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Abstract: 

Moral judgements about people based on their acAons is a key component that guides social 
decision making. It is currently unknown how posiAve or negaAve moral judgments associated 
with a person’s face are processed and stored in the brain for a long Ame. Here, we invesAgate 
the long-term memory of moral values associated with human faces using simultaneous EEG-
fMRI data acquisiAon. Results show that only a few exposures to morally charged stories of 
people are enough to form long-term memories a day later for a relaAvely large number of new 
faces. Event related potenAals (ERPs) showed a significant differenAaAon of remembered good 
vs bad faces over centerofrontal electrode sites (value ERP). EEG-informed fMRI analysis 
revealed a subcorAcal cluster centered on the le\ caudate tail (CDt) as a correlate of the face 
value ERP. Importantly neither this analysis nor a convenAonal whole brain analysis revealed any 
significant coding of face values in corAcal areas, in parAcular the fusiform face area (FFA). 
Conversely an fMRI-informed EEG source localizaAon using accurate subject-specific EEG head 
models also revealed acAvaAon in the le\ caudate tail.  Nevertheless, the detected caudate tail 
region was found to be funcAonally connected to the FFA, suggesAng FFA to be the source of 
face-specific informaAon to CDt. These results idenAfy CDt as a main site for encoding the long-
term value memories of faces in humans suggesAng that moral value of faces acAvates the 
same subcorAcal basal ganglia circuitry involved in processing reward value memory for objects 
in primates.  

Introduc?on: 

Our past experiences with people whether good or bad affect our future interacAons with them 
and guide our social decision making. In parAcular, moral judgement about people based on 
their acAons is a key component in our evaluaAon of an individual (Cornwell & Higgins, 2019; Jiang 
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et al., 2022)(Greene, 2009). It is currently unknown how posiAve or negaAve moral judgments 
associated with a person’s face are processed and stored in the brain in long-term memory. 

Human brain has specialized face processing areas in the temporal cortex including the occipital 
face area (OFA), superior temporal sulcus (STS) and the fusiform face area (FFA) (Duchaine & 
Yovel, 2015; Kanwisher & Yovel, 2006). Several studies have examined the coding of various aspects 
of faces based on their intrinsic visual features such as emoAonal expressions (Engell & Haxby, 
2007; Winston et al., 2004), aaracAveness (ClouJer et al., 2008; Kranz & Ishai, 2006; O’Doherty et al., 
2003; Said et al., 2011; Winston et al., 2007)  trustworthiness (Engell et al., 2007; Winston et al., 
2002) or social value (Oosterhof & Todorov, 2008; Todorov et al., 2011) in the human brain with 
somewhat divergent results.  A review and meta-analysis of these findings suggests consistent 
acAvaAons for negaAve evaluaAons in the amygdala, and for posiAve evaluaAons in the medial 
orbitofrontal cortex (mOFC), anterior cingulate cortex (ACC), caudate nucleus and the nucleus 
accumbens (NAcc) (Mende-Siedlecki et al., 2013).  

