shape image are not exactly
preserved. In summary, the digital image of a binary shape
might be very different from its original form. In this paper,
we aim at recovering a shape image from its blurred samples.
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Fig. 1: (a) and (c) are two cut-outs made by Henri Matisse.
Using black and white representation in (b) and (d), these
artworks can be considered as shape images.

A related problem appears in super-resolution imaging. In
this technique, a number of low-resolution images of the
same scene are combined to achieve an image with higher
resolution. Obviously, it is not generally possible to achieve
a high-resolution image based on only a single low-resolution
image. However, if the input image is known to have a specific
structure, this might be possible; the example of blurred
images of a cloud of separated points is considered in [7],
[8].

The signals with finite rate of innovation (FRI) introduced
in [9] for one-dimensional signals and extended to 2D signals
in [10] provide a model for continuous-domain signals that can
be exactly recovered from their generalized samples. Recently,
the FRI structure has been of special interest for modeling the
image structures, particularly, for shape images [11]–[17]. One
popular model is to express the boundary of the shape image
via a bi-variate polynomial or harmonic polynomial.

For instance, in [15], the shape boundaries are assumed
to represent the zero-level set of a polynomial with finite
degree; the recovery problem is then, formulated as esti-
mating the polynomial coefficients via a set of annihilation
equations. A similar approach is devised in [18] when the
shape boundaries are expressed as the zero-level set of a
trigonometric polynomial (a polynomial function of ej2πx and
ej2πy). The number of polynomial coefficients in [15], [18]
roughly controls the degrees of freedom in repressing shapes.
Specifically, to represent complicated shapes via the models
in [15], [18], the degree of the polynomial shall be set quite
high.

The annihilation equations are the most common tool in
dealing with FRI signals. However, a matrix completion
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technique for 1D FRI signals has been recently proposed in
[19]. This method (called EMAC) uses the Hankel transform
(first proposed in [20]) to represent the FRI signal in a low-
rank structure. With a slightly different matrix structure (block
Toeplitz structure), [13] investigates the recovery of piece-wise
constant images using a combination of rank minimization
and annihilation equations. This could be considered as an
extension of [19] to 2D FRI signals.

In a completely different setting, a blind deconvolution
problem is studied in [21], where the discrete signals are
subject to unknown blurring kernels. For both 1D and 2D
signals, and under certain conditions, it is shown that a
rank minimization problem can simultaneously estimate the
blurring kernel and the original signal.

A. Contributions

The goal of this work is to recover a discrete binary
image from blurred and sub-sampled measurements, where the
blurring kernel is assumed to be known. Instead of recovering
a continuous-domain image, we reconstruct the shape image in
discrete form with an arbitrarily high sampling resolution. This
enables us to avoid parametric continuous-domain models;
indeed, the stability and robustness of recovering parametric
models (by estimating the parameters) cannot be guaranteed
in general, particularly, when studying FRI signals.

Our approach is based on the rank minimization of a Hankel
structure. More precisely, we use the fact that the gradient
of shape images is non-zero only at the boundaries, which
implies that the gradient is sparse. Then, we recall a result
that the Hankel transform of a signal which is sparse in the
Fourier domain, is low-rank. Thus, if we apply the Hankel
transform on the Fourier transform of the gradient image,
we achieve a low-rank matrix. Hence, we base our image
reconstruction on minimizing the rank of this latter matrix.
The available measurements, which are linearly related to the
shape image, form a set of constraints in the minimization
problem. The rank r of the aforementioned matrix describes
the complexity of the model, and plays a role similar to the
degree of the polynomial in FRI models. However, unlike
the FRI techniques, we do not need to know this parameter
in advance. Indeed, our reconstruction technique (low-rank
recovery) implicitly finds the simplest images that matches
the constraints (i.e., measurements).

A simple block diagram of our reconstruction procedure is
shown in Figure 2. After forming the final Hankel matrix, we
devise a nuclear norm minimization as a convex relaxation of
the rank minimization. Using an augmented Lagrangian form
for the latter problem, we propose two algorithms based on
the alternating direction method of multipliers (ADMM) for
the noiseless and noisy cases.

As explained earlier, we assume that the desired high-
resolution image generates the available measurements if the
image is blurred via the known kernel and then sampled
uniformly. This model differs from [13], [15], [18] as we do
not take into account the continuous-domain model. While this
model is somewhat close to the one used in [21], we should
emphasize that we do not apply a random mask nor a random
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Fig. 2: In practical imaging devices, the physics of data
acquisition frequently imply the existence of a 2-D blurring
kernel before the sampling process.

sampler (which are used in [21]). It is worth mentioning that
we assume to know the blurring kernel in this paper, while
[21] estimates the kernel from multiple masked versions of the
target image; in simple words, [21] assumes to have access to
multiple images, while we are constrained to a single image
accompanied with the blurring kernel.

To be able to analytically evaluate the performance of
our method, we investigate the number of required random
samples for recovering an n1 × n2 image that results in
a rank r matrix using the explained procedure. We prove
that O(r log4(n1n2)) measurements are sufficient to guarantee
perfect recovery with high probability. A preliminary result in
this direction was previously presented in [22].

B. Notation

We use lower and upper-case bold letters (e.g., x and
X) to denote vectors and matrices, respectively. Calligraphic
notations such as X represent linear operators. For a linear
operator X , X ∗ stands for the adjoint operator. We show the
transpose and Hermitian of a matrix X by XT and XH,
respectively. With X a given matrix, ‖X‖, ‖X‖F and ‖X‖∗
represent the spectral, Frobenius, and nuclear norms (sum of
singular values), respectively. The norm of a linear operator
A : Cn1×n2 7→ Cn1×n2 is defined as

‖A‖op := sup
X∈Cn1×n2

‖A(X)‖F
‖X‖F

.

