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Abstract

Semi-supervised learning (SSL) on graphs is critical in ap-
plications where labeled data are scarce and costly, yet ex-
isting graph-based methods often degrade under extreme la-
bel sparsity or class imbalance, yielding trivial or unstable
solutions. We introduce CombCut, the first exact combinato-
rial optimization framework for multi-class graph-based semi-
supervised learning that operates directly on binary one-hot
assignments, without any convex relaxation or heuristic vol-
ume constraints. By employing a minorization–maximization
(MM) scheme, CombCut transforms each step into a structured
linear assignment problem solved efficiently via network-flow
algorithms. Total unimodularity guarantees integral iterates,
and our theoretical analysis establishes both monotonic ascent
of the true discrete objective and convergence of every limit
point to a Karush–Kuhn–Tucker (KKT) stationary solution of
the original combinatorial problem. Our approach requires no
hyperparameter tuning and scales near-linearly in the number
of vertices. Empirical evaluation on MNIST, Fashion-MNIST,
and CIFAR-10 with as few as 1–5 labels per class shows that
CombCut excels in worst-case labeling scenarios, significantly
outperforming state-of-the-art graph-SSL baselines and yield-
ing more stable and accurate label propagation under severe
supervision constraints.

Introduction
In many practical applications—ranging from image classifi-
cation to regression—annotating data is prohibitively expen-
sive, which has spurred interest in semi-supervised learning
(SSL) (Calder et al. 2020; Jacobs, Merkurjev, and Esedoḡlu
2018; Nadler, Srebro, and Zhou 2009; El Alaoui et al. 2016;
Zhou et al. 2003; Zhou, Huang, and Schölkopf 2005; Ando
and Zhang 2006; Yang et al. 2006; Holtz et al. 2023; Holtz,
Tang, and Peyré 2024). In SSL, one is given a small set of la-
beled examples together with a much larger collection of unla-
beled examples; the goal is to leverage the geometry of the un-
labeled data to learn a predictor that outperforms one trained
on the labeled data alone. Graph-based methods realize this
by treating each example as a vertex in a graph and defining a
smoothness objective that encourages nearby vertices to share
similar labels. A landmark technique in this family is Laplace
learning, which finds the harmonic extension of the provided
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labels over the unlabeled vertices (Zhu, Ghahramani, and
Lafferty 2003). Variants of this approach—including Poisson
learning (Calder et al. 2020)—have been successfully applied
across a range of semi-supervised and graph-structured learn-
ing problems (Zhou et al. 2003; Zhou, Huang, and Schölkopf
2005; Ando and Zhang 2006; Yang et al. 2006).

Recent studies (Nadler, Srebro, and Zhou 2009; El Alaoui
et al. 2016) have shown that vanilla Laplace learning meth-
ods break down when only a handful of labels are available:
the harmonic extension tends to concentrate its mass at la-
beled nodes—producing sharp spikes there—while leaving
distant vertices almost unchanged, which leads to highly
unreliable estimates near the decision boundary. In classi-
fication settings, one then applies a post-hoc threshold to
convert the continuous solution into discrete class labels, a
step that often amplifies this imbalance. When class distribu-
tions are imbalanced, practitioners often resort to heuristic
volume-constraint mechanisms to enforce target class propor-
tions (Calder et al. 2020; Jacobs, Merkurjev, and Esedoḡlu
2018). For example, Calder et al. (Calder et al. 2020) adopt
an auction-based algorithm (Bertsekas 1988) that alternates
between linearizing the quadratic energy and imposing both
volume and box constraints. Despite these heuristic fixes, the
core task—assigning binary one-hot labels under exact class-
size constraints—is inherently a combinatorial optimization
problem, prompting recent efforts to address it directly.

More recently, Holtz et al. (Holtz et al. 2023) have sought
to address the discrete labeling challenge by framing graph-
based SSL as a cardinality-constrained minimum-cut parti-
tioning problem and then leveraging quadratic relaxations to
render it tractable. Holtz et al. (Holtz et al. 2023) relax the
original nonconvex binary and linear constraints by embed-
ding labels on the Stiefel manifold and solve the resulting
problem via a sequential subspace method (SSM). Although
this relaxation yields a tractable formulation, it is not tight to
the original combinatorial problem and can lead to subopti-
mal solutions.