The value circuitry for objects in general is extensively studied in both humans and non-human 
primates with key corAcal and subcorAcal areas such as orbitofrontal cortex (OFC), insula, ACC, 
basal ganglia, amygdala and midbrain dopaminergic areas being acAvated during object reward 
associaAon tasks (Berridge & Kringelbach, 2008; Kim et al., 2014; Morrison & Salzman, 2010; Padoa-
Schioppa & Assad, 2006; Rushworth & Behrens, 2008; Schultz, 2007) . Value memory is also shown to 
acAvate a temporal-prefrontal circuitry along with its funcAonally connected subcorAcal areas, 
in parAcular, the caudate nucleus, amygdala and claustrum (Ghazizadeh, Griggs, et al., 2018; 
Ghazizadeh, Hong, et al., 2018; Ghazizadeh & Hikosaka, 2021; Kang et al., 2021; Kim & Hikosaka, 2013; 
Yasuda et al., 2012). InteresAngly, these studies have illuminated some different aspects of the 
short and long-term value memories. Specifically, it is shown that while the head of caudate 
nucleus exclusively represents the flexible and short-term memory of object values, the tail of 
caudate nucleus exclusively represents the stable and long-term memory of object values in 
monkeys (Kim et al., 2014). ReplicaAon of the same experimental task on humans using fMRI 
(Farmani Sepideh et al., n.d.; Kang et al., 2021) has revealed acAviAes in the ventral striatum, 
caudate body and hypothalamus. While there are some recent studies that have looked at 
short-term effects of value assignment to faces using EEG or fMRI (Baum & Abdel Rahman, 2021b, 
2021a; ClouJer & Gyurovski, 2014; Luo et al., 2019; Schindler et al., 2021; Singer et al., 2004; Suess et 
al., 2015; Todorov et al., 2007), it is not known how long-term memory of associated value with 
faces engages this circuitry and whether it can change even the primary face processing in areas 
such as FFA. 

To address this quesAon, we randomly assigned posiAve or negaAve values based on morally 
charged biographical stories to novel faces and then examined the brain acAvaAons to these 
faces a day later using a simultaneous EEG-fMRI paradigm which involved a binary choice for 
face values. The value ERP showed a significant differenAaAon of the correctly idenAfied good 
and bad faces over center-frontal electrodes, peaking at about 600ms post-sAmulus and lasAng 
unAl almost the end of face presentaAon. This ERP is shown to originate from the le\ caudate 
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tail, based on results from both EEG-informed fMRI analysis and fMRI-informed EEG source 
localizaAon. InteresAngly, while none of the corAcal face processing areas were found to encode 
the moral values of faces, some were found to be funcAonally connected to the detected value-
coding caudate tail region.  

Results: 

To create value memory for faces, we used 24 arbitrary arAficial faces created by StyleGAN2 
(Karras et al., 2019) . Each face was randomly associated with a brief unique biography with 
either a posiAve (good faces) or a negaAve (bad faces) moral value (see supplementary table 1 
for a list of all stories). In the value training session (Fig. 1a), subjects viewed each face while 
listening to its short story. Each face was viewed for 10 sec within a block of 24 faces and the 
process was repeated 2 Ames, 2 hours apart. The assignment of biographies to the faces were 
swapped across so that each face was associated with posiAve values for half of the subjects 
and with negaAve values for the other half.  

One day later, we tested the face value memory of subjects in the MRI scanner being 
simultaneously equipped with an MRI-compaAble EEG cap (value memory session). During the 
experimental task, each face was portrayed for 2.5s (Fig. 1b). Then, a black screen was shown 
with two leaers of “G” and “B” (referring to “Good” and “Bad”, respecAvely) on the le\ or right 
visual hemifield for 2s, during which the subject had to indicate his/her response by pressing a 
response buaon using the corresponding hand. The locaAon of leaers “G” and “B” were 
randomly flipped in each trial. The subjects were instructed to answer all trials based on their 
closest guess, even if they did not remember an explicit history about a face. The subjects’ 
accuracy in idenAfying face types was 78% on average, which is significantly higher than the 
chance level. The subjects’ accuracies for each specific category were also significantly high (Fig. 
1c; t-test, p < 1e-6 & p < 1e-8, for bad and good faces respecAvely). This suggests that a brief 
exposure to a large number of new people (24 new faces) and their moral stories creates a 
lasAng memory that is accessible a day later. Nevertheless, the performance for the good faces 
was significantly higher than that for bad ones by about 12% (Fig. 1c; paired t-test, p = 0.004). To 
ensure that there was no systemaAc bias for some faces to be remembered as good or bad, we 
looked at the percentage of Ames a certain face was chosen as good or bad across subjects 
(including addiAonal subjects outside the EEG-fMRI experiment, n= 34). Results showed that 
among the 24 faces used, only 2 showed significant bias to be chosen as good (Suppl. Table 3).  
We conducted our subsequent analysis both by inclusion and exclusion of these 2 faces, which 
did not change any of our main findings as will be discussed. 
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Figure 1: Subjects’ training procedure, memory task and behavioral results. a) Value training video: In 
this video, 24 novel faces were associated with short biographical stories, each conveying a posiAve or 
negaAve moral value about the presented face (good or bad faces, see suppl. Table 1 for the list of 
morally-charged stories). b) Memory task: faces seen the day before were shown in a random sequence 
for each subject. Each face was shown for 2.5s. Then, a black screen was shown with two leaers of “G” 
and “B” (referring to “good” and “bad”, respecAvely) for 2s during which, the subject had to indicate his/
her response by pressing the appropriate buaon. The sides of leaers “G” and “B” were randomly flipped 
in each trial. Then, an inter-sAmulus-interval (a black screen with a red fixaAon cross at center) followed 
for a random Ame period between 1 to 3.5s. c) Behavioral result: The performance of subjects in judging 
face values, along with the chance level (=50%, dashed line) is shown. Individual subject data points are 
shown. Error bars indicate standard errors. 