Also ‖X‖1 and ‖X‖∞ indicate the element-wise `1 and
`∞ norms of X (treating X as a vector). We show the
i th canonical basis vector by ei. For an integer n, [n]
represents {1, 2, . . . , n}. We associate a 2D Hankel operator
Hd1,d2 : Cn1×n2 7→ Cd1d2×(n1−d1+1)(n2−d2+1) to the scalars
d1 ∈ [n1] and d2 ∈ [n2] as

Hd1,d2(X) :=


h(x1) h(x2) . . . h(xn1−d1+1)
h(x2) h(x3) . . . h(xn1−d1+2)

...
...

...
...

h(xd1) h(xd1+1) . . . h(xn1
)

 ,
(1)

where xl is the lth row of the matrix X , and h(x1×n2
) is

given by

h(x) :=


x1 x2 . . . xn2−d2+1

x2 x3 . . . xn2−d2+2

...
...

...
...

xd2 xd2+1 . . . xn2

 . (2)
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Fig. 3: The overview of the rank minimization of the Hankel format of a shape image. We first take row-wise and column-wise
derivatives of the shape image I and form a block-diagonal matrix of double the size of I . Next, we apply the 2D Fourier
transform followed by the block-Hankel transform. Each block in the Fourier domain is thus, mapped to a row in the Hankel
structure.

We also define the pseudo-inverse Hankel mapping H †
d1,d2

:

Cd1d2×(n1−d1+1)(n2−d2+1) 7→ Cn1×n2 by averaging those
elements of the input d1d2 × (n1 − d1 + 1)(n2 − d2 + 1)
matrix that are supposed to be equal in a Hankel transform
of an arbitrary n1 × n2 matrix, and then, reordering them to
form an n1 × n2 matrix1. To simplify the notations, we often
omit the subscript d1, d2 from H and H †.

C. Organization of the paper

The rest of the paper is organized as follows. In Section II,
we explain the image model and study the Hankel structure in
details. Then, we explicitly define the sampling problem. Next,
we present reconstruction algorithms for both the noiseless
and noisy scenarios. The implementation of the algorithms
is achieved via augmented Lagrangian method in Section
III. In Section IV, we present numerical simulations and
experimental results for both the noiseless and noisy cases.
Finally, in Section V we provide theoretical guarantees for the
recovery of binary shape using a random sampling strategy.

II. SHAPE IMAGES AND MEASUREMENT PROCEDURE

A. Shape Images

In this work, we consider a discrete bi-level (black and
white) image I of size n1×n2 (or I ∈ {0, 1}n1×n2 using ma-
trix representation) with the interior index set S ⊂ [n1]× [n2]
defined as

I[a, b]
(a,b)∈[n1]×[n2]

=

{
1, (a, b) ∈ S,
0, (a, b) 6∈ S, (3)

where Θ = [n1]× [n2] is the image plane. We assume to know
a linear transform W : Cn1×n2 → Cñ1×ñ2 such that W(I) is
sparse (ñi ≥ ni). The transforms related to image derivatives

1One can verify that Hd1,d2H †
d1,d2

is the orthogonal projection onto the
subspace of all Hankel matrices.

are among important examples. To better clarify, let us define
the finite difference matrix

Dm×m =


1 −1 0 . . . 0 0
0 1 −1 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 1 −1
0 0 0 . . . 0 1


m×m

.

It is now easy to check that Dn1×n1
I and IDT

n2×n2
repre-

sent the vertical and horizontal derivatives of I , respectively.
For common shape images, the non-zero elements of I are
expected to be clustered such that Dn1×n1

I and IDT
n2×n2

are sparse (small number of non-zero elements compared to
n1 × n2). Therefore, one can choose W(I) = Dn1×n1

I or
W(I) = IDT

n2×n2
, or a combination of both such as

W(Xn1×n2) =

[
Dn1×n1

X 0n1×n2

0n1×n2 XDT
n2×n2

]
. (4)

However, our model in this paper is general and we can use
any invertible W (such as wavelets). Our goal in this paper is
to recover I by using the sparse nature of W(I).

In our problem, the available data are a number of samples
from a blurred version of I . Mathematically, a (2L1 + 1) ×
(2L2 + 1) smoothing kernel ϕ acts on I , and results in the
blurred image Ĩ with the same size (n1 × n2):

Ĩ[i− L1 , j − L2] =
∑

(a,b)∈Θ

I[a, b]ϕ[i− a, j − b] (5)

∀i = L1 + [n1], j = L2 + [n2].

The blurred image is also represented via Ĩ ∈ Rn1×n2 . Finally,
we assume to observe a subset Ω ∈ Θ of the elements in Ĩ ,
which amounts to the sampling process. In other words, the
available data can be modeled as a masked version R of Ĩ:

R = PΩ

(
Ĩ
)

=

{
Ĩ[a, b], (a, b) ∈ Ω,
0, (a, b) 6∈ Ω.

(6)

A practical case is when Ω stands for a uniform downsampling
of Θ. In practice, due to the model mismatch and some non-
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idealities such as quantization, the observed data is oftentimes
contaminated with additive noise

Rn = PΩ

(
Ĩ +E

)
, (7)

where E ∈ Rn1×n2 stands for the noise matrix; we assume the
availability of an upper bound η on the Frobenius norm of the
noise matrix, i.e. ‖PΩ(E)‖F ≤ η. In summary, we assume
the observations are given either by R or Rn, where the
smoothing kernel ϕ and the sampling subset Ω are available
beforehand (η is also known in the noisy case).