To address these challenges, we propose CombCut, the first
semi-supervised learning framework that preserves the binary
one-hot label domain throughout optimization without any
relaxation and requires no hyperparameter tuning. Our key in-
sight starts by shifting the graph Laplacian with a sufficiently
large diagonal matrix to obtain a positive-semidefinite alterna-
tive, resulting in a maximization problem with a convex objec-



tive in the assignment matrix; building on this, we employ a
minorization–maximization (MM) scheme that linearizes the
surrogate at each iteration and reduces the problem to a struc-
tured linear assignment subproblem—enforcing one-hot and
class-size constraints—solved exactly via network-flow algo-
rithms. Total unimodularity of the constraint system guaran-
tees that every subproblem admits an integral solution, obviat-
ing any relaxation or rounding. Moreover, we show that Com-
bCut guarantees monotonic ascent of the true combinatorial
objective with convergence to Karush–Kuhn–Tucker (KKT)
stationary points and delivers superior accuracy and stability
under extreme label scarcity, outperforming all relaxation-
based graph-SSL baselines.

Contributions

Below we summarize the key innovations of this work:

• We reframe multi-class graph-based semi-supervised
learning (SSL) as a purely discrete cardinality-constrained
min-cut problem with fixed labels, eliminating any need
for continuous relaxations and directly operating within
the binary label domain to preserve combinatorial in-
tegrity.

• We introduce CombCut, a minorization–maximization
(MM)–based algorithm that ingeniously shifts the Lapla-
cian spectrum to yield a convex surrogate for the max-
imization problem, transforms each iteration into an
efficiently solvable linear-assignment subproblem via
network-flow algorithms, and leverages total unimodular-
ity to guarantee exact solutions without approximations.

• We establish rigorous theoretical foundations, proving
monotonic ascent of a global surrogate objective, reliable
convergence to a KKT stationary point, and inherent exact
integrality of all iterates, thereby avoiding common draw-
backs such as rounding errors and reliance on homotopy
or heuristic adjustments.

• Through comprehensive experiments on k-NN graphs con-
structed from MNIST, Fashion-MNIST, and CIFAR-10,
we demonstrate that CombCut consistently outperforms
its competitors in classification accuracy across diverse la-
bel rates, showcasing its practical superiority in low-data
regimes.

Notations In this paper, we use boldface letters for vectors
and matrices: vectors are denoted by lowercase boldface
(e.g., a) and matrices by uppercase boldface (e.g., A). The
transpose operator is indicated by (·)T . The identity matrix is
denoted by I, while 0 represents an all-zero matrix or vector
with sizes inferred from the context. The vector 1n denotes
an n-dimensional vector of all ones. The Frobenius norm
of a matrix A is denoted by ∥A∥F . The number of nonzero
entries of a matrix A is denoted by nnz(A). The vectorization
of a matrix A is denoted by vec(A). The largest eigenvalue of
the matrix A is denoted by λmax(A). Finally, all notations are
consistently applied throughout the derivations and analyses
to ensure clarity and precision.

Problem Formulation
Let G = (V, E ,W) be an undirected weighted graph with
vertex set V = {v1, . . . , vM} and symmetric weight matrix
W ∈ RM×M whose entries wij ≥ 0 encode the affinity be-
tween vi and vj . We define the degree of each vertex as di =∑M

j=1 wij , and D = diag(d1, . . . , dM ). Without loss of gen-
erality, we assume that the first m vertices ℓ = {v1, . . . , vm}
carry known one-hot labels {y1, . . . ,ym} ⊂ {e1, . . . , ek},
where ej is the jth standard basis vector in Rk and 0 < m ≪
M . We denote the set of n = M −m unlabeled vertices by
U = {vm+1, . . . , vM}. Graph-based semi-supervised learn-
ing seeks to extend the labels on ℓ smoothly over U . A clas-
sical method in this framework is Laplace learning (Zhu,
Ghahramani, and Lafferty 2003), which finds a soft-label
matrix X0 ∈ RM×k by solving

min
X0∈RM×k

tr
(
XT

0 LX0

)
s.t. (X0)i = yi, i = 1, . . . ,m,

(1)
where L = D − W is the combinatorial Laplacian. The
predicted discrete label for each vi is then recovered by

ŷi = arg max
1≤j≤k

(X0)ij . (2)