Robust differen?a?on of remembered good and bad faces over center-frontal electrodes 

To study the differenAal neuronal acAvity during remembered good and bad faces, event-
related potenAals (ERPs) for each category, separately were calculated. In order to create a 
more precise group average, the EEG signals for each subject were normalized and transferred 
to the standard cap situated over the standard brain (see methods for details). The ERPs for 
both good and bad faces in electrode P8, showed significant negaAviAes around 230ms post 
sAmulus (lasAng from about 190ms to 250ms, suppl. Fig. 2 a,b; one-sided t-test against baseline; 
p-value < 0.05, FDR-corrected) consistent with previously reported N170 and early posterior 
negaAvity (EPN) components (Baum & Abdel Rahman, 2021b; Schindler et al., 2021). The normalized 
z-scored ERPs for the remembered good and bad faces, as well as their difference (the value 
ERP) showed a robust differenAaAon between good and bad faces over a large porAon of the 
2.5s sAmulus presentaAon on center-frontal channels such as C1 and FC1 (Fig. 2a; one-sided t-
test against baseline; p-value ≤0.05, Bonferroni corrected over channels and Ame). This value 
dissociaAon is more strongly evident in the interval of 0.5 to 1.5s post-sAmulus ( raw non-
normalized ERPs showed a similar value differenAaAon with a similar Ame course, suppl. Fig. 
2c). 
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Figure 2: Value ERP & the EEG-informed fMRI analysis. a) The group-average ERPs for the memorized 
good and bad faces and their difference (value ERP) in electrode FC1 along with the associated group-
average scalp potenAal topographies at some sample Ame points. Parts of the value ERP that are 
significantly different from its baseline are shown with bolded black segments (p-value < 0.05, 
Bonferroni-corrected over channels and Ame), b) The average of electric potenAals in center-frontal 
electrodes over the significant interval (0.5-1.5s post-sAmulus) is considered as the EEG-driven value 
signal. This signal is then squared and consequently convolved with the canonical HRF to build our EEG-
driven regressor.  c) EEG-informed fMRI analysis: the group-average of the beta coefficients for the EEG-
driven regressor shows significant acAvaAon in a cluster centered on the le\ caudate tail (p-value < 0.01, 
cluster-corrected). 

EEG-informed fMRI analysis reveals caudate tail as the origin of the value ERP 

We next performed an EEG-informed fMRI analysis. Based on the Ame course of value ERP, we 
used the average EEG signal over C1 and FC1 in the interval from 0.5s to 1.5s post-sAmulus as 
our EEG-driven regressor in the fMRI GLM model (Fig.2b, see methods). We have previously 
shown that since the BOLD signal measures the energy consumpAon in the brain, the square (or 
power 2) of the EEG signals is the opAmal regressor of the BOLD responses (Ataei et al., 2022). 
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Thus, to localize the source(s) of EEG signals in the center-frontal electrodes, its square was 
used as the trial by trial correlate of face value signal in the brain (Fig.2b). 