For the sake of simplicity, we assume a separable smoothing
kernel ϕ in this paper:

ϕ[a, b]
1≤a≤L1
1≤b≤L2

= φ(b) · ψ(a). (8)

With this assumption, the 2D convolution in (5) can be restated
as

Ĩ = ΦIΨT, (9)

where Φ ∈ Rn1×n1 and Ψ ∈ Rn2×n2 are Toeplitz matrices
linked with (truncated) 1D convolution operators via φ[·] and
ψ[·] kernels, respectively. It should be noted that if the blurring
kernel is replaced with the Fourier transform (i.e. Φ and Ψ are
the DFT matrices), then, our measurement model (6) coincides
with the MRI samples in [13], [18], [23]). Also, with Φ =
idn1×n1

and Ψ = idn2×n2
, our measurements simplify to the

exact samples of the image.

B. Block Hankel Structure

Let X = [Xa,b]a,b be an n1 × n2 matrix with elements of
the form

Xa,b =

r∑
k=1

exp
(
− j([b, a] · ωk)

)
, (10)

where ω1, . . . ,ωr are arbitrary real-valued 2D vectors (2D
frequencies). Indeed, X represents the Fourier transform of a
sum of r discrete delta functions. It is shown in [20], that the
rank of the Hankel transform H (X) is at most r. It is further
shown in [24] that the Hankel transform of a matrix is low-rank
if and only if the inverse 2D Fourier transform of the matrix
is sparse. Hence, the sparse structure of a 2D matrix can be
interpreted as the low-rank structure of the Hankel transform
of its Fourier transform. In this work, we apply this result for
the recovery of binary images for which the gradient has a
sparse structure (when the shape boundary is small compared
to the whole image). To simplify the notations, we define the
operator HFW(·) : Cn1×n2 7→ Cd1d2×(ñ1−d1+1)(ñ2−d2+1) as

HFW(X) := H
(
F
(
W(X)

))
, (11)

where W : Cn1×n2 7→ Cñ1×ñ2 is the sparsifying transform
with ñ1 ≥ n1 and ñ2 ≥ n2, and F : Cñ1×ñ2 7→ Cñ1×ñ2 stands
for the 2D Fourier transform. The partial derivative operator
W : Cn1×n2 7→ C2n1×2n2 of the form

W(Xn1×n2) =

[
Dn1×n1

X 0n1×n2

0n1×n2 XDT
n2×n2

]
(12)

is of particular interest in this paper. For now, however, we
proceed with a general invertible W operator. The pseudo-
inverse of HFW operator is then, defined by

HF†W(Y ) :=W†
(
F−1

(
H †(Y )

))
, (13)

where Y is an arbitrary matrix of size d1d2 × (ñ1 − d1 +
1)(ñ2 − d2 + 1), F−1 : Cñ1×ñ2 7→ Cñ1×ñ2 is the inverse
2D Fourier transform, and W† : Cñ1×ñ2 7→ Cn1×n2 is the
pseudo-inverse of W . For the particular case in (12), we have
that

W†
([
Pn1×n2

Qn1×n2

Rn1×n2 Sn1×n2

])
=
D−1
n1×n1

P + S(D−1
n2×n2

)T

2
.

(14)

Figure 3 illustrates the HFW operator with the specified W
in (12).

III. RECOVERY FROM BLURRED SAMPLES

Let I ∈ {0, 1}n1×n2 be a binary shape image from which
we have the noiseless observations R = PΩ(ΦIΨT). To take
advantage of the low-rank structure in HFW(X), one can
recover I via

Î = argmin
X∈{0,1}n1×n2

rank
(
HFW(X)

)
s.t. PΩ(ΦXΨT) = R.

(15)

As the feasible set X ∈ {0, 1}n1×n2 is discrete, and the
rank(·) function is non-convex and non-smooth, the optimiza-
tion in (15) is NP-hard in general. A common alternative
is to replace the rank(·) with its convex relaxation, i.e.,
the nuclear norm [25]–[28], and enlarge the feasible set to
X ∈ [0, 1]n1×n2 :

Î = argmin
X∈[0,1]n1×n2

∥∥HFW(X)
∥∥
∗

s.t. PΩ(ΦXΨT) = R.

(16)

The problem (16) is convex. In the noisy case, the latter
optimization can be rewritten as

Î = argmin
X∈[0,1]n1×n2

∥∥HFW(X)
∥∥
∗

s.t.
∥∥PΩ(ΦXΨT)−Rn

∥∥
F
≤ η,

(17)

where η > 0 is an upper-bound on the standard deviation of
noise. Next, we propose practical implementations for solving
(16) and (17).

The Hankel transform inherently increases matrix dimen-
sions, which in turn increases the computational complexity
and memory requirements for solving (16) and (17). To
partially alleviate this issue, we solve these problems using
an ADMM implementation technique which is rather fast. It
is worth noting that there are also other scalable algorithms to
solve Hankel-based problems such as the techniques used in
[19], [29]–[31].
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(a) (b) (c) (d) (e) (f)

Fig. 4: Recovery of shape images. (a) is the original shape image. (b) is the blurred image (of size 30×30) when the sampling
kernel is the 2D B-spline of order 2. The absolute error images for the proposed method and the least squares method are
shown in (c) and (f), receptively. We have also included the result of TV-minimization (introduced in [3]) and the blind method
of [21] (with no random mask) in (e) and (d), respectively. The reconstruction PSNR values for (c), (d), (e) and, (f) are
26.66dB, 15.07dB, 22.68dB, and 17.16dB respectively. The SSIM values are (the same order) 0.98, 0.57, 0.96, 0.63.