To isolate the role of the unlabeled vertices in the problem
and derive a compact reduced formulation, we partition the
Laplacian L and the soft-label matrix X0 into labeled and
unlabeled blocks:

L =

(
Lℓℓ Lℓu

Luℓ Luu

)
, X0 =

(
Y

X

)
,

where Y ∈ {0, 1}m×k collects the known one-hot labels
and X ∈ Rn×k are the unknown soft labels. Expanding
the quadratic form in (1) and dropping constants gives the
reduced continuous objective

min
X∈{0,1}n×k

1

2
tr
(
XT Luu X

)
− tr

(
XT B

)
, (3)

where B = −Luℓ Y. We ensure integral one-hot assign-
ments on U by requiring X ∈ {0, 1}n×k and

X1k = 1n, XT 1n = m, 1T
km = M,

where m ∈ Rk specifies the desired number of examples in
each class, and the last equality guarantees that the total num-
ber of assignments equals M , the total number of vertices.
As a result, our discrete formulation becomes:

min
X∈{0,1}n×k

F (X) =
1

2
tr
(
XT Luu X

)
− tr

(
XT B

)
s.t. X1k = 1n

XT 1n = m.
(4)

In the next section, we provide an overview of the MM frame-
work and then explain how to apply it to solve (4).



MM framework: An Overview
Consider the constrained optimization problem

max
x∈χ

f(X), (5)

where X denotes the decision variable, f(X) is the objective
to be maximized, and χ represents the feasible region. An
MM-based method tackles (5) by introducing, at each itera-
tion t, a surrogate function g

(
X | Xt

)
, which underestimates

f(X) but matches it exactly at the current point Xt. The next
iterate is then found by solving Xt+1 ∈ argmaxX∈χ g

(
X |

Xt
)
. These two operations—surrogate construction and max-

imization—are repeated until convergence to a stationary
solution of (5).

For g(X | Xt) to qualify as a valid minorizer, it must
satisfy

g
(
X | Xt

)
≤ f(X) ∀X ∈ χ, (6)

g
(
Xt | Xt

)
= f

(
Xt
)
. (7)

As a result of the surrogate properties, each MM step yields

f(Xt+1) ≥ g
(
Xt+1 | Xt

)
≥ g

(
Xt | Xt

)
= f(Xt),

which shows the objective value never decreases, ensuring
the sequence f(Xt) converges to a KKT point of (5). To see
a more detailed explanation of the MM framework, please
refer to (Prabhu and Banerjee 2017).

Solving the Semi-Supervised Cut via MM
In order to apply MM framework to solve (4), it is necessary
to have a concave form of the objective function. As a result,
we introduce Lemma 0.1.

Lemma 0.1. Let X ∈ {0, 1}n×k satisfy X1k = 1n. Then

∥X∥2F = n.

Proof. By definition ∥X∥2F =
∑n

i=1

∑k
j=1 X

2
ij . Since

Xij ∈ {0, 1}, X2
ij = Xij , hence ∥X∥2F =

∑
i,j Xij . But

X1k = 1n implies each row sums to one, so
∑

i,j Xij =
n.

To prepare our problem for the MM framework, let us
choose a scalar s satisfying s ≥ λmax(Luu), and define
M = s In − Luu. As a result, for any feasible X,

1

2
tr(XTLuu X)− tr(XTB)

= −
(
1
2 tr(X

TMX) + tr(XTB)
)
+ 1

2 s n, (8)

Here, the term 1
2sn is constant and can be dropped from the

optimization problem. Hence (4) is equivalent to the convex-
in-X maximization

max
X∈{0,1}n×k

f(X) =
1

2
tr(XTMX) + tr(XTB)

s.t. X1k = 1n

XT1n = m.

(9)

Since M ⪰ 0, f(.) is convex in X; thus, at any current iterate
Xt, it can be minorized by its tangent hyperplane:

g
(
X | X(t)

)
= tr

(
(MX(t) +B)TX

)
+ const,

which by convexity satisfies g(X | X(t)) ≤ f(X) for all X
and touches equality at X = X(t). Dropping the constant
yields the surrogate

max
X∈{0,1}n×k

tr
(
(C(t))TX

)
s.t. X1k = 1n

XT1n = m,

(10)

where C(t) = MX(t) +B.
In (10), all constraints on X, except for the integrality

requirement Xij ∈ {0, 1}, are affine. Relaxing this integrality
to the box constraints 0 ≤ xij ≤ 1 yields a convex feasible
set that could, in principle, admit fractional optima. The
following definition and theorem—from (Schrijver 1998) and
(Wolsey and Nemhauser 1999)—ensure that every extreme
point of this polytope is integral, and hence any optimal X
remains binary.
Definition 0.1. A matrix D is totally unimodular (TU) if
every square submatrix has determinant in {−1, 0, 1}.
Theorem 0.2. If D is TU and b is integral, then the polyhe-
dron {x : Dx ≤ b, 0 ≤ x ≤ 1} has only integral vertices,
so any LP over this system admits an integral optimum.

To invoke Theorem 0.2, we vectorize the assignment ma-
trix X ∈ Rn×k into

x = vec(X) ∈ Rnk.

In this form, the affine constraints in (10) become linear
inequalities of the form Dx ≤ b.

First, the row-sum constraint X1k = 1n is equivalent to

(In ⊗ 1T
k )x = 1n,

which we rewrite as the pair

(In ⊗ 1T
k )x ≤ 1n, −(In ⊗ 1T

k )x ≤ −1n.

Next, the column-sum constraint XT1n = m can be writ-
ten in vectorized form as

(1T
n ⊗ Ik)x = m,

which is equivalently enforced by the pair of inequalities

(1T
n ⊗ Ik)x ≤ m, −(1T

n ⊗ Ik)x ≤ −m.

Stacking these into a single matrix yields

D =


In ⊗ 1⊤

k

− (In ⊗ 1⊤
k )

1⊤
n ⊗ Ik

− (1⊤
n ⊗ Ik)

 ∈ {0,±1}(2n+2k)×(nk), b =


1n

−1n

m

−m

.
Accordingly, the linear programming relaxation of (10) can
be expressed as

max
x∈Rnk

(vec(C(t)))Tx

s.t. Dx ≤ b

0 ≤ x ≤ 1.

(11)



Algorithm 1: CombCut algorithm
Require: Unlabeled Laplacian Luu, supervision term B, class

sizes m, shift s ≥ λmax(Luu), step-sizes {η(t)}, tolerance ϵ
Ensure: One-hot labeling X ∈ {0, 1}n×k

1: Compute PSD shift: M← s In − Luu ⪰ 0
2: Initialize X(0) ∈ {0, 1}n×k s.t. X(0)1k = 1n, (X(0))T1n =

m
3: for t = 0, 1, 2, . . . do
4: C(t) ←MX(t) +B
5: Update X: Solve the linear program:

X(t+1) ← argmax
X

tr
(
(C(t))TX

)
s.t. X ∈ [0, 1]n×k,

X1k = 1n,
XT1n = m.

6: Check convergence:
∣∣F (X(t+1))− F (X(t))

∣∣∣∣F (X(t))
∣∣ < ϵ

7: if true then
8: break
9: end if

10: end for
11: return X(t+1)

Because In ⊗ 1T
k and 1T

n ⊗ Ik are both totally unimodu-
lar—and this property is preserved under negation and row-
stacking (Schrijver 1998)—the assembled matrix D is TU.
Moreover, the entries of b are clearly integral. As a result,
Theorem 0.2, every vertex of the polyhedron

{x : Dx ≤ b, 0 ≤ x ≤ 1}
is integral, ensuring that any optimal solution x∗ lies in
{0, 1}nk. In other words, the LP relaxation of (10) always
admits an integral maximizer.

Consequently, the relaxed surrogate

max
X∈[0,1]n×k

tr
(
(C(t))TX

)
s.t. X1k = 1n

XT1n = m,

(12)

is always tight. Problem (12) admits direct solutions via LP
solvers like CVX (Grant and Boyd 2014) or CVXPY (Di-
amond and Boyd 2016), and can also be tackled through
Lagrangian duality approaches (Prabhu and Banerjee 2017;
Saini et al. 2024). A succinct outline is presented in Algo-
rithm 1.

Computational Complexity and Convergence
Computational Complexity
We now analyze the computational complexity of the pro-
posed CombCut algorithm. At iteration t, the main operations
are as follows:

• Computation of C(t): The update C(t) = MX(t) +B
requires multiplying the n× n sparse matrix M with the
n × k label matrix X(t). Since M inherits the sparsity
pattern of Luu from the k-nearest neighbor graph with
O(kn) nonzero entries, the multiplication cost is

O(nnz(M) · k) = O(k2n),

which is linear in n for small, fixed k.
• Projection onto the constraint set C: The Euclidean

projection onto the intersection of row- and column-sum
constraints is carried out via alternating normalization
steps with sorting. This requires O(nk) operations per
sweep, and a small constant number of sweeps is sufficient
in practice, giving an overall projection cost of O(nk).

• Objective evaluation: The computation of F (X(t)) in-
volves the quadratic form XTMX and a trace term, both
evaluated in O(k2n) time using sparse M.

Therefore, the per-iteration cost is

O(k2n) +O(nk) = O(k2n),

dominated by the sparse matrix–label multiplication. Given
that k is typically small (e.g., k = 10), the method scales
linearly with the number of unlabeled vertices n.

In terms of memory, M and W are stored in sparse format,
requiring O(kn) space, while X and C require O(nk) stor-
age. This yields a total memory footprint of O(kn), making
CombCut memory-efficient for large-scale graphs.

Since each MM iteration monotonically increases the ob-
jective, convergence is reached in a modest number of it-
erations T (typically tens in our experiments), leading to
an overall complexity O(T k2n), which is near-linear in n
and competitive with, or faster than, existing graph-based
SSL methods that require solving large linear systems or
semidefinite programs.

Convergence Analysis
In this section, we prove that the MM iterates generated by
Algorithm 1 produce a non-decreasing objective sequence
that converges, and that every limit point of the iterates satis-
fies the first-order (KKT) stationarity condition. To make it
clear what is a stationary point in our case, we first introduce
a first-order optimality condition for minimizing a smooth
function over an arbitrary constraint set, which follows from
(Bertsekas, Nedic, and Ozdaglar 2003).

First-Order Optimality for Maximization
Proposition 1. Let f : Rn×k → R be continuously differen-
tiable, and let X∗ be a local maximizer of f over a closed set
C ⊆ Rn×k. Then

tr
(
∇Xf(X∗)T (Z−X∗)

)
≤ 0, ∀Z ∈ TC(X

∗),

where TC(X
∗) denotes the tangent cone of C at X∗.

Monotonicity and Stationarity: Recall the original maxi-
mization problem (1):

max
X∈C

f(X) = 1
2 tr
(
XTMX

)
+ tr

(
XTB

)
,

and define at iterate X(t) the MM surrogate

g
(
X | X(t)

)
= tr

(
(MX(t) +B)TX

)
+ const.

Since M ⪰ 0, F is convex in X. Therefore, for all X ∈ C,

g
(
X | X(t)

)
≤ f(X),

with equality at X = X(t).



The MM update chooses

X(t+1) = argmax
X∈C

g
(
X | X(t)

)
.

Hence

f
(
X(t+1)

)
≥ g

(
X(t+1) | X(t)

)
≥ g
(
X(t) | X(t)

)
= f

(
X(t)

)
. (13)

This shows the sequence {f(X(t))} is non-decreasing. Since
C is finite, f(.) is bounded above, and thus f(X(t)) → f∗ <
∞.

Because C is compact, the iterates {X(t)} admit at least
one limit point. Let X(∞) be such a point, and extract a
convergent subsequence {X(tj)} with

X(tj) → X(∞).

By definition of the update,

X(tj+1) = argmax
X∈C

g
(
X | X(tj)

)
,

so for any Z ∈ C,

g
(
X(tj+1) | X(tj)

)
≥ g

(
Z | X(tj)

)
. (14)

Letting j → ∞ and using continuity of g(.) yields

g
(
X(∞) | X(∞)

)
≥ g

(
Z | X(∞)

)
, ∀Z ∈ C.

Thus X(∞) globally maximizes the linear surrogate g(· |
X(∞)) over C. By Proposition 1, the first-order condition for
this maximization is

tr
(
∇X g

(
X | X(∞)

)∣∣
X=X(∞)(Z−X(∞))

)
≤ 0, ∀Z ∈ C.

Noting

∇X g
(
X | X(∞)

)∣∣
X=X(∞) = MX(∞) +B, (15)

we conclude

tr
(
(MX(∞) +B)T (Z−X(∞))

)
≤ 0, ∀Z ∈ C,

which is exactly the KKT stationarity condition for f at X(∞).
This completes the proof.

Initialization Strategy
Due to the non-convex nature of the problem, the selection
of an initial value is critical for obtaining a high-quality solu-
tion. For our initialization, we employ the approach proposed
in (Holtz, Tang, and Peyré 2024), setting the perturbation
parameter to s = 0.2. This choice is motivated by the ob-
servation in their work that for 0 ≤ s ≤ 1, the constrained
quadratic minimizer encourages solutions where predictions
at unlabeled, high-degree vertices have a small norm. Al-
though Holtz et al. (Holtz, Tang, and Peyré 2024) require
s > 1 to theoretically guarantee a discrete solution, we found
that adhering to this condition can lead to extreme solutions
that are not necessarily optimal or of high quality.

Numerical Results
Dataset
In this paper, we conduct experiments on three widely rec-
ognized image datasets—MNIST (Deng 2012), Fashion-
MNIST (Xiao, Rasul, and Vollgraf 2017), and CIFAR-10
(Krizhevsky, Hinton et al. 2009)—chosen to evaluate the
proposed method across varying levels of complexity and to
compare its performance against a diverse set of baselines.
For MNIST and Fashion-MNIST, variational autoencoders
(VAEs) with 3 fully connected layers of sizes (784, 400,
20) and (784, 400, 30), respectively, were trained for 100
epochs on each dataset using a symmetrically defined de-
coder architecture, loss, and training procedure similar to
(Calder et al. 2020). These VAEs served as feature extractors,
and graphs over the latent feature space were constructed
with n = 70,000 nodes for both datasets, utilizing all avail-
able data. For CIFAR-10, SimCLR (Simple Framework for
Contrastive Learning of Visual Representations) (Chen et al.
2020) was employed to pretrain representations on the full
dataset of n = 60,000 nodes, leveraging self-supervised con-
trastive learning with data augmentations such as random
cropping and color distortion.

The graphs for all datasets were constructed as k-nearest
neighbor graphs with Gaussian edge weights, calculated as

wij = exp
(
− 4∥vi − vj∥2/dk(vi)2

)
,

where vi and vj are the latent variables for images i and j,
and dk(vi) is the distance in the latent space between vi and
its k-th nearest neighbor. We set k = 10 consistently across
all experiments, and symmetrized the weight matrix W by
replacing it with 1

2 (W +WT ).
Evaluations focused on low-label regimes (1–5 labels per

class), a critical scenario for SSL where traditional methods
often degenerate. We report average top-1 accuracy (%) over
20 independent trials, with standard deviations indicating
variability due to random label selection. All experiments are
conducted using MATLAB R2022b on a dual-socket Intel
Xeon E5-2695 v3 system (2 × 14 physical cores, 56 threads
total, 2.3 GHz base frequency, up to 3.3 GHz turbo boost, 70
MiB L3 cache) with 256 GB of RAM.

Compared Methods
To evaluate our proposed combCut method, we compare it
against several graph-based SSL approaches. Below are brief
introductions to each baseline:

1. Laplace Learning (Zhu, Ghahramani, and Lafferty 2003):
Propagates labels via graph Laplacian smoothness, effec-
tive but prone to over-smoothing with few labels.

2. Poisson Learning (Calder et al. 2020): Enhances Laplace
learning with class size priors for better balance in low-
label settings.

3. p-Laplace (Flores, Calder, and Lerman 2022): Uses a non-
linear p-Laplacian (e.g., p=3) for robust label propagation
against noise.

4. AMLE (El Alaoui et al. 2016): Extends labels with mini-
mal Lipschitz constant, approximating infinity-Laplacian
behavior.



5. Volume-MBO (Jacobs, Merkurjev, and Esedoḡlu 2018):
Applies threshold dynamics with volume constraints for
balanced multi-class partitions.

6. SSM (Holtz et al. 2023): Optimizes SSL on Stiefel mani-
folds to address low-label degeneracy.

Results
Performance on MNIST: As shown in Table 1(a), Comb-
CutSSL achieves superior accuracy across all label rates,
starting at 95.94% ± 2.38 for 1 label per class and ris-
ing to 97.36% ± 0.10 at 5 labels—marking improvements
of 3.07% and 1.07% over the next-best baseline, Poisson
Learning (92.87% ± 3.73 and 96.29% ± 0.84, respectively).
This substantial lead highlights CombCutSSL’s strength in
leveraging exact integer partitions through its minorization-
maximization scheme, effectively countering the degeneracy
seen in Laplace Learning, which starts at a mere 18.93% ±
7.84 at 1 label due to its reliance on harmonic extensions
that fail to propagate labels effectively with sparse supervi-
sion. Poisson Learning and Volume MBO, with accuracies
of 92.87% ± 3.73 and 87.19% ± 4.13 at 1 label, benefit
from volume constraints that enforce class balance, yet their
suboptimal relaxations limit further gains compared to Com-
bCutSSL’s discrete approach. p-Laplace (72.70% ± 6.29)
and AMLE (64.69% ± 4.01) offer moderate improvements
through nonlinearity, but their higher variance at low labels
suggests sensitivity to initial label placement. StiefelSSL
(62.36% ± 5.37) underperforms, likely due to its manifold-
based relaxation not fully capturing cluster boundaries. The
upward accuracy trend with increasing labels is expected,
reflecting the growing availability of supervisory signals.
CombCutSSL’s standard deviation dropping from 2.38 to
0.10 underscores its enhanced stability and convergence to
near-optimal Karush-Kuhn-Tucker (KKT) points, suggesting
a robust optimization process that adapts well as more labels
are introduced.

Performance on FashionMNIST: Results in Table 1(b) on
the more challenging FashionMNIST dataset show Poisson
Learning leading at 1 label per class with 60.16% ± 6.02
compared to CombCutSSL’s 57.38% ± 5.98, a gap of 2.78%,
while CombCutSSL surpasses Poisson Learning after 3 labels
per class, achieving 72.05% ± 1.98 at 5 labels against Pois-
son Learning’s 71.92% ± 2.15, a 0.13% improvement. The
dataset’s inherent ambiguity, due to visually similar apparel
items, exacerbates baseline degradation, as seen with Laplace
Learning dropping to 17.60% ± 5.91 at 1 label, reflecting its
struggle with sparse labels. Volume MBO (54.10% ± 6.00)
and p-Laplace (53.77% ± 5.11) provide moderate lifts, lever-
aging threshold dynamics and nonlinearity, respectively, yet
fall short of CombCutSSL’s discrete cut formulation, which
better delineates cluster boundaries (e.g., distinguishing be-
tween shirts and coats). StiefelSSL (46.20% ± 3.57) lags,
possibly due to its manifold constraints not fully aligning
with the data’s geometry.

Performance on CIFAR-10: On the CIFAR-10 dataset,
characterized by complex visual features, CombCutSSL
again demonstrates superior performance, achieving 75.72%

± 5.69 at 1 label per class, outperforming Poisson Learning’s
71.86% ± 7.52 by 3.86%, and reaching 81.60% ± 2.76 at
5 labels, a 1.59% improvement over Poisson’s 80.01% ±
2.31, as shown in Table 1(c). The lower baseline accuracies
(e.g., AMLE at 60.79% ± 5.89, StiefelSSL at 55.23% ±
6.53) highlight the difficulty of this dataset, where Volume
MBO (68.88% ± 7.69) gains from threshold dynamics but
incurs higher variance, yet CombCutSSL’s consistent gains
and stabilizing deviations (from 5.69 to 2.76) indicate its
adaptability to richer feature spaces.

Conclusion
In this paper, we introduced CombCut, a novel framework
for graph-based semi-supervised learning that directly op-
timized over binary one-hot label assignments, eliminat-
ing the need for hyperparameter tuning. We shifted the
graph Laplacian with a diagonal matrix to create a convex,
positive-semidefinite surrogate objective and employed a
minorization-maximization scheme that reduced each itera-
tion to a linear assignment subproblem, solved exactly via
network-flow algorithms. The total unimodularity of the con-
straint system ensured integral solutions, preserving exact
class sizes without approximation. Moreover, we proved the-
oretical guarantees of monotonic ascent of the combinatorial
objective and convergence to Karush-Kuhn-Tucker stationary
points. Our empirical evaluations on MNIST, FashionMNIST,
and CIFAR-10 showed that CombCut delivered superior ac-
curacy and stability, particularly in low-label regimes, even
under class imbalance. This work advanced semi-supervised
learning by integrating combinatorial optimization with ef-
ficient convex techniques, providing a robust solution for
label-scarce scenarios across image classification and broader
applications.
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