
1
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Abstract—In this paper, we generalize the concepts of kernels,
weak stationarity and white noise from undirected to directed
graphs (digraphs) based on the Jordan decomposition of the shift
operator. We characterize two types of kernels (type-I and type-
II) and their corresponding localization operators for digraphs.
We analytically study the interplay of these types of kernels with
the concept of stationarity, specially the filtering properties. We
also generalize graph Wiener filters and the related optimization
framework to digraphs. For the special case of Gaussian pro-
cesses, we show that the Wiener filtering again coincides with
the MAP estimator. We further investigate the linear minimum
mean-squared error (LMMSE) estimator for the non-Gaussian
cases; the corresponding optimization problem simplifies to a
Lyapunov matrix equation. We propose an algorithm to solve the
Wiener optimization using proximal splitting methods. Finally,
we provide simulation results to verify the provided theory.

Index Terms—Graph signal, graph Fourier transform, power
spectral density, directed graph, Wiener filter.

I. INTRODUCTION

IN classical signal processing, signals are often functions of
time or space where the adjacency of temporal or spatial

points can be considered as a regular grid. In general, however,
the signal domain may be quite irregular; representing such
signals over graphs has emerged as a successful approach in
recent years leading to the field of graph signal processing [1].
Similar to conventional signals, graph signals could either be
deterministic or stochastic. Therefore, any probability measure
on the space of graph signals leads to a random graph process.

The stationary processes, or specifically, wide sense station-
ary scalar processes are a well-studied sub-class of random
processes which are generalized to processes defined on undi-
rected graphs [2]–[5]. The probability laws governing wide
sense stationary processes allow for obtaining certain estima-
tors such as the linear minimum mean-squared error (LMMSE)
estimator employed in various applications including signal
denoising (e.g., Wiener filtering), signal retrieval, inverse prob-
lems and etc. We should highlight that the stationarity property
has potential applications in [6]:

• improving the covariance estimation (instead of estimat-
ing all the entries of the covariance matrix, we only
need to estimate its eigenvalues or corresponding filter
coefficients),

• denoising a set of observed graph signals,
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• interpolating (prediction) a graph signal using observa-
tions over a subset of vertices, and

• extracting the graph topology.
Graph Wiener filters on undirected graphs have been studied

in [5] and used for image and graph signal denoising in [7].
In particular, an algorithm was proposed in [5] for solving the
Wiener optimization using proximal splitting methods [8], [9].
Besides, the stationarity level of some real data was evaluated
in [5] for the undirected scenario. Distributed implementation
of Wiener filtering in the undirected graph setting has been
proposed in [10]. Also, new estimators for the graph signal
recovery from nonlinear measurements were proposed in [11]
and conditions under which the estimators coincide with MAP
were stated; a special case is when the signal and noise are
graph wide-sense stationary (GWSS) while the measurement
is linear. This special case matches [5], [12] where the new
estimators coincide with graph Wiener filter [5], LMMSE, and
GSP-LMMSE estimator [12].

Although directed graphs (digraphs) appear in many appli-
cations, the tools for analyzing digraphs are not developed
as much as those for undirected graphs. Unfortunately, many
concepts on undirected graphs are not automatically applicable
to digraphs. Among the few works on digraphs, we can name
[13] in which the graph Fourier transform is defined based on
the Jordan decomposition of the shift matrix. Devising a dif-
ferent strategy in [14], a symmetric Laplacian was introduced
for digraphs based on the random walk matrix.

A. Contributions
In this paper, we focus on stationary processes on digraphs

and define the concept from the base. We adopt the definition
of Fourier transform on digraphs based on the Jordan decom-
position and the related notations from [13], [15]. Next, we
consider kernels on digraphs and divide them into two types;
the first type stands for the conventional filters and the second
type is used as the basis for the definition of the GWSS
processes. After examining the kernel properties, we define
GWSS processes on digraphs and their spectrum matrix using
kernels of type-II. Then, we define the white noise on digraphs
and verify that the output of a type-I kernel to a GWSS process
is GWSS again. Based on our definition of stationarity, we
answer the question whether every GWSS process is obtained
by passing a white noise through a type-I kernel.

We further investigate the implications of the provided
stationarity definition. As expected, we show that the Wiener
filter coincides with the MAP estimator for Gaussian processes
and with the LMMSE estimator for non-Gaussian processes.
Since the optimization framework involves a Lyapunov matrix
equation [16]–[23], we propose an algorithm similar to [5] for
solving the Wiener optimization on digraphs in the spectral
domain.
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As for numerical validations, we provide simulation results
on real French meteorological data as in [5]. While we show
that the data better fits into a digraph stationary model rather
than the undirected model, we perform denoising and inpaint-
ing tasks (in the latter, we estimate the missing samples). In
each application, we compare our results with those obtained
by modeling the data using undirected graphs. We show that
our Wiener filter outperforms the other competing methods,
especially in lower SNRs, if the noise is digraph-stationary.

B. Paper organization

The rest of this paper is organized as follows: we first pro-
vide some basic preliminaries about graph signal processing
in Section II. Next, we review the weak stationarity concept
for undirected graphs in Section III. Our main contributions
are provided in Section IV which consist of the definition
of stationarity and its implications. In Section V, we report
numerical results to support the theories and finally, we
conclude the paper in Section VI. To facilitate the reading
of the paper, we have postponed most of the proofs to the
appendices and the supplementary material.

II. PRELIMINARIES

A. Graph theory

A digraph G is an ordered pair (V, E), where V ≠ ∅ is
the finite set of vertices and E ⊆ V × V is the set of edges
connecting the vertices. Here, × denotes the Cartesian product
of sets. There is an edge from vertex m to vertex n iff (m,n) ∈
E . If

∀m,n ∈ V, (m,n) ∈ E ⇒ (n,m) ∈ E ,

then, the digraph is called symmetric. For any two distinct
and connected vertices m,n in a symmetric digraph, one can
form the new set Esimple consisting of {m,n} sets; the pair
(V, Esimple) is called a simple or undirected graph. Therefore,
for every symmetric digraph, there is a corresponding simple
graph. The adjacency matrix A of a graph/digraph G with
|V| = N vertices is a binary-valued N×N matrix with entries:

amn ≜

{
1, if (m,n) ∈ E ,
0, if (m,n) /∈ E . (1)

A weighted graph/digraph consists of positive real values wij

assigned to the edges (i, j) ∈ E as their weight. We denote
the N ×N weight matrix by W. The degree dmm of a vertex
m in a weighted (undirected) graph is defined as the weight
sum of the edges connected to m:

dmm =
∑
n

wmn. (2)

The degree matrix D is a diagonal matrix whose m-th entry
on the diagonal is dmm. Subsequently, the Laplacian matrix
of a weighted (undirected) graph denoted by L is defined as:

L = D−W. (3)

B. Spectral analysis of graph signals

The N×N shift matrix of the graph G denoted by S consists
of sij entries that are nonzero only if i = j or (i, j) ∈ E
[24], [6]. The adjacency, weight and Laplacian matrices are
all special cases of the shift matrix.

Definition 1. For a graph G with N vertices, a graph signal
x is an N × 1 vector whose n-th entry, i.e., x[n], is a real or
complex number assigned to the n-th vertex of the graph:

x =
[
x[1],x[2], . . . ,x[N ]

]T
. (4)

Obviously, if signal values on the vertices are random, we will
have a random graph process.

Definition 2. (Undirected graph Fourier transform) If S is
real and symmetric, then, it is unitarily diagonalizable as
S = UΛΛΛUT , where U is a unitary matrix and ΛΛΛ is diagonal.
The graph Fourier transform (GFT) of any graph signal x on
this graph is then, defined as:

x̂ = GFT{x} ≜ UTx. (5)

Also, the inverse GFT can be expressed as:

x = IGFT{x̂} = Ux̂. (6)

C. Scalar stationary processes

In general, the concept of stationarity asserts that a pro-
cess and its shifted versions have the same probability laws.
There are two well-known definitions for stationary processes
(classical/scalar), which consist of strict-sense stationary (SSS)
processes and wide-sense stationary (WSS) processes. The
latter is more common in engineering contexts and therefore,
we focus on WSS processes in this paper.

Definition 3. A scalar random process x[n] is called WSS iff ∀n, E
[
x[n]

]
= µx = const.,

∀i,m, E
[
(x[i]− µx)(x[m]− µx)

]
= rx[i−m],

(7)

where rx is called the autocorrelation function of the process.

Here, our goal is to define WSS processes on digraphs
similar to that of the scalar case as much as possible. The
main barrier is that the graph shift operator, unlike its scalar
counterpart, is not energy-preserving; hence, we cannot expect
a graph signal and its shifted versions to have the same
law. Also, the asymmetry of the weight/adjacency matrix in
digraphs prevents us from having an eigen-decomposition.

III. WSS PROCESSES ON UNDIRECTED GRAPHS

Before considering the digraphs, we review the existing
stationarity concepts over undirected graphs.
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Fig. 1. Generalization of stationarity from the classical case to the graph
case.

A. Main definition

Assume that S is unitarily diagonalizable; hence, we can
write S = UΛΛΛUH , where U is a unitary matrix and ΛΛΛ is
diagonal [25]. Since the graph is undirected and the shift
matrix, e.g. the adjacency or the Laplacian matrix, is likely
to be Hermitian, this assumption is logical. By convention,
we call a process white if its covariance matrix is a scaled
version of the identity matrix. A graph filter is defined as a
polynomial function of S which is linear and shift-invariant
(LSI) [25, Equation (12.1)].

Definition 4. The graph process x could be called a GWSS
process (based on the reference) iff it satisfies one of the
following conditions:

1) x is the response of an LSI polynomial graph filter to a
white input n [25, Definition 12.1].

2) We have [25, Definition 12.2.a]

∀a, b, 0 ≤ c ≤ b,

E
[
Sax

(
(SH)bx

)H]
= E

[
Sa+cx

(
(SH)b−cx

)H]
. (8)

3) The covariance matrix of the process x, i.e.,

ΣΣΣx = E[xxH ],

and S are simultaneously diagonalizable [25, Defini-
tion 12.2.b].

It can be shown that Conditions 2 and 3 in the above definition
are equivalent. Also, if all the eigenvalues of S are distinct,
the first condition is equivalent to the other conditions.

As shown in Figure 1, Definition 4 generalizes the classical
definitions and theorems for scalar signals to graph signals.

Definition 5. The power spectral density (PSD) vector of x
or px, is defined as the vector of eigenvalues of the matrix
ΣΣΣx.

B. Equivalent definition

Here we explain an equivalent and more intuitive definition
for stationary processes on undirected graphs. For this purpose,
we need to define the localized version of a vector x with
respect to a given vertex m [1, Equation (46)] as1

xm ≜ x ∗G δδδm, (9)

1The localization operator is inherently a shift operator which should not
be mistaken with the graph shift operator S; the localization operator is
sometimes referred to as the vertex shift operator.

Fig. 2. Passing a GWSS process through a graph filter, results in a GWSS
process.

where δδδm is a signal whose value is 1 at vertex m and
0 elsewhere, and ∗G represents the graph convolution (to
compute the graph convolution of two signals we first apply
the GFT to both, multiply the results entry-wise, and take the
inverse GFT). The expanded version of (9) is

xm[i] =

N∑
j=1

(
x̂[j]uijumj

)
. (10)

This confirms that xm is a linear transformation of x.

Definition 6. The process x is a GWSS process iff [5]:
1) either E

[
x[i]
]
= 0 for all i, or E

[
x[i]
]
= µx ̸= 0 is

constant (for all i) and j = [1, 1, . . . , 1]T is an eigenvector
of S, and

2) there exists a vector px (PSD of x) such that for all i,m:

E
[
(x[i]− µx)(x[m]− µx)

]
=

N∑
j=1

(
px[j]uijumj

)
.

By comparing the second condition in Definition 6 with
xm[i] in (10), we observe that the covariance matrix of x at
location i,m needs to be equal to a hypothetical graph signal
(which corresponds to px in the GFT domain) at vertex i, after
being localized with respect to vertex m (vertex shift). This
interpretation better matches the classical definition of WSS
processes. Rewriting this second condition in matrix form, we
arrive at

ΣΣΣx = U diag(px)U
−1, (11)

which is in turn equivalent to the simultaneous diagonalization
of ΣΣΣx and S, or ΣΣΣxS = SΣΣΣx. It is worth mentioning that since
the covariance matrix of a white process w is a scaled identity
matrix (ΣΣΣw = σ2I) and I is simultaneously diagonalizable
with all diagonalizable matrices, the white process is GWSS
in all undirected graphs irrespective of the choice of the shift
operator.

Property 1. If x is a GWSS process, H is an LSI polynomial
graph filter with frequency response ĥ and y ≜ Hx (Figure 2),
then [25, Property 12.1],
(a) y is also GWSS with covariance matrix

ΣΣΣy = HΣΣΣxH
H ,

and
(b) the PSD of y, py, is found by

py = |ĥ|2 ◦ px,

where ◦ stands for the entry-wise multiplication of two
vectors and |ĥ|2 is again computed in an entry-wise
fashion with respect to ĥ.

Property 2. If x is a GWSS process, then, its Fourier
transform components, i.e., entries of x̂ ≜ UHx, shall be
uncorrelated [25, Property 12.2].
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IV. MAIN RESULTS

As stated earlier, our goal in this paper is to extend the
concepts of stationarity and Wiener filters to digraphs. In
[26], the basis for such extension was built. In this paper,
we continue the work with more details. We first propose a
definition and then, investigate its consequences on Wiener
filtering.

A. Definitions and properties

In digraphs, S is asymmetric in general and may not be
diagonalizable. So it is necessary to rewrite the definition of
GWSS processes for digraphs appropriately. When S is not
diagonalizable, it is common to use its Jordan decomposition.
In this section, we use the notations in appendix A of [13] and
also [15] for Jordan decomposition. According to the Jordan
normal form theorem, we know that every [shift] matrix can
be written as S = VJV−1 where J is a block diagonal matrix.
If S is unitarily diagonalizable, then, V and J are the same
as U and ΛΛΛ in [5], respectively.

Suppose that S has the Jordan form VJV−1. If S has
M distinct eigenvalues, then, J is a block diagonal matrix
composed of M segments; in particular, the m-th segment
consists of Dm Jordan blocks where Dm is the number of
eigenvectors corresponding to λm. We denote the d-th Jordan
block of the m-th segment by J(m,d)(λm). This Jordan block
is of size R(m,d) ×R(m,d):

Jm,d(λm) =


λm 1 0 . . . 0
0 λm 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
0 0 0 . . . λm

 , (12)

J =


J1,1(λ1) 0 . . . 0

0 J1,2(λ1) . . . 0
...

...
. . .

...
0 0 . . . JM,DM

(λM )

 . (13)

Let V′ ≜ (VH)−1 = V−H . The columns of V and
V′ are called the Jordan basis vectors and their dual basis
vectors, respectively. The columns of V′ are related to the left
generalized eigenspace of S. Indeed, the columns of V and V′

are right and left generalized eigenvectors of S, respectively.
So, we have: V′HV = VHV′ = I. Also, the graph Fourier
transform of x has been defined in [13] as x̂ ≜ V−1x.

Definition 7 (type-I kernel). Let g : C → C be a function that
is analytic on a neighborhood of the spectrum of S [27]. By
the type-I kernel or filter corresponding to g (which we denote
by g(S)), we imply the matrix

g(S) ≜ Vg(J)V−1, (14)

where

g(J) ≜

g(J1,1(λ1)) . . . 0
...

. . .
...

0 . . . g(JM,DM
(λM ))

 , (15)

and

g
(
Jm,d(λm)

)
≜


g(λm) g′(λm) . . . g(k−1)(λm)

(k−1)!

0 g(λm) . . . g(k−2)(λm)
(k−2)!

...
...

. . .
...

0 0 . . . g(λm)

 ,

(16)

with k representing Rm,d. Note that g
(
Jm,d(λm)

)
is a toeplitz

upper-triangular matrix.

Property 3. If the analytic function g used in Definition 7
is a polynomial, then, g(S), g(J) and g(Jm,d(λm)) defined
above are equal to the polynomial evaluated at matrices S, J
and Jm,d(λm), respectively [13], [27, Section 1.2.1].

Property 4. Every type-I kernel is an LSI filter. Also, type-I
kernels commute [27, Theorem 1.13.a,e].

Since type-I kernels are not enough for the generalization
of GWSS processes to digraphs, we introduce type-II kernels.
Suppose hII is a function on the space of square matrices that
maps each Jordan block Jm,d to a square matrix of the same
size. Unlike the output of type-I kernels in (16), the resulting
square matrix may not be upper-triangular.

Definition 8 (type-II kernel). A type-II kernel corresponding
to hII, is a matrix defined as below and denoted by hS:

hS ≜ VhII(J)VH , (17)

hII(J) ≜

h
II(J1,1(λ1)) . . . 0

...
. . .

...
0 . . . hII(JM,DM

(λM ))

 . (18)

Note that the matrix hII(J) is a block diagonal matrix.

Property 5. If the function hII in Definition 8 is a polynomial,
then, hS defined above may not necessarily be equal to
the polynomial evaluated at the matrix S, i.e., hII(S) (See
Appendix A in the supplementary material).

Property 6. Every type-II kernel is linear, but not necessarily
shift-invariant (See Appendix A in the supplementary mate-
rial).

Next, we extend the notion of GWSS processes to digraphs
based on the defined type-I and type-II kernels.

Definition 9. The localized version of a type-I kernel g at
vertex i (shifted to vertex i) denoted by Tig is a vector whose
n-th entry is(

Tig
)
[n] ≜

(
g(S)δδδi

)
[n] = g(S)[n, i]. (19)

Similarly, the localized version of a type-II kernel hII at
vertex i, represented by TihII is a vector whose n-th entry
corresponds to(

TihII)[n] ≜ (hSδδδi)[n] = hS[n, i]. (20)
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Definition 10. We call a graph process x GWSS iff for some
constant mx ∈ C and type-II kernel hII, we have that

∀i, mx[i] = E
[
x[i]
]
= mx ∈ C,

∀i, n, ΣΣΣx[i, n] = E
[
(x[i]−mx)(x[n]−mx)

∗]
=
(
TnhII)[i] = hS[i, n], (21)

where either mx = 0, or mx ̸= 0 and j = [1, 1, . . . , 1]T is
an eigenvector of S, and the second condition implies that the
covariance matrix of the process is a localized type-II kernel.

Corollary 1. A graph process x is GWSS iff there is a type-II
kernel γx such that

ΣΣΣx = Vγx(J)V
H . (22)

If the condition (22) holds, then, the block diagonal matrix
ΓΓΓx = γx(J) is called the spectrum of the process x and we
have

γx(Jm,d) = (V−1ΣΣΣxV
−H)(m,d),(m,d)

= V−1
(m,d),:ΣΣΣxV

−H
:,(m,d). (23)

In the above equation, (m, d) (e.g. in (.)(m,d),(m,d)) means
the indices of rows or columns that correspond to the Jordan
block Jm,d(λm) and : refers to all the rows or columns. From
now on, we denote the pair (m, d) with l for brevity. Note
that Definition 6 is a special case of Definition 10.

Note 1. Since type-II kernels may not be LSI, the equation
ΣΣΣxS = SΣΣΣx may not hold in general.

Property 7. The spectrum of a GWSS process x, i.e., γx(J),
and all of the blocks on its diagonal are Hermitian and
positive semi-definite. (Proof is provided in Appendix B in
the supplementary material).

Property 8. The spectrum matrix of a GWSS process and all
the blocks on its diagonal can be written as LHL where L is
a lower-triangular matrix. (Proof is provided in Appendix C
in the supplementary material).

Example 1. The graph process x with mean mx (constant
over the vertices) and covariance ΣΣΣx = σ2VVH is GWSS
with respect to S = VJV−1. We call such a process white,
as its spectrum is γx(J) = σ2I.

Property 9. If the graph process y is obtained by passing the
GWSS process x through a type-I kernel g(S) (Figure 3a),
then, the process y is also GWSS.

Proof:

y = g(S)x ⇒ ΣΣΣy = E[yyH ]

= g(S)E[xxH ]g(S)H = g(S)ΣΣΣx g(S)
H

= V g(J)V−1 V γx(J)V
H V−H g(J)H VH

= V
(
g(J)γx(J)g(J)

H
)
VH .

(24)

Note that the product of the three block diagonal matrices
g(J), γx(J), and g(J)H is again block diagonal. Representing
this product as γy(J), we have that

ΣΣΣy = Vγy(J)V
H ,

(a) (b)
Fig. 3. Passing (a) a GWSS process and (b) a white noise through a type-I
kernel

Fig. 4. Wiener estimation

where

γy(J) = g(J)γx(J)g(J)
H , (25)

is a type-II kernel and therefore, the process y is also GWSS.
Equation (25) clarifies the relationship between the output
spectrum and the input spectrum of a type-I kernel.

Example 2. (Filtered noise spectrum) If a white noise w with
covariance ΣΣΣw = VVH passes through a type-I kernel g
(Figure 3b), then, the spectrum of the output process (which
we denote by x in the figure) is given by γx(J) = g(J)g(J)H ;
besides, its covariance matrix equals Vg(J)g(J)HVH .

According to Property 8, each block in the spectrum of a
GWSS process can be written as RRH , where R is an upper-
triangular matrix that may not necessarily be Toeplitz. Also,
we saw in Example 2 that the spectrum of a GWSS process
which is the output of a type-I kernel to a white noise has the
form g(J)g(J)H , where g(Jl) is upper-triangular and Toeplitz.
A question that arises is whether every GWSS process is the
output of a type-I kernel to a white noise.

Theorem 1. A necessary condition for the Hermitian and
positive semi-definite matrix γγγ = [γij ]k×k to be equal to
OOH where O = [oij ]k×k is an upper-triangular and Toeplitz
matrix, i.e., O = [oj−i]k×k with om = 0 for m < 0, is that
γi ≜ γii shall be non-negative and non-increasing with respect
to i, and for all 1 ≤ i ≤ j ≤ k − 1√

(γi − γi+1)(γj − γj+1) = |γij − γ(i+1)(j+1)|, (26)√
(γi − γi+1)γk = |γik|. (27)

(Proof is provided in Appendix D in the supplementary
material).

Considering the matrix γx(Jl) as the γγγ matrix in Theorem
1, we conclude that one of the necessary conditions for a
GWSS process to be the output of a filter to a white noise
is that the diagonal entries of γx(Jl) must be non-increasing
and furthermore, γx(Jl) must satisfy conditions (26) and (27).
Therefore, not all GWSS processes are obtained by filtering a
white noise.
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B. Graph Wiener filters

In [5], graph Wiener filters have been studied for undirected
graphs. Also in [7] graph Wiener filters for undirected graphs
have been employed to denoise images and graph signals.
Figure 4 shows the block diagram of Wiener estimation; here,
ws is a white noise with covariance VVH and zero mean,
and wn is a GWSS noise with spectrum γn(J). As x is the
output of the filter s(S) to the input ws, it is also zero-mean.
Thus we have:

γx(J) = s(J)sH(J). (28)

The graph process y is obtained by adding the measurement
noise wn to the output of the measurement filter hI(S) to the
input x. Hence, we can write:

y = hI(S)x+wn. (29)

The noise wn and the process x are assumed to be uncorre-
lated. We shall show in Theorems 3 and 4 that under certain
conditions, the estimator of x given y, i.e., x̄|y, is obtained by
using a graph filter g(S) called the Wiener filter. Therefore,

x̄ = g(S)y. (30)

By representing the estimation error via e, the error corre-
sponding to the l-th block can be written as:

el = E{∥x̂l − ̂̄xl∥2}, ̂̄xl = g(Jl)ŷl. (31)

1) Wiener optimization: Let us assume that we have a
general linear filter H which may not necessarily be a type-I
kernel, and

y = Hx+wn. (32)

Theorem 2. If x is a GWSS and Gaussian process with the
spectrum given by (28), i.e., x ∼ N (mx,Vs(J)sH(J)VH),
and wn is white Gaussian noise with wn ∼ N (0, σ2VVH),
then, the following estimator is the MAP estimator for x|y
based on (32):

x̄|y = argmin
x

∥V−1(Hx− y)∥22 + ∥W(J)V−1(x−mx)∥22,
(33)

where
W(J) = σ s(J)−1, (34)

if s(J) is invertible. (Proof is provided in Appendix E in the
supplementary material).

In the optimization problem (33), the matrix blocks W(Jl)
are the Fourier penalization coefficient matrices. Intuitively,
the matrix blocks W(Jl) penalize the low-SNR frequency
components. Also, note that the optimization in (33) is convex.

Theorem 3. If x is GWSS with the spectrum given by (28)
and wn is a zero-mean white noise, i.e., γn(J) = σ2I,
then, the problem (33) leads to the following linear MMSE
estimator:

x̄|y = ΣΣΣxyΣΣΣ
−1
y y + (I−ΣΣΣxyΣΣΣ

−1
y H)mx, (35)

where
ΣΣΣxy = Vs(J)sH(J)VHHH = ΣΣΣxH

H ,

ΣΣΣy = HVs(J)sH(J)VHHH + σ2VVH

= HΣΣΣxH
H + σ2VVH .

(Proof is provided in Appendix F in the supplementary mate-
rial).

Suppose that mx = 0, the matrix H in (32) is a type-I
kernel, i.e., H = hI(S) = VhI(J)V−1, and wn is the output
of a type-I kernel denoted by gn to a white noise. We are
now interested in a different choice of W(J) which is block-
diagonal with diagonal blocks of the same size as the diagonal
blocks of J. More precisely, we are looking for the optimal
W(J) which minimizes the estimation error of x. To introduce
this W(J), we first define

Hl ≜ hI(Jl),Sx ≜ s(Jl),Gn ≜ gn(Jl),

P ≜ HH
l Hl,B ≜ SxS

H
x = γγγx,

C ≜ HH
l GnGn

HHl = HH
l γγγnHl. (36)

We further let

T ≜ PBP+C = HH
l HlSxS

H
x HH

l Hl +HH
l GnGn

HHl,
(37)

E ≜ PB+BP = HH
l HlSxS

H
x + SxS

H
x HH

l Hl.

Now, we define Z′′ as the solution to the following continuous
Lyapunov equation [16]–[23]:

Z′′T+TZ′′ = E, (38)

which is given by2

vec(Z′′) = F−1g, (40)

F ≜ TT ⊕T = (PBP+C)
T ⊕ (PBP+C)

= I⊗ (PBP+C) + (PBP+C)
T ⊗ I,

g ≜ vec(E) = vec(PB+BP), (41)

where ⊕ and ⊗ are Kronecker (Cartesian) sum and Kronecker
(tensor) product operation symbols, respectively. We should
highlight that F is invertible iff T is invertible. Now that we
have Z′′, we define Z as

Z ≜ Z′′−1 −P, (42a)

and introduce Wl ≜ W(Jl) via the solution to the following
equation

WH
l Wl = Z. (42b)

Note that if Z′′−1−P is Hermitian and positive semi definite,
the existence of Wl is guaranteed. Having obtained the desired
Wl, we are ready to use it in Theorem 4. In the proof of
this theorem, we show that Wl obtained through the above
procedure is optimal.

Corollary 2. In the special case where γn(Jl) = σ2I,
W(Jl) = σ(s(Jl))

−1 satisfies the Lyapunov equation (38).

2The solution to the Lyapunov equation (38) can also be obtained as
follows: since T is Hermitian, it is diagonalizable and can be written as
QT′QH where Q is unitary and T′ = diag(δi) is diagonal with real entries.
By letting Y ≜ QHZ′′Q,K ≜ QHEQ, we can express the entries of Y
as

yij =
kij

δi + δj
, (39)

and Z′′ = QYQH will be obtained. More explanations are provided in
Appendix J in the supplementary material.
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(Proof is provided in Appendix H in the supplementary
material).

Corollary 3. In a more general case, if γγγ−1
x H−1

l γγγnHl

is Hermitian and positive semi definite, then, W(Jl) =
(γγγ−1

x H−1
l γγγnHl)

1
2 satisfies the Lyapunov equation (38). In-

tuitively, W is proportional to 1√
SNR

here. (Proof is provided
in Appendix I in the supplementary material).

Theorem 4. If mx = 0, H is a kernel of type-I, that is,
H = hI(S) = VhI(J)V−1, and wn is the output of the type-
I kernel gn to some white input, then, the solution to (33) for
the W introduced in (42b) minimizes the MSE error below

E
{
∥ê∥22

}
= E

{
∥̂̄x− x̂∥22

}
= E

{ N∑
i=1

|̂̄x[i]− x̂[i]|2
}
. (43)

In addition, the resulting x̄ is the output of a Wiener filter
applied to y:

̂̄xl =
(
WH(Jl)W(Jl) + hI(Jl)

HhI(Jl)
)−1

hI(Jl)
H ŷl. (44)

(Proof of Theorem 4 is provided in Appendix G in the
supplementary material).

Note that Wiener filters for undirected graphs in [5] are
special cases of our Wiener filters for digraphs.

2) Solving the Wiener optimization: Below, we propose
an algorithm for solving the Wiener optimization (33) using
proximal splitting and FISTA methods [8], [9] similar to
the technique proposed in [5]. The reason behind using the
proximal gradient method is that if s(Jl) is close to singular
for some l, i.e., s(λm) ≈ 0, W(J) becomes ill-conditioned. To
overcome this problem, (33) can be solved effectively using
forward-backward splitting [9] and fast forward backward [10]
methods leading to Algorithm 1 which is a fast and scalable
implementation of our proposed method. We design our al-
gorithm in the spectral domain; we first define z ≜ ̂̃x = x̂
(mx = 0 is assumed), and rewrite (33) as

z̄|y = argmin
z

1
2∥V

−1(HVz− y)∥22 + 1
2∥W(J)z∥22. (45)

To further proceed, we consider the first and second terms in
the above objective function separately:

f1(z) =
1
2∥W(J)z∥22,

f2(z) =
1
2∥V

−1(HVz− y)∥22
= 1

2 (z
HVHHH − yH)V−HV−1(HVz− y)

= 1
2 (z

HVHHHV−HV−1HVz− zHVHHHV−HV−1y

− yHV−HV−1HVz+ yHV−HV−1y). (46)

Now, if we define

vj ≜zj − β∇f2(zj)

=zj − β(VHHHV−HV−1HVzj −VHHHV−HV−1y)

=zj − βVHHHV−HV−1(HVzj − y), (47)

Algorithm 1 Wiener optimization algorithm in vertex domain
Initialize:

x = x1 = u′ = u′
1, t1 = 1

loop
Gradient step:

v′
j = xj − βVVHHHV−HV−1(Hxj − y),

Proximal step:
u′
j+1 = g(S)v′

j , g(Jl) = (βW(Jl)
HW(Jl) + I)−1,

FISTA scheme: tj+1 =
1+

√
1+4t2j
2 ,

Update step: xj+1 = u′
j+1 +

tj−1
tj+1

(u′
j+1 − u′

j),
end loop
return xfinal

we can express the proximal operator as

uj+1 =proxβf1(vj) = prox β
2 ∥W(J)z∥2

2
(vj)

= argmin
z

β∥W(J)z∥22 + ∥z− vj∥22

=argmin
z

(∑
l

β∥W(Jl)zl∥22 + ∥zl − (vj)l∥22

)
,

(48)

where j is the iteration index and l is the Jordan block index.
Note that W(J) is block diagonal. The l-th term in the last
equation can be rewritten as

βzHl W(Jl)
HW(Jl)zl+zHl zl−zHl (vj)l−(vj)

H
l zl+(vj)

H
l (vj)l.

(49)
We conclude that the solution to the optimization (48) satisfies

βW(Jl)
HW(Jl)zl + zl − (vj)l = 0,

⇒ (uj+1)l = zl = (βW(Jl)
HW(Jl) + I)−1(vj)l, (50)

which introduces a filtering equation in the spectral domain.
Note that zj ,vj ,uj are all in the spectral domain. Finally, by
defining v′

j ≜ Vvj and u′
j+1 ≜ Vuj+1, the overall vertex

domain optimization can be summarized as in Algorithm 1.
We should mention that for having a stopping condition in

the loop for xj , we can set a threshold such as 0 < ϵ for
checking the relative variations, i.e., ∥xj+1−xj∥2

∥xj∥2+δ < ϵ.
Unlike (44), H may not be of type-I in Algorithm 1, but

it solves (33) in the general case. In this case, (33) cannot
be decomposed into smaller optimization problems. Thus, the
final solution involves inverting an N × N matrix, which
is computationally expensive. However, in Algorithm 1, the
inverse in the proximal step is applied only to a matrix block
which confirms its superiority.

V. SIMULATIONS AND EXPERIMENTS

To validate the previous theories, we provide experimental
results on real data in this section. For this purpose, we first
delineate how we create a digraph associated with the data.
Next, we form an undirected graph based on the directed
adjacency matrix, which shall be used in undirected Wiener
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optimization as a competing method [5, Algorithm 1]. We
further build a symmetric Laplacian for the digraph using
the random walk technique in [14]. This symmetric Laplacian
matrix shall be used in both the Tikhonov minimization and
the undirected Wiener optimization (due to its symmetry).
Then, we elaborate how to define the stationarity level for
the directed and undirected cases.

We use the meteorological dataset (specifically, the tem-
perature and the humidity) released by the French national
meteorological service, which is an hourly observation of
the weather, collected during January 2014 in the region of
Brest (France). As we shall show, the tools developed for
digraphs demonstrate a better fit to the data compared to
the undirected graph model. All experiments were performed
using MATLAB, and the codes are made publicly available3.
As a quality metric, we mainly rely on the signal to noise ratio
(SNR) measure

SNR(x , x̂) = −10 log
(var(x− x̂)

var(x)

)
. (51)

Below, we explain how the digraphs are built for each data
type. To compare the performance of the developed techniques
over digraph with the conventional undirected graph tech-
niques, we use the nonsymmetric adjacency weighted matrix
of the digraph (Wd) to build a symmetric adjacency weighted
matrix Wu =

Wd+WT
d

2 corresponding to an undirected graph.
As yet another method, we build a symmetric Laplacian matrix
according to the suggested way in [14], and use it in both
Tikhonov minimization and undirected Wiener optimization.
To build such a Laplacian matrix, it is necessary for our
drawn digraph to satisfy two conditions. First, the random walk
matrix defined as

P = D−1
outWd, (52)

where Dout is the diagonal output degree matrix, needs to be
irreducible, which means that each node is reachable from all
other nodes. Our digraphs already have this property, but in
general, we can add some edges to enforce this. The second
condition is that P needs to be aperiodic. This condition is
not difficult to meet: if P is not aperiodic, we can build an
alternative matrix (P̃a) as:

P̃a = (1− a)P+ aI, a ∈ (0, 1), (53)

which is equivalent to adding self-loops with weight a.
When P̃a is both irreducible and aperiodic, it is assured to

have a unique stationary distribution πππ. In particular, πππP̃a = πππ,
with πππ consisting of non-negative elements summing up to 1.
By setting ΠΠΠ ≜ diag(πππ), we can form the symmetric Laplacian
matrix for a digraph as

Ld = ΠΠΠ− ΠΠΠP̃a+P̃T
aΠΠΠ

2 . (54)

A. Stationarity level

Since we model some real data with stationary graph
processes (either directed graphs or undirected), we need to

3https://github.com/mohammadeinyafm/WSS Processes On Directed Graphs.

measure how well the data fits into our model. More specif-
ically, we evaluate to what extent the data can be assumed
stationary (leading to the concept of stationarity level).

We explained in Example 2 that the signal x obtained by
passing a white noise with spectrum γ(J) = I through a type-
I kernel s with s(S) ≜ Vs(J)V−1, is GWSS. Here, s(J) is a
block diagonal matrix, and the covariance of the output signal
is Vs(J)s(J)HVH .

When dealing with real data, we have access to the (ap-
proximate) covariance matrix. If the data were the outcome
of passing a white noise through a type-I kernel s(S), the co-
variance of the data would have been ΣΣΣx = Vs(J)s(J)HVH .
A measure of stationarity is to check whether V−1ΣΣΣxV

−H

(which would be equal to s(J)s(J)H ) is block diagonal with
diagonal blocks matching those of J. Let s̃(J)s̃(J)H be the
block diagonal projection of V−1ΣΣΣxV

−H , which is formed
by eliminating the elements which are not on the diagonal
blocks according to the diagonal blocks of J. Now, we define

StationarityLevel =
∥s̃(J)s̃(J)H∥

∥V−1ΣΣΣxV−H∥
. (55)

The stationarity level for undirected graphs defined in [5] is
a special case of (55) when the blocks are all of size 1 (only
the main diagonal is kept in s̃). In Table I, we have reported
the stationarity levels of both temperature and humidity data
treated as processes over graphs/digraphs by considering the
three main graph shift operators.

B. Graph signal denoising on temperature data

In our first experiment, we consider the temperature of the
stations; in particular, we focus on a subset of 16 stations to
form a graph with 16 nodes. To form the edges, we recall that
the temperature data shall vary smoothly over the graph. In
other words, graph neighbors shall have similar temperature
values. Thus, we consider the 744 recorded values at each
station, as a feature vector to that node (station). Then, we
remove the temperature mean from each feature vector, which
is equivalent to removing the first moment. Next, we define
the distance between two nodes as the norm of the difference
between the two feature vectors. For each node (station) in the
graph, we consider the 10 nearest nodes and form a directed
edge between them. The direction of the edge is from the
node with smaller latitude to the node with higher latitude as
in [6], [28], [29]. The weight of the edges is also calculated
as wij = e−τd2

, where d is the defined distance, and τ is
a tuning parameter adjusted in a way that the average of
the input and output degrees of all nodes becomes 0.5. The
acquired graph and the corresponding adjacency matrix can
be seen in Figure 5. To apply a denoising task, we add noise
to the recordings with the covariance σ2VVH . Here, V is
the Jordan basis of the acquired digraph and σ is adjusted to
achieve a desired SNR value. For every input SNR, we run
the simulation 20000 times by choosing a random signal from
the dataset at each time and then, we average the output SNR
for each method of denoising. The results of denoising are
shown in Figure 5. While the Tikhonov method consistently
exhibits the worst performance among the considered methods,
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Fig. 5. (Top left) Digraph of France meteorological stations for temperature data. (Top middle and right) The covariance matrices of the data in vertex and
Fourier domains. (Bottom left) The weight matrix of the digraph. (Bottom middle) A realization of the signal (first measure). (Bottom right) Output SNRs
of different methods in dB.

TABLE I
STATIONARITY LEVELS OF TEMPERATURE AND HUMIDITY DATA (FRANCE

METEOROLOGICAL STATIONS) OVER THE GRAPHS/DIGRAPHS BY
CONSIDERING VARIOUS GRAPH SHIFT MATRICES.

Used Graph shift Stationarity percentage
method operator matrix Temperature Humidity

Proposed digraph Wd 0.99 1
Undirected graph [5] Wu 0.97 0.9848

Symmetric Laplacian [14] Ld 0.94 0.9846

the two denoising methods based on the undirected graph
and the symmetric Laplacian case have nuance differences in
all SNRs. It can also be observed that the proposed method
outperforms the rest, confirming that our stationarity definition
is appropriate and the digraph provides a better model for this
particular data, especially in lower SNRs, assuming digraph-
based stationary noise. Another observation is that the output
SNR for the undirected and symmetric Laplacian methods
tend to the the input SNR at large SNR values, which implies
that the denoising gain is vanishing. In contrast, the proposed
method maintains roughly a 4dB denoising gain.

C. Inpainting on humidity data

Our next experiment will be the estimation of missing sam-
ples on the humidity data. To further explore the robustness of
the methods relative to the graph topology, this time we choose
10 stations and connect each node (station) to 4 nearest nodes
using the same strategy as explained for the temperature data.
However, in contrast to the graph for the temperature data, the
direction of each edge is determined so that the humidity data
can be considered stationary on the digraph with a stationarity
measure greater than 95%. The obtained digraph, its weight
matrix and the covariance matrix of the humidity data are
shown in Figure 6. For the purpose of comparison, we again
form the undirected graph and the symmetric Laplacian matrix
as explained earlier. In this scenario, our goal is to predict the
humidity of 40% of the stations (which are masked) based on
the noisy measurements at the remaining stations. For each
input SNR, we ran the simulation 20000 times by choosing

a random signal at each time, then, we averaged the output
SNRs. For the third experiment, the input data and graphs are
the same as the second experiment; but this time, the input
SNR is always 14dB and the percentage of the data that mask
covers, varies from 10% to 90%. The results of output SNRs
for different methods for both experiments are illustrated in
Figure 6. While the Tikhonov method consistently marks
the worst performance, at lower input SNRs, the undirected
and symmetric Laplacian methods perform almost equally.
At higher SNRs, however, the undirected method takes the
lead with around 1dB gain. Interestingly, our proposed method
provides the best performance at all SNR values, particularly,
with a considerable gap at the lower SNR regime. At fixed
input SNR, we again observe that our method outperforms
the rest at all fractions of kept data. This confirms that the
proposed digraph model (accompanied with Wiener filtering)
is a better fit for these types of data.

D. Further experiments

We have additionally considered two more scenarios using
the same meteorological dataset. Firstly, in denoising the
temperature, we have built a 5 nearest neighbours graph with
16 nodes that has a rather good stationarity level for both
undirected and directed cases. The results are shown in Figure
7 showing that our method is effective even on sparse graphs.
Secondly, using the same graph and by changing the noise to
be white in the classical (undirected) sense, as can be seen in
Figure 8, the techniques based on both undirected and directed
Wiener optimizations do not provide any gain in the denoising
task which is a limitation.

VI. CONCLUSION

In this work, after reviewing the notion of GWSS processes
on undirected graphs, we generalized this concept to digraphs.
We classified and studied the kernels on digraphs leading to
GWSS processes into two categories, namely type-I and type-
II. We further provided the generalization of graph Wiener
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Fig. 7. Output SNRs of different methods in dB for the sparse graph scenario.
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filters and Wiener optimization framework for digraphs and
showed that for Gaussian processes, the framework simplifies
to a MAP estimation; for non-Gaussian processes, instead, it
leads to the LMMSE estimator. We showed that for type-I
kernels, the framework is associated with a Lyapunov matrix
equation and its solution minimizes the MSE. For digraphs, we

solved the Wiener optimization framework using the proximal
splitting method. We performed denoising and inpainting
experiments on France temperature and humidity data and
showed that these real data better fit into the framework of
stationary processes on digraphs (in contrast to undirected
graphs) specially for the considered noise type.
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