(a) (b) (c) (d) (e) (f)

Fig. 5: Recovery of a shape image. (a) is the original shape image. (b) is the blurred image (of size 38 × 38) when the
blurring kernel is a 31× 31 Gaussian filter. The absolute difference between the original shape and the recovered image using
the proposed method is shown in (c) which corresponds to PSNR = 23.15dB and SSIM = 0.97. The error of the recovered
image using the blind method of [21] is shown in (d) which achieves PSNR = 13.64dB and SSIM = 0.49. The results of
TV-minimization (introduced in [3]) is depicted in (e) that achieves PSNR = 20.54dB and SSIM = 0.94. The image in (f)
represents the error of the least squares solution with PSNR = 17.77dB and SSIM = 0.70.

A. Noiseless Recovery
It is well-known that the nuclear norm can be expressed as

[32]:

‖A‖∗ = min
U ,V

A=UV H

‖U‖2F + ‖V ‖2F. (18)

Therefore, we can reformulate (16) as

argmin
U ,V

X∈[0,1]n1×n2

‖U‖2F + ‖V ‖2F

s.t. PΩ

(
ΦXΨT

)
= R,

HFW(X) = UV H.

(19)

We first transform the conditional minimization into an aug-
mented Lagrangian form, and then, apply an ADMM tech-
nique to achieve the global minimizer. Note that (19) is bilinear
in terms of U and V , and not necessarily convex. Using a
result in [33], we know that the ADMM converges in this
case, when the penalty parameter of ADMM is set sufficiently
large. It is not difficult to verify that except some constant
terms (which do not affect the minimizer), the augmented
Lagrangian form can be written as

Lµ1,µ2(U ,V ,X,Λ1,Λ2) = ‖U‖2F + ‖V ‖2F
+ µ1‖HFW(X)−UV H + Λ1‖2F
+ µ2‖PΩ(ΦXΨT)−R−Λ2‖2F, (20)

where µ1, µ2 are arbitrary positive scalars (above the threshold
required for convergence) and Λ1,Λ2 are the Lagrange mul-
tipliers in form of matrices that match the size of HFW(I)
and I , respectively. We minimize the unconditional cost
Lµ1,µ2

using an ADMM approach; i.e., we sequentially update
X,U ,V ,Λ1,Λ2. More precisely, let X(k),U (k), V (k), Λ

(k)
1

and Λ
(k)
2 be the achieved matrices until the kth iteration. The

updated matrices at the end of the (k+1)th iteration are given
by

X(k+1) = argmin
X∈[0,1]n1×n2

µ1‖HFW(X)−U (k)V (k)H + Λ
(k)
1 ‖2F

µ2‖R− PΩ(ΦXΨT) + Λ
(k)
2 ‖2F, (21)

U (k+1) =arg min
U
‖U‖2F+

µ1‖HFW(X(k+1))−UV (k)H + Λ
(k)
1 ‖2F, (22)

V (k+1) =arg min
V
‖V ‖2F+

‖HFW(X(k+1))−U (k+1)V H + Λ
(k)
1 ‖2F, (23)

Λ
(k+1)
1 =Λ

(k)
1 +HFW(X(k+1))−U (k+1)V (k+1)H (24)

Λ
(k+1)
2 =Λ

(k)
2 +R− PΩ(ΦXΨT). (25)

Except for (24) and (25) that have simple update rules, we
need to derive the minimizers. Fortunately, we are dealing with
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TABLE I: Simplified operators when W is given by (12) and Ω = {R, 2R, 3R, . . . , bn1

R cR}×{C, 2C, 3C, . . . , b
n2

C cC} which
corresponds to a uniform subsampling.

Operator Matrix Representation Details of Calculation

H ∗(Y ) [H ∗(Y )]i,j = 〈Y ,H (eie
T
j )〉, ∀ (i, j) ∈ [n1]× [n2]

Kr = diag(1, 2, · · · , d1, · · · , d1︸ ︷︷ ︸
(2n1−2d1+2)

, d1 − 1, · · · , 1),

H ∗(H (X)
)

KrXKT
c

Kc = diag(1, 2, · · · , d2, · · · , d2︸ ︷︷ ︸
(2n2−2d2+2)

, d2 − 1, · · · , 1)

W∗(X) DT
n1×n1

P + SDn2×n2 X =

[
Pn1×n2 Qn1×n2

Rn1×n2 Sn1×n2

]
∈ C2n1×2n2

HF∗WHFW (X)
DT

n1×n1

(
Mr1Dn1×n1XMT

r1 +M2XDT
n2×n2

MT
2

)
Mr = FT

r KrFr, Mc = FT
c KcFc,

+
(
Mc3Dn1×n1XMT

c3 +Mc4XDT
n2×n2

MT
c4

)
Dn2×n2 Fr ∈ C2n1×2n1 and Fc ∈ C2n2×2n2 are discrete Fourier transform matrices

Mr =

[
Mr1 Mr2

Mr3 Mr4

]
and Mc =

[
Mc1 Mc2

Mc3 Mc4

]
∈ C2n1×2n2

J (X) JrXJT
c

Jr = µ1
(
DT

n1×n1
Mr1Dn1×n1 +DT

n1×n1
Mr2 +Mc3Dn1×n1 +Mc4

)
+ µ2

(
Φ̃TΦ̃

)
Jc = µ1

(
DT

n1×n1
Mc4Dn1×n1 +DT

n1×n1
Mc3 +Mr2DT

n1×n1
+Mr1

)
+ µ2

(
Ψ̃TΨ̃

)(
Φ̃T
)
i
=
(
ΦT
)
Ri
, ∀ i = 1 : bn1/Rc(

Ψ̃T
)
i
=
(
ΨT
)
Ci
, ∀ i = 1 : bn2/Cc

Algorithm 1 Noiseless Matrix Recovery with ADMM

1: Input:
2: Measurement matrix Φ,Ψ.
3: Image samples R ∈ [0, 1]n1×n2 .
4: Augmented Lagrange multiplier parameters µ1, µ2