Other regressors in the model included correct answer to good faces, “correct good”, correct 
answer to bad faces, “correct bad”, incorrect answer to good faces, “incorrect good” and 
incorrect answer to bad faces, “incorrect bad”. In case of no incorrect answer to a certain 
category, the associated regressor was omiaed for that subject. Moreover, to account for the 
effect of subject’s motor acAon during his/her buaon press response, we also added two 
confounding regressors, one for each hand. Finally, the average BOLD signal inside the ventricles 
was used as another nuisance regressor to ensure that responses in structures near the 
ventricles are not affected by such nonneural extraneous signals (GLM1, see materials & 
methods for details of the regressor design). As a control analysis, the right versus le\ hand 
contrast showed significant acAvaAon in the contralateral and deacAvaAon in the ipsilateral 
motor corAces (suppl. Fig. 3a, p-value < 0.01, cluster-corrected). Moreover, acAvaAon of the 
ipsilateral and deacAvaAon of the contralateral cerebellar corAces were also observable (suppl. 
Fig. 3b, p-value < 0.01, cluster-corrected), consistent with exisAng literature (Thickbroom et al., 
2003). 

The BOLD correlate of the EEG-driven regressor showed significant acAvaAon only in a 
subcorAcal cluster centered on the le\ caudate tail (CDt) (Fig. 2c, p-value < 0.01, cluster-
corrected). Notably, the contrast of correct good vs. correct bad (the value contrast) did not 
reveal any significant acAvaAon in the brain suggesAng that the source of observed EEG 
responses in the center-frontal electrodes were most likely limited to CDt and that this acAvity 
was well captured by the EEG power of center-frontal electrodes in each trial. This is expected 
since a correct model of staAsAcal dependence among variables predicts that given the EEG 
signal originaAng from value contrast, BOLD should become independent of value contrast itself 
(suppl. Fig. 4a). 

To ensure that CDt is indeed acAvated by the value contrast, we repeated our GLM analysis 
without an EEG-driven regressor (GLM2). As expected, in this case correct good vs. correct bad 
contrast showed significant acAvaAon in the le\ CDt (suppl. Fig.3b). We note however that the 
extent of acAvaAon in this case was broader (including parts of the posterior hippocampus, 
table 1) compared to the more localized CDt acAvaAon seen in the EEG-informed analysis 
aaesAng to the advantage of simultaneous EEG-fMRI paradigm used in this study. Importantly, 
we observed no other significant subcorAcal or corAcal value differenAaAons in either GLM1 or 
GLM2, suggesAng a special role for CDt in represenAng long-term memory of moral value of 
faces. RepeaAng the analysis by excluding the two faces that had a choice bias across subjects 
did not change our results confirming the acAvaAons found in the le\ caudate tail. (suppl. Fig. 5, 
p-value < 0.01, cluster-corrected). 

fMRI-informed EEG source localiza?on confirms leP CDt as the origin of the value ERP 
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While the spaAal resoluAon of EEG is low, the resoluAon of its localized sources is highly 
sensiAve to the implemented head model and the method used to solve the inverse problem 
(Michel & Brunet, 2019; Michel & He, 2019). Conversely one may use fMRI-informed EEG source 
localizaAon to find sources of neural acAvity of interest. Here we tried this approach by 
performing a source localizaAon for each subject using a “mixed” forward model (assuming 
corAcal dipoles perpendicular to the cortex surface and subcorAcal ones with unknown 
direcAons, see methods for details) conducted based on subject-specific MRI images. In our 
mixed model, we included all the neocortex, but selected subcorAcal structures based on fMRI 
results, to allow the low-SNR1 subcorAcal sources to be detected more robustly. Specifically, we 
included the caudate and hippocampus as they were found in the whole brain fMRI analysis 
(GLM2). We also included amygdala both as a subcorAcal benchmark and for its well-known role 
in value coding (Wassum & Izquierdo, 2015).  Notably, the group average of the EEG sources 
revealed significant acAvity in the le\ caudate tail and deacAvaAon of the le\ anterior 
hippocampus (Fig. 3a; p ≤ 0.001, duraAon ≥ 150ms & cluster > 3 dipoles). InteresAngly such 
deacAvaAon of anterior hippocampus can be seen in whole brain fMRI analysis (GLM2) as well if 
no cluster correcAon is used.  (suppl. Fig. 6b). No significant acAvity was found in corAcal areas 
(p ≤ 0.001, duraAon ≥ 150ms & cluster > 7 dipoles) or in amygdala (duraAon ≥ 150ms & cluster > 
3 dipoles). The Ame course of acAvity in the le\ caudate tail (Fig. 3b) shows the emergence of 
value memory at about 550ms a\er face presentaAon, roughly consistent with the onset of the 
value ERP seen in center-frontal electrodes (Fig. 2a). Also note that the sign of acAviAes for the 
subcorAcal regions with unknown dipole direcAons is ambiguous (see methods for more 
details).  
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Figure 3: EEG sources of the value ERP. a) The t-stat maps for the group average of the sources of value 
ERP, against their baseline acAviAes (two-sided t-test; p-value < 0.001, duraAon > 150ms, cluster > 3 
dipoles). Note that subcorAcal regions with unknown dipole direcAons (caudate & amygdala) are shown 
as masses of their grid points along with the opposite-side hemispheres. This map shows acAvaAon of 
the le\ caudate tail and deacAvaAon of anterior hippocampus (note the ambiguity in the sign of dipole 
acAviAes in caudate). b) The group-average Ame course of the acAvity in the caudate tail (normalized 
magnitude) along with standard error margins indicaAng group diversity around the mean. 

 

Func?onal connec?vity between CDt and FFA 

How does CDt receive the specific informaAon of each face? To address this quesAon, we 
performed a funcAonal connecAvity analysis (based on GLM1 residuals) to find the probable 
corAcal or subcorAcal sources of this face-specific informaAon, by selecAng the detected le\ CDt 
in GLM1 (Fig. 3b) as the correlaAon seed (see methods for details). MulAple regions in the 
temporal and frontal cortex were found to be funcAonally connected to the le\ CDt (Fig. 4a: p-
value < 0.001, cluster-corrected, suppl. Table 2). InteresAngly, face processing areas in the 
inferior temporal cortex were among the funcAonally connected regions. In parAcular, the 
anterior part of the le\ fusiform gyrus (FFA) found at the group-level by the face localizer scans 
performed for each subject (faces vs. scrambled faces), overlapped with the funcAonally 
connected areas to CDt (Fig. 4a; p-value<0.001, cluster-corrected, see methods & suppl. Fig. 7). 
Despite this overlap, FFA itself does not show a significant differenAaAon between remembered 
good and bad faces (GLM2, Fig.4b), suggesAng that while face-specific informaAon can be 
supplied to CDt by FFA, it is the CDt which does the moral value-based face discriminaAon. 

 

Figure 4: Func?onally connected regions to the leP CDt overlap with FFA. a) funcAonal connecAvity 
map for the le\ caudate tail on the le\ hemisphere: the group-average of the correlaAon coefficients (p-
value < 0.001, cluster-corrected). Contours of corAcal face-selecAve areas (using a separate face localizer 
scan for each subject) are marked. b) The beta values for correct good, correct bad and incorrect 
answers in the right fusiform gyrus (averaged over cluster and subjects), compared in bar plots. See 
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Suppl. Fig. 7 for more details about the addiAonal localizer task used to localize the FFA region for each 
subject separately. 

Discussion: 

Our social interacAons are highly affected by our judgements about a person’s integrity. In many 
situaAons one or two encounters with events that show ethical or unethical behavior of a 
person, is enough for us to form lasAng posiAve or negaAve memories of that individual. Yet, 
the neural mechanism of such a robust phenomenon was not previously addressed. Here, we 
invesAgated the neural encoding of long-term memory of moral values associated with human 
faces using simultaneous EEG-fMRI data acquisiAon to reveal both spaAal and temporal 
dynamics of brain acAvaAons. First, our behavioral results confirmed that only a few exposures 
to morally charged stories of people are adequate for forming long-term memories a day later 
(Fig. 1). There was significant differenAaAon of the memorized good vs bad face ERPs over 
center-frontal electrodes lasAng during the face presentaAon (value ERP). EEG-informed fMRI 
analysis using the power of EEG signal over the center-frontal electrodes revealed a significant 
acAvity centered on the le\ CDt (Fig 2). Conversely, fMRI-informed EEG source reconstrucAon 
localized sources of “value ERP” in CDt with an onset Ame of about 550ms (Fig. 3). Notably, EEG-
informed fMRI analysis and fMRI-informed EEG source localizaAon as well as tradiAonal whole 
brain fMRI analysis did not show any significant differenAaAon of remembered good and bad 
faces in any corAcal areas including the face processing regions (Table 1). Nevertheless, 
funcAonal connecAvity analysis revealed a connecAon between CDt and anterior FFA which 
presumably can be the source of face specific informaAon to this part of the caudate (Fig. 4). 
The subjects had a higher performance in detecAng good faces compared with bad ones. While 
a bias toward the posiAve value in some subjects could probably be a parAal reason for this 
observaAon, this does not alter our findings since they rely only on the correctly chosen values 
for good and bad faces. Furthermore, the subjects’ response staAsAcs for each face also 
confirmed that there was no value bias in most of the faces and exclusion of the few biased 
faces did not change our results (suppl. Fig. 5).   

Caudate and in parAcular its tail region was previously shown to be a key node for encoding 
long-term value memories of objects in general, in non-human primates (Kim & Hikosaka, 2013; 
Yamamoto et al., 2013) and in humans (Farmani Sepideh et al., n.d.). Single-unit recordings from 
monkey caudate tail has showed higher acAvaAon to good compared to bad objects (Yamamoto 
et al., 2013). Our results extend these previous findings by implicaAng CDt in differenAaAon of 
faces based on good and bad moral values (Fig. 2,3 & suppl. Fig.4). Electrophysiological 
recordings and fMRI data from monkeys have shown several corAcal regions to be involved with 
object value memory including areas in temporal and prefrontal corAces (Ghazizadeh, Griggs, et 
al., 2018; Ghazizadeh, Hong, et al., 2018). While we did not find significant corAcal 
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representaAon of long-term value memory in those areas, we found some of them (vlPFC & STS, 
Fig. 4a, suppl. Table 2) funcAonally connected to the le\ caudate tail. We also note that the 
previously found corAcal acAvaAons were observed for over-trained objects (>10 days reward 
learning) while in our tasks the value of each faces were only encountered 2 Ames. 

Some recent EEG and fMRI studies have assigned social/moral values to faces independent of 
their physical aaributes. While (ClouJer & Gyurovski, 2014; Luo et al., 2019) have studied the fMRI 
BOLD changes during the training or value assignment phase and shown acAviAes in the 
ventromedial prefrontal cortex (vmPFC), middle occipital gyrus (mOG) and mOFC, (Singer et al., 
2004; Todorov et al., 2007) reported differenAal BOLD responses for valued faces compared 
with neutral faces in various regions including insula, fusiform gyrus and STS. Some EEG studies 
have also paired faces and morally-charged stories, and show an enhancement of the late 
posiAve potenAal (LPP, 400~600ms post-sAmulus) for the valued faces compared to neutral 
ones, as well as a weaker effect for the N170 and early posterior negaAvity (EPN, 250~350ms) 
components (Baum & Abdel Rahman, 2021b, 2021a; Schindler et al., 2021; Suess et al., 2015). None of 
these studies however, address neural mechanism for long-term storage of facial moral values. 
This is parAcularly important in the light of literature that shows a clear segregaAon of short- 
and long-term value memories for objects (Kim paper). Notably, recent studies on long-term 
memory of non-face object values in humans (Farmani Sepideh et al., n.d.; Kang et al., 2021) 
have shown value discriminaAon in ventral striatum and part of the caudate. The absence of 
acAvaAon in ventral striatum in our study could to be due to the difference in sAmuli type (the 
faces vs non-face objects) or to the form of value (money reward for objects vs moral values for 
faces). Further invesAgaAons are needed to check whether long-term value memory are 
encoded in different parts of the striatum based on the sAmulus and reward types. 

While the onset of face value ERP in center-frontal scalp EEGs and in caudate tail acAvaAon 
detected by EEG source reconstrucAon (~550ms, Fig. 2,3) seems compaAble with the onset of 
value-represenAng ERP signal in (R. Frömer et al., 2023) and the onset of  value-related LPP 
components  in (Baum & Abdel Rahman, 2021b; Schindler et al., 2021), it seems to be later than the 
onset of value signal in the  electrophysiological recordings from monkeys in the caudate tail (~ 
150ms) (Yamamoto et al., 2013). This could be due to difference in sAmuli used (fractals vs face) 
and the type and duraAon of value training in the two experiments if not the species 
differences. We also note that the value ERP also showed a smaller yet significant (p<0.001, but 
not corrected) value differenAaAon around 180ms in FC1 electrode.  

We also note that while both EEG-informed fMRI analysis and fMRI-informed EEG source 
localizaAon found CDt as the main substrate for encoding remembered good and bad faces, 
there is a mismatch in the exact locaAon of CDt in the two methods. This is mainly due to the 
limitaAons in EEG source localizaAon and its subcorAcal head model for the caudate which does 
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not include the CDt part immediately adjacent to the hippocampus. Nevertheless, the fMRI-
informed EEG source localizaAon sAll manages to find the most posterior part of CD in its model 
which is part of CDt, as the source of face value differenAaAon. Notably, this analysis finds no 
value encoding  neither in other subcorAcal areas (but some deacAvaAon in the hippocampus) 
nor in the corAcal areas despite their much shorter distance to the EEG electrodes consistent 
with lack of such acAvaAon in EEG-informed fMRI and the tradiAonal whole brain fMRI analyses. 

InteresAngly, we did not find any significant acAvaAon of face processing areas to moral values 
of faces seen a day before. The fusiform gyrus is previously shown to encode facial expressions 
to some degrees (Engell & Haxby, 2007; Winston et al., 2004). (Singer et al., 2004) assigned social 
value to faces through a prisoner’s dilemma game and also showed an increased acAvity in the 
fusiform gyrus for good faces compared to neutral ones, albeit shortly a\er the value 
assignment. This modulaAon is more likely to reflect an elevated salience for good faces rather 
than a coding of face value. Indeed, recent ERP analyses showed enhanced LPP component for 
both good and bad faces, indicaAng an effect of saliency for face values rather than a value 
coding (Baum & Abdel Rahman, 2021b; Schindler et al., 2021). Together, our findings and these 
results suggest that while value maybe encoded in caudate, salience of faces may engage a 
wider circuitry including the face processing areas.   

In summary, our results showed robust coding of face moral values in the CDt. FuncAonal 
connecAvity analysis showed this part of caudate to be connected to FFA, which can provide the 
face specific informaAon. Similar to other parts of striatum, CDt is a major target for 
dopaminergic (DA) neurