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GraphLite: Compact Representation of Smooth
Graphs Learned under Log-Degree Regularization

Fatemeh Kasraei, Arash Amini, and Stefano Rini

Abstract— Graph representations of data offer a rich frame-
work for advanced signal processing applications. However, in
many practical scenarios, constructing the graph is computation-
ally demanding, and storing it can be prohibitively expensive–
often requiring significantly more memory than the signal itself.
This paper introduces GraphLite, a novel algorithm tailored
for one of the good performing graph learning methods, to
compactly represent the learned graph through an auxiliary
vector of the same dimension as the signal. This auxiliary
representation, which consists of the inverse node degree profile,
arises naturally from the structure of the optimal solution
and can be pre-computed and stored alongside the signal.
The result is a lightweight, lossless graph representation that
retains compatibility with core graph signal processing (GSP)
operations. GraphLite offers a flexible and memory-efficient tool
for downstream tasks in applications where both online graph
construction and storage are bottlenecks.

Index Terms—Compact graph representation; Graph summa-
rization; Succinct learned graph.

Graph signal processing (GSP) has emerged as a powerful
framework for analyzing complex data structures that cannot
be effectively represented by traditional regular formats [1].
Tools such as the graph Fourier transform, spectral clustering,
and graph sampling have made GSP attractive across domains
ranging from neuroscience to transportation and genomics.
A fundamental challenge in GSP is the construction of the
underlying graph, typically by linking signal elements as
vertices with weighted edges reflecting pairwise similarity.
Desirable properties for these graphs include smoothness,
sparsity, and connectivity. However, storing the connectivity
among N vertices may require O(N2) memory in the worst
case, a significant burden in high-dimensional applications.
This has motivated a range of sparse graph construction
techniques, though sparsity often comes at the expense of
other structural goals. In this work, we introduce GraphLite
– a method to compactly encode graphs learned via log-
degree regularization. Rather than storing the full adjacency
matrix W, GraphLite compresses the graph into a single
vector p, representing inverse node degrees, which has the
same dimension as the signal x. This enables a lossless
reconstruction of the original graph from x and p using a
lightweight decoder. A conceptual overview of GraphLite is
shown in Fig. 1. Once a smooth graph is learned from a
signal using log-degree regularization, GraphLite allows its
structure to be stored efficiently alongside the signal. This
makes GraphLite particularly useful in scenarios where dense
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graphs are desirable but full storage or real-time recomputation
is infeasible.
Related Work: We first review the results in GSP which
are most relevant to the development of the paper. The
literature on graph processing and compression has expanded
to encompass a variety of thematic areas, each demonstrating
the field’s adaptability and depth. Graph-based methods have
been employed to compress data, resulting in structures that
encapsulate minimal yet sufficient information, including the
graph structure itself. For example, [2], [3] focus on creating
graphs with particular structures. Similarly, studies like [4], [5]
delve into graph learning methods that are custom-made for
image compression, maintaining a constant graph structure to
facilitate the transmission of minimal information. Significant
effort has been made to compress graphs derived from specific
domains and data sources, such as web graphs [6] and social
graphs [7]. The study [8] investigates succinct representations
of separable, undirected, and unlabeled graphs, and [9] exam-
ines space-efficient representations of boolean graphs without
specific combinatorial properties, focusing solely on their
density. Many notable researchers have utilized supernodes
and superedges to achieve a compact representation of graphs.
A common approach employed by most of them is greedy
merging. For example, [10] proposed an algorithm assuming a
uniform reconstruction scheme. Meanwhile, [11], [12] focused
on preserving degrees even when the degree distribution is
skewed. Additionally, methods such as [13], [14] employ
correction edge sets to enable lossless graph reconstruction.
For a comprehensive understanding of lossless graph compres-
sion and efficient graph representation, readers are referred
to [15]–[17], which provide an extensive overview of the
field. Additionally, for those interested in neural-network-
based graph summarization techniques, [18] is recommended,
although it is beyond the scope of this article.

Notation: Uppercase bold letters represent matrices, while
lowercase bold letters denote column vectors. The element at
the i-th row and j-th column of matrix W is denoted by
Wij . Similarly, xi represents the i-th element of the vector
x. 0 is the all-zero vector. IN ∈ RN×N is the identity matrix.
JN ∈ RN×N and JM×N ∈ RM×N are matrices filled with all
ones. The symbol ∥w∥2 denotes the Euclidean norm of vector
w, and |V| denotes the cardinality of the set V . Finally, [N ]
represents the set {1, 2, . . . , N}.

I. PRELIMINARIES

Consider a graph G = {V, E} with nodes V and edges E . Let
the adjacency matrix be indicated as W ∈ RN×N where N
is the number of nodes, i.e. |V| = N . We consider undirected
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Fig. 1: Overview of the GraphLite framework. Given a graph signal x, a smooth graph W is learned using log-degree
regularization. Instead of storing the full adjacency matrix W, GraphLite encodes the graph into a compact representation p
consisting of inverse node degrees. This vector, which has the same dimension as x, can be stored alongside the signal and
later used to losslessly reconstruct W via a decoder.

graphs without self-loops: accordingly, the weight (adjacency)
matrix is symmetric W = WT and Diag(W) = 0. The space
of all valid weight matrices is defined as

Wv =
{
W ∈ RN×N

+ : W = WT , Diag(W) = 0
}
.

For convenience of notation, we define the vectorization
operation w = vect(W) as in the left-hand side of Fig. 2:
w is obtained by consolidating all upper triangular elements
of W. This operation forms a simplified space Vv . This space,

defined as Vv =
{
w ∈ R

N(N−1)
2

+

}
, provides a more concise

representation than Wv . The degree of the node vi ∈ V
is defined as di =

∑
j Wij . The degree matrix D, is the

diagonal matrix with Dii = di. Let d be the degree vector:
By construction of the matrix A in Fig. 2, it follows that
W = Aw. A graph signal is represented by x ∈ RN 1. The
matrix Z ∈ RN×N captures the pairwise distances between
graph signal of the nodes. Define z = vect(Z).

II. PROBLEM FORMULATION

The graph learning problem involves determining an adja-
cency matrix that captures the distances between signal ele-
ments while maintaining desirable properties such as smooth-
ness, sparsity and connectivity. In particular, smoothness –
which measures the regularity of a graph signal over the
graph– plays a fundamental role in various GSP theorems
and algorithms. Smoothness is often approximated by the
decreasing rate of graph Fourier transform coefficients [4] and
is quantified using the Dirichlet energy measure:

1
2

∑
i,j

Wij(xi − xj)
2 = 1

2

∑
i,j

WijZij = xTLx. (1)

1The extension to a vector graph signal is not considered here for brevity.

An algorithm to learn smooth graphs is proposed in [19] by
formulating the optimization problem

Wopt = argmin
W∈Wv

∑
i,j

WijZij + f(W)︸ ︷︷ ︸
J(w)

, (2)

where f(W) is a regularization term that varies according to
the application. By choosing an appropriate f(W), constraints
such as sparsity can be applied to the graph structure 2. An
effective choice for f(W) is proposed in [19], allowing control
over the sparsity rate while avoiding isolated nodes as

J(w) = 2θzTw −
∑
i

log(Aw)i + ∥w∥22. (3)

Minimizing J(w) results in a graph with several desirable
properties: (i) zTw governs smoothness, (ii) the log barrier
term controls node connectivity, (iii) the L2 norm regulates
weight magnitude to induce density/sparsity, (iv) adjusting the
parameter θ fine-tunes the amount of sparsity, and (v) the
overall cost function is convex.

Our proposed algorithm, GraphLite, represents the optimal
solutions of (3) in a way that is both computationally and
memory efficient.

III. THE GRAPHLITE ALGORITH

Our main theoretical result consists of expressing the min-
imizer of (3) in a different form resembling a closed-form

2Sparsity here refers to the number of edges in the graph relative to the
number of edges in a complete graph with the same number of vertices,
defined as ρ = E

N(N−1)
.



3

w1,1 w1,2 · · · w1,N

w2,1 w2,2 · · · w2,N

...
...

. . .
...

wN,1 wN,2 · · · wN,N




W =

N

N

w
1 · · · 1 0 · · · 0 . . . . . . 0

1 · · · 1 0(N−1−k)×k

IN−1
. . .

IN−2 1 · · · 1 0

. . . . . . 1

. . . Ik . . . 1





A =

N − 1 N − 2 k 1

N

Fig. 2: A graphical representation of the matrices W and A in Sec. I. If w represents the upper-triangular part of W in form
of a vector (scanning row by row), Aw represents the degree vector d.

solution, and showing that the latter form provides a compact
representation for the graph.

Theorem 1: For the minimization problem in (3), the optimal
solution satisfies

wopt =
1
2 max

(
0 , ATpopt − 2θz

)
, (4)

where the max of two vectors is interpreted element-wise,
p ≜ [ 1

d1

1
d2

. . . 1
dN

]T , and A is defined in Fig. 2.
Proof: As the cost function J(w) in (3) is convex and

the constraint w ∈ R
N(N−1)

2
+ limits the minizer to a convex

half space, we conclude that the optimal solution exists.
So, by levering the Karush–Kuhn–Tucker (KKT) optimality
condition, we can conclude that for all i ∈ [N(N − 1)/2] it
holds that

(
∇wJ(w)

∣∣
wopt

)
i
=

{
0, wopt,i > 0,
≥ 0 wopt,i = 0.

(5)

Eq. (5), in turn, implies that

min
(
∇wJ(w)

∣∣
wopt

, 2wopt

)
= 0. (6)

Let {b1, . . . ,bN(N−3)
2

} ∈ R
N(N−1)

2 be any orthonormal basis

for null(A), and define B ≜ [b1, . . . ,bN(N−3)
2

]T . As the sum
of rows of A is [2, . . . , 2], we conclude that the sum of entries
in each bi is zero. To simplify the following notations, we
introduce u ≜ Cw, where C ≜

[
AT ,

√
ηBT

]T
is invertible:

C−1 = 1
η

(
IM − µ2

4 JM

)
CT . (7)

Further, let η = N − 2, µ = 2
N−1 and M = N(N−1)

2 . It is
noteworthy that the initial N elements of the vector u coincide
with the values represented by the vector d. Now, we can
rewrite (3) as follows:

J(w) = 2θzTw −
∑
i∈[N ]

log(Aw)i + ∥w∥22

= 2θzTw −
∑
i∈[N ]

log(Aw)i +
1
η (∥Cw∥22 − µwTJMw)

= 2θzTC−1u−
∑
i∈[N ]

logui +
1
η

(
∥u∥22 −

µ
4M ∥JM×Nu[N ]∥22

)
= J̃(u). (8)

Since w and u are interchangable, we can express ∇wJ(w)
in terms of ∇uJ̃(u):

∇wJ(w) = CT∇uJ̃(u)

= 2θz+CT
([ −p

0N(N−2)
2

]
+ 2

ηu− µ
2η

[
JNu[N ]

0N(N−2)
2

])
= 2θz−ATp+ 2

ηC
Tu− µ

ηJM×Nu[N ]. (9)

Besides, w = C−1u = 1
ηC

Tu− µ
2ηJM×Nu[N ]. This reveals

that

∇wJ(w) = 2θz−ATp+ 2w. (10)

Now, if we recall (6) and plug-in the right-hand-side of (10)
instead of ∇wJ(w)

∣∣
wopt

, the claim is achieved.
Theorem 1 provides a simple and compact method for

encoding the optimal learned graph w (or W), after it is
obtained. As we explain below, the vector popt plays the role
of this compact representation. Note that the vector popt is of
size N , i.e., the same as the length of graph signal, while the
number of entries in w or W scales quadratically with N .
According to (4), for each i, j, the optimal weight of the edge
between the ith and jth node is equal to

Wopt,ij = Wopt,ji = max
(
0 ,

popt,i+popt,j

2 − θZij

)
. (11)

This shows that if the average of the reciprocal degrees of the
nodes i and j is less than θZij (a multiple of their distance),
then, there shall be no edge between the two in the graph;
otherwise, the difference of these two values determines the
weight of the connecting edge. The GraphLite encoding and
decoding procedures are illustrated in Fig. 1. By incorporating
both the signal data and popt, the graph can be stored in a
compact and efficient form without loss of information. Based
on (11), the GraphLite is also well-suited for local processing
tasks, such as neighborhood-based filtering or localized graph
signal analysis, where only part of the adjacency structure is
needed. By allowing direct access to compact substructures,
it improves both memory use and computational efficiency in
these applications.

IV. NUMERICAL EVALUATIONS

The practical significance of the GraphLite is best illustrated
through its application in image processing, as demonstrated
in Figs. 1 and 3. We start by constructing the distance matrix
across pixels based on the ℓ2 distance between each pixel
and its eight neighbors within a 3 × 3 window. This matrix,
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TABLE I: Relative output size and computation time. Each entry is formatted as Size / Time(s).

Dataset Sparsity Methods

DPGS SDSumm GraphLite

Indian Pines [20] 1.5% 3.55× 10−2/3.78 1.25× 10−2/1078.18 9.5× 10−3/3.0× 10−2

50% 2.5× 10−3/67.60 4.8× 10−4/1084.94 9.5× 10−3/ 4.9× 10−2

IDEAL Household [21] 1.5% 6.08× 10−1/8.7× 10−3 6.7× 10−1/3.0× 10−3 3.9× 10−3/4.7× 10−4

50% 8.76× 10−2/13.8× 10−3 7.1× 10−2/3.1× 10−3 3.9× 10−3/5.9× 10−4

(a) Original image (b) Compact graph representation

Fig. 3: An example of the the GraphLite algorithm.

along with the parameter θ, serves as input for learning the
graph G. We optimized the cost function in (3) using GSPBox
[22], specifically the gsp_learn_graph_log_degrees
function. Notably, we fine-tuned the iteration stop criteria to
prioritize solution proximity over the number of iterations,
resulting in increased accuracy. We should highlight again that
our contribution is to compact this graph and not learning the
graph.
Illustration: The learned graph G is characterized by its
weight matrix. As illustrated in Figs. 1, it can also be repre-
sented compactly using the vector popt along with a distance
matrix that can be readily computed from the image itself.
Figs. 1 and 3 show two grayscale images: a 126× 126 pixel
Cameraman and a 150×200 pixel autumn scene, respectively,
along with their corresponding compact graph representations.
As shown, the reshaped popt retains a strong connection
with the original image. In the compact graph representation,
distinct boundaries such as the separation between the tree
line and the sky, as well as between the reeds and the
grass, are clearly visible. This underscores the potential of
jointly processing the image alongside the compact graph
representation, thereby enhancing its overall efficiency.
Comparison with graph summarization techniques: As
most graph summarization techniques are lossy, the recon-
struction error of the adjacency matrix is potentially the most
important metric to check [12]. However, the GraphLite is
lossless; therefore, we ignore this metric here.

Compared to the original graph size of O(N2), the
GraphLite demonstrates remarkable space efficiency, achiev-
ing O(N). This indicates that regardless of the sparsity level
of the adjacency matrix, the relative output size, defined as
the ratio of the summarized representation to the original
size, is 2N

(N2 )
= 4

N−1 , or more generally, 2(1+K)
N−1 when the

graph signal is X ∈ RN×K , i.e., each node is associated
with a signal vector of dimension K. significantly reducing
the storage requirements compared to the original graph size.

In Fig. 4 and Table I we compare the proposed GraphLite
with two benchmark methods: degree-preserved graph sum-
marization (DPGS) [11], and spectral characteristic-preserved
summarization (SDSumm) [12]. For DPGS and SDSumm, re-
construction requires the summarized graph, original node de-

Fig. 4: Relative Output Size Comparison. (i) Checkerboard
with region size 1, (ii) Checkerboard with region size 4, and
(iii) Cameraman image.

grees, and node-to-supernode mappings, totaling Ns(Ns−1)
2 +

2N , where Ns is the number of supernodes in the summa-
rized graph. Fig. 4 presents results on synthetic image data,
including: i) Checkerboard images with region size 1, used
to ensure that the graph construction method does not affect
the results. Notably, it is straightforward to demonstrate that
for this data, when adjusted to achieve half sparsity graph
under the minimization problem of (3), all non-zero weights
are

√
2/(N − 2). ii) Checkerboard images with region size

4. iii) The Cameraman image, divided into blocks of different
sizes. Results are averaged over blocks of the same size, and
tolerances are also reported.

Table I summarizes the results on two real-world datasets:
the Indian Pines hyperspectral image (as presented in [23])
and the IDEAL Household dataset [21], where we specifically
use the mean electricity usage during weekends as the signal.
It is noteworthy that the GraphLite consistently maintains a
constant relative output size across different number of nodes,
regardless of the input data and sparsity level. This stability
sets it apart from other methods. Furthermore, our approach
yields a smaller relative output size in most cases, signifying
efficient summarization.

As shown in Table I, the GraphLite can be constructed
with negligible time and computational overhead. Our method
builds directly on standard graph learning procedures widely
used in GSP. Unlike general-purpose summarization methods
that often introduce additional processing, our compact repre-
sentation incurs minimal cost beyond the graph learning step
itself—an operation already integral to many graph learning
methods.
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