5: Output:
6: Reconstruct Image X ∈ [0, 1]n1×n2 .
7: procedure LOW-RANK RECOVERY(R,X)
8: Λ

(0)
1 ← ∅

9: Λ
(0)
2 ← ∅

10: X(0) ← Φ†RΨ†T

11: U (0),V (0) ← PolarDecomposition(HFW(X(0)))
12: for k = 1 : iter do
13: Calculate X(k) and project to set with (26)
14: Update U (k) within (28)
15: Update V (k) within (29)
16: Λ

(k)
1 ← Λ

(k−1)
1 +HFW(X(k))−U (k)V (k)H,

17: Λ
(k)
2 ← Λ

(k−1)
2 +R− PΩ

(
ΦXΨT

)
18: end for
19: Î ←X(iter)

20: return Î
21: end procedure

convex quadratic forms in all the involved minimizations in
(21)-(23), which have closed-form expressions. In particular,

X(k+1) = P[0,1]

(
J−1

(
µ1HF∗W

(
U (k)V (k)H −Λ

(k)
1

)
+ µ2Φ

(
PΩ(R+ Λ

(k)
2 )
)
ΨT
))

, (26)

where the linear operator J : Cn1×n2 7→ Cn1×n2 refers to

J (X) = µ1HF∗WHFW(X) + µ2Φ
TPΩ(ΦXΨT)Ψ, (27)

and the mapping P[0,1] is given by

P[0,1](Z) =


1, Zi,j > 1,

Zi,j , 1 ≥ Zi,j ≥ 0,

0, Zi,j < 0.

The update rules of U and V as suggested in (22) and (23)
are

U (k+1) = µ1

(
HFW(X(k+1)) + Λ

(k)
1

)
V (k)·(

idn1×n1
+ µ1V

(k)HV (k)
)−1

, (28)

V (k+1) = µ1

(
HFW(X(k+1)) + Λ

(k)
1

)
U (k+1)·(

idn2×n2
+ µ1U

(k+1)HU (k+1)
)−1

, (29)

where idn1×n1
and idn2×n2

denote the identity matrices of
size n1 and n2, respectively. The overall procedure of image
reconstruction based on noiseless samples is summarized in
Algorithm 1. We have simplified the required operators for
the special case of W as in (12) in conjunction with uniform
2D sampling in Table I.

B. Reconstruction from Noisy Samples

When the measurements are noisy, PΩ

(
ΦXΨT

)
= R is

no longer valid and shall be replaced with ‖PΩ

(
ΦXΨT

)
−

Rn‖2F ≤ η2, where η2 stands for an upper-bound on the
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noise variance. Similar to the noiseless case, we propose the
following Lagrangian form for solving (17):

L̃µ1,µ2(U ,V ,X,Λ1) = ‖U‖2F + ‖V ‖2F+

µ1‖HFW(X)−UV H + Λ1‖2F + µ2‖PΩ

(
ΦXΨT

)
−Rn‖2F.

(30)

Again µ1 is an arbitrary positive real (above the threshold
required for convergence), while µ2 needs to be set such
that ‖PΩ

(
ΦXΨT

)
− Rn‖2F ≤ η2 is satisfied. In our im-

plementation, we initialize µ2 by a large value, and then
gradually decrease it until the minimizer of L̃µ1,µ2

fails to
satisfy ‖PΩ

(
ΦXΨT

)
− Rn‖2F ≤ η2 for the first time. We

should emphasize that due to the inequality constraint in the
noisy case, we no longer have the Lagrange multiplier Λ2.
Due to the similarity to the noiseless case, the update rules
for U and V remain unchanged as (28) and (29). However,
for X(n+1), we have:

X(k+1) = P[0,1]

(
J−1

(
µ1HF∗W

(
U (k)V (k)H

−Λ
(k)
1

)
+ µ2ΦPΩ

(
Rn

)
ΨT
))

, (31)

where J is defined in (27). The update rule for Λ1 is again
the same as (24). The overall procedure for image recovery
from noisy measurements is summarized in Algorithm 2.

Algorithm 2 Noisy Matrix Recovery with ADMM

1: Input:
2: Measurement matrices Φ,Ψ.
3: Image of Noisy samples Rn ∈ [0, 1]n1×n2 .
4: Augmented Lagrange multiplier parameters µ1, µ2

5: Output:
6: Reconstruct Image X ∈ [0, 1]n1×n2 .
7: procedure LOW-RANK RECOVERY(Rn,X)
8: Λ

(0)
1 ← ∅

9: X(0) ← Φ†RnΨ†T

10: U (0),V (0) ← PolarDecomposition(HFW(X(0)))
11: for k = 1 : iter do
12: Calculate X(k) and project to set with (31)
13: Update U (k) within (28)
14: Update V (k) within (29)
15: Λ

(k)
1 ← Λ

(k−1)
1 +HFW(X(k))−U (k)V (k)H,

16: end for
17: Î ←X(iter)

18: return Î
19: end procedure

The computational complexity of our ADMM method is
mainly determined by the matrix inversions in (28) and (29).
Each matrix inversion involves O((ñ1 − d1 + 1)(ñ2 − d2 +
1)d1d2r + r3) multiplications. With a lesser computational
impact, the update for the Lagrange multipliers in (24) requires
O((ñ1 − d1 + 1)(ñ2 − d2 + 1)d1d2r) scalar multiplications.
We further need to compute the inverse of two diagonal (block
diagonal) matrices in (26) with the computational cost of
O(ñ3

1 + ñ3
2) multiplications. Besides the computational cost,

the variables U , V , HFW(X), and the Lagrangian multipliers

Λ1 and Λ2 shall be stored throughout the iterations in our
ADMM implementation. The associated memory requirement
is at least (ñ1− d1 + 1)(ñ2− d2 + 1)r+ rd1d2 + 2(ñ1− d1 +
1)(ñ2 − d2 + 1)d1d2 + n1n2.

IV. NUMERICAL RESULTS

In this section, we present experimental results for both the
noiseless and noisy cases. In addition, we consider different
blurring kernels such as Gaussian and B-spline filters. We also
compare the results against the TV-minimization technique in
[3], the blind method in [21] and the least squares solution
with which we initialize our ADMM algorithms (X(0) in
Algorithms 1 and 2). We should highlight that the method
of [21] estimates the blurring kernel from multiple blurred
measurements of the same image subject to random binary
masks. Here, we restrict the input to all methods (including
the blind method of [21]) to a single blurred image. Therefore,
the method of [21] needs to struggle with estimating the kernel
and the original image with only a single blurred image. We
also ignore the random binary mask in our simulations to avoid
missing information in the single blurred image. We use both
the PSNR and SSIM metrics to check the quality. The binary
shape images used in this section are all of size 120 × 120
pixels (from which we take samples).

As we described earlier, the employed ADMM methods
are guaranteed to converge when the penalty parameters are
sufficiently large. For this purpose, we use µ1 = 105 and
µ2 = 1010 in our noiseless experiments. In the noisy setting,
however, µ2 also depends on the standard deviation of noise
(η). In this case, we initialize µ2 with 1010 and gradually
decrease µ2 until

∥∥PΩ(ΦXΨT)−Rn

∥∥2

F
exceeds η2 for the

first time (µ2 shall be the smallest value which guarantees∥∥PΩ(ΦXΨT)−Rn

∥∥2

F
< η2).

A. Noiseless Recovery

In our first experiment, we consider a 2nd order B-spline
kernel that is scaled to fit in an area of 16× 16 pixels. After
applying this kernel on the original 120×120 image in Figure
4-(a), we take 30 × 30 uniform noiseless samples to reach
Figure 4-(b) and proceed with the noiseless reconstruction
methods. In Figures 4-(c) to 4-(f) we plot the reconstruction
error for our method (with W as in (12)), the method in
[21], TV-minimization and the least-squares approach. Both
the PSNR and SSIM metrics reveal that our proposed method
has the best performance; the superiority of our reconstruction
is particularly visible in places where small areas of one color
is surrounded by the other color.

In Figure 5, we consider Gaussian blurring kernel. We use
31 × 31 Gaussian kernel for Figure 5, while we take 38 ×
38 noiseless samples. Again, the results (with W as in (12))
confirm superiority of the proposed method compared to the
TV technique in reconstruction the details.

To study the role ofW in our experiments, we use a 7-layer
Haar wavelet transform in Figure 6. The blurring kernel here
is a 2nd order B-spline of size 19 × 19 and the size of the
blurred image after sampling is 24× 24. The results indicate
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(a) (b) (c) (d) (e) (f)

Fig. 6: Recovery of a shape image with Haar wavelet as the sparsifying transform. (a) is a binary image with size 120× 120.
(b) is the blurred image (of size 24×24) when the blurring kernel is the 2nd order B-spline of size 19×19. The absolute error
of the recovered image using our method with Haar wavelet is shown in (c) which has PSNR = 24.36dB and SSIM = 0.97.
The result of TV minimization is located in (e) and has PSNR = 21.46dB and SSIM = 0.94. The images in (d) and (f)
represent the absolute error of the blind method of [21] and the least squares solution, respectively. Their PSNR values are
14.37dB and 15.66dB, and SSIM values are 0.58 and 0.54, respectively.

that our method still performances very well as the wavelet
transform properly sparsifies the image.

Next, we investigate the performance of our method in
recovering a non-binary piece-wise constant image in Figure 7.
The TV minimization is a well-studied approach for recovering
such images. Interestingly, the partial derivatives of piece-
wise constant images are sparse and our theory still holds
even though the images are non-binary. We have applied a
Gaussian blurring kernel of size 31× 31 in Figure 7 to obtain
a noiseless image of size 38×38 after sampling. As expected,
our method performs suitably in recovering the original image
with a performance superior to the TV-minimization.

Our final noiseless experiment is dedicated to a part of a
Matisse artwork in Figure 8 from Figure 1. Note that in this
case the white area is not fully contained within the plane
boundaries. In other words, the boundary itself is composed
of black and white parts. One can check that the proposed
rank-minimization technique is not affected by this issue and
still performs suitably.

For a more user-friendly presentation of the results in
Figures 4 to 8, the PSNR and SSIM values of each method is
reported in Table II.
Remark 1. The performance of our proposed method is
directly linked with the nuclear norm (or rank) of the Han-
kel transform HF

(
W(I)

)
. While this value could be upper-

bounded by the sparsity level of W(I), the support pattern of
W(I) is also important. For instance, it is shown in [13] that
if the edges of the shape could be described by low degree
trigonometric polynomials, the rank of HF

(
W(I)

)
is better

approximated by the degree of the polynomial rather than the
length of the edge (sparsity level).

B. Noisy Recovery

In this part, we investigate the effect of additive noise on
the performance of the reconstruction method. We present
the results for two experiments in Figure 9. More precisely,
Figure 9-(a) shows a noiseless 120 × 120 binary image from
which we have a set of 54× 54 blurred and noisy samples as
in Figure 9-(b). The blurring kernel is a 41 × 41 Gaussian
filter and the noise level is such that PSNR = 20.25dB

(the PSNR is measured against the blurred but noise-free
samples). We use the recovery method in (31), where µ2 is
set with the assumption of PSNR = 19dB; i.e., we assume
an upper-bound on the noise variance in our recovery. The
reconstruction error shown in Figure 9-(c) reveals that the
proposed method has a descent performance; only the edges of
the shape are slightly miss-located. The second experiment on
the shape image in Figure 9-(d) also confirms this observation.
For this experiment, we applied a 2nd order B-spline blurring
kernel of size 12 × 12 to obtain the 30 × 30 noisy samples
depicted in 9-(e); the level of the noise is similar to the first
experiment (PSNR = 20.8dB).

V. THEORETICAL GUARANTEE

Our image reconstruction method relies on a rank min-
imizing problem. Therefore, it is important to check the
conditions under which we can guarantee that the solution
to the minimization problem corresponds to the ground truth
image. Obviously, such conditions depend on the shape of the
image, the smoothing kernel and the number of samples. In
this section, we state a bound for the number of noiseless
samples that guarantees perfect recovery. Unlike the practi-
cal scenario which consists of uniform image sampling, we
assume a random sampling strategy to take advantage of the
probabilistic recovery guarantees. In other words, we derive
a lower-bound on the number of random noiseless samples
(for the given shape image and the smoothing kernel) which
results in perfect image recovery with high probability.

Before we state the bound, we need to introduce a few
definitions. First, we define the Dirichlet kernel corresponding
to Hd1,d2 for an input of size ñ1 × ñ2 as

D(d1, d2,κ) :=
1

d1d2

sin(πd1κ1)

sin(πκ1)

sin(πd2κ2)

sin(πκ2)
, (32)

where κ = (κ1, κ2) ∈ [ñ1]×[ñ2]. Let Ξ ∈ Cñ1×ñ2 be a matrix
with r nonzero elements located at {κi}ri=1. We define r× r
Gram matrices GL(Ξ) and GR(Ξ) as(
GL(Ξ)

)
i,j

= D(d1, d2,κi − κj), (33)(
GR(Ξ)

)
i,j

= D(n1 − d1 + 1, n2 − d2 + 1,κi − κj). (34)
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(a) (b) (c) (d) (e) (f)

Fig. 7: Recovery of a piece-wise constant shape image. (a) is a multi-level image with size 120 × 120. (b) is the blurred
image (of size 38 × 38) when the blurring kernel is the Gaussian filter of size 31 × 31. The absolute difference between the
original image and the recovered image using the proposed method is shown in (d) which corresponds to PSNR = 27.27dB
and SSIM = 0.86. The result of TV-minimization, the blind method of [21], and the least squares method are depicted in (e),
(d), and (f) that achieve PSNR values of 24.14dB, 21.61dB, 24.37dB and SSIM values of 0.75, 0.63, 0.65, respectively.

TABLE II: Reconstruction quality of the methods in terms of PSNR and SSIM metrics (noiseless samples).

Figure PSNR Metric (dB) SSIM Metric
Proposed method TV-minimization [3] Blind [21] Least Square Proposed method TV-minimization [3] Blind [21] Least Square

4 26.66 22.68 15.07 17.16 0.98 0.96 0.57 0.63
5 23.15 20.54 13.64 17.77 0.97 0.94 0.49 0.70
6 24.36 21.46 14.37 15.66 0.97 0.94 0.58 0.54
7 27.27 24.14 21.61 24.37 0.86 0.75 0.63 0.65
8 25.38 23.06 13.12 17.29 0.98 0.96 0.49 0.57

(a) (b) (c) (d) (e) (f)

Fig. 8: Recovery of a shape image. (a) is a part of Matisse artwork depicted in Figure 1 with size 120 × 120. Unlike the
previous experiments, the white region is not fully surrounded by the black region. (b) is the blurred image (of size 18× 18)
when the blurring kernel is the 2nd order B-spline of size 27 × 27. The Absolute difference between the original shape and
the recovered images of the proposed method, TV-minimization [3], the blind method of [21], and the least squares method
are shown in (c), (e), (d), and (f), respectively. Their PSNR values are 25.38dB, 23.06dB, 13.12dB, 17.29dB, respectively,
and SSIM values are 0.98, 0.96, 0.49, 0.57 (the same order).

(a) (b) (c) (d) (e) (f)

Fig. 9: Recovery from noisy samples. (a) and (d) are the original shape images with size 120 × 120. (b) represents 54 × 54
noisy and blurred measurements of (a) by applying a Gaussian blurring kernel of size 41 × 41 and including additive noise
level of PSNR = 20.25dB. (e) represents 30× 30 noisy and blurred measurements of (d) by applying the 2nd order B-spline
blurring kernel of size 12×12 and including additive noise level of PSNR = 20.8dB. (c) and (f) depict the absolute differences
between the original shapes and the recovered ones using the proposed method in (31); for setting µ2 (and in turn η), we have
assumed an upper-bound for the noise variance corresponding to PSNR = 19dB. The recovered images based on (b) and (e)
correspond to PSNR = 18.64dB and PSNR = 20.17dB, and SSIM = 0.76 and SSIM = 0.76, respectively.



10

Definition 1. (Incoherence measure) Let I ∈ {0, 1}n1×n2 be
a discrete shape image for which W(I) is an r-sparse matrix.
The incoherence measure of I in correspondence with Hd1,d2

is defined as

ρ1(I;W, d1, d2) = max

{
1

σmin(GL(W(I))) ,
1

σmin(GR(W(I)))

}
.

(35)

Definition 2. (Kernel parameter) For a smoothing kernel
associated with Φ and Ψ, we define a kernel parameter in
correspondence with HFW as

ρ2(Φ,Ψ;W, d1, d2) =

max
(i,j)∈[n1]×[n2]

{∥∥HF†∗W(Υ
(i,j)
1 )

∥∥2∥∥HFW(Υ
(i,j)
2 )

∥∥2

1
,

∥∥HF†∗W(Υ
(i,j)
1 )

∥∥2

F

∥∥HFW(Υ
(i,j)
2 )

∥∥2

F

}
, (36)

where

Υ
(i,j)
1 =

(
ΦT
)
i

((
ΨT
)
j

)T

, Υ
(i,j)
2 =

(
Φ−1

)
i

((
Ψ−1

)
j

)T

,

(37)

with (·)i representing the ith columns of the matrix.

The proof of the following results are provided in a separate
file as supplementary material.

Theorem 1. Let I ∈ {0, 1}n1×n2 be a shape image such
that W(I) is r-sparse. We observe samples from this image
according to (6) where the elements in Ω are drawn uniformly
at random from [n1]× [n2]. If

|Ω| > cρ1ρ2r
n1 n2

d1 d2
log4 (n1n2), (38)

where ρ1 and ρ2 stand for ρ1(I;W, d1, d2) and
ρ2(Φ,Ψ;W, d1, d2), respectively, d1, d2 are the dimensions
used in the Hankel operator, and

c = max
{

112
3 (b1 + 1) , 3b22

}
, (39)

(b1 ≥ 2 and b2 ≥ 4), then, I is the unique solution to (16)
with probability no less than 1− (n1n2)max{2−b1,4−b2}.

Remark 2. The signal model in [20] ignores the blurring ker-
nel and assumes that the available samples are in the Fourier
domain of a sparse signal. We show that our result in Theorem
1 matches [20, Theorem 1] in this special case. Indeed, ρ2 is
the distinguishing factor between our bound and the one in
[20]. First note that W is equal to F−1 in this special case,
as the signal is sparse and the available samples are in the
Fourier domain (i.e., F−1 is the sparsifying transform). This
implies that HFW ≡H . Besides, the lack of a blurring kernel
can be modeled via Φ = idn1×n1

Ψ = idn2×n2
. With these

choices, Υ
(i,j)
1 and Υ

(i,j)
2 in (37) both simplify to a n1 × n2

matrix filled with 0 except for the (i, j) element which is 1;
let us denote this matrix with Υ(i,j). We can now check that
HFW(Υ(i,j)) is also formed by 0s and 1s. The number of non-
zero elements in the latter matrix depends on i, j; we represent
this number with Ni,j . In addition, each row and column of
HFW(Υ(i,j)) contains at most one non-zero element. We can

verify that HF†∗W(Υ(i,j)) = 1
Ni,j
HFW(Υ(i,j)). It is now easy

to check that∥∥HF†∗W(Υ(i,j))
∥∥ =

1

Ni,j
,
∥∥HFW(Υ(i,j))

∥∥
1

= Ni,j ,∥∥HF†∗W(Υ(i,j))
∥∥

F
=

1√
Ni,j

,
∥∥HFW(Υ(i,j))

∥∥
F

=
√
Ni,j .

(40)

Thus, ρ2 in (36) simplifies to 1.
To evaluate the bound in Theorem 1, we consider the shape

image in Figure 9-(d) with size 10000× 8000 blurred with a
3211× 3211 B-spline kernel of order 2. The values of ρ1, ρ2

and r in this case are given as 8.03× 10−6, 57.77 and 13540,
respectively. Using d1 = 10000

2 and d2 = 8000
2 , our bound is

equivalent to 27.79 percent of the total number of pixels for a
successful recovery with probability at least 0.9894 (b1 = 2.25
and b2 = 4.25).

For the noisy case, we can no longer expect perfect recovery.
Instead, we bound the reconstruction error in Theorem 2
linearly in terms of the input noise level.

Theorem 2. Let I ∈ {0, 1}n1×n2 be a shape image such that
W(I) is r-sparse. We observe samples from this image accord-
ing to (7), where the noise term E satisfies ‖PΩ(E)‖F ≤ η,
and the elements in Ω are drawn uniformly at random from
[n1]× [n2]. If (38) holds, then, any solution Î of (17) satisfies

‖HFW(I)−HFW(Î)‖F ≤
17n1n2

√
ñ1ñ2 η

σmin(Φ)σmin(Ψ)
‖HFW‖op

(41)

with probability at least 1 − (n1n2)max{2−b1,4−b2} (b1 ≥ 2
and b2 ≥ 4). Here, σmin(Φ) and σmin(Ψ) are the minimum
singular values of Φ and Ψ, respectively.

Remark 3. Similar to the arguments in Remark 2, when there
is no blurring effect we have that Φ = idn1×n1

, Ψ = idn2×n2
.

Hence, σmin(Φ) = σmin(Ψ) = 1, ñ1 = n1, n2 = ñ2, and
‖HFW‖op ≤

√
n1n2. Thus, (41) simplifies to the same bound

derived in [19, Theorem 3].

VI. CONCLUSION

In this paper, we presented a method to recover binary
shape images from sub-sampled and blurred measurements.
These images are commonly sparsified by applying wavelets
or gradient-related operators. We linked the sparsity level of
the image to the rank of a matrix generated by the Hankel
transform. Then, we formulated the recovery procedure as
a rank-minimization problem. Besides the simulation results,
we provided some theoretical guarantees to ensure suitable
recovery performances in both noiseless and noisy setups.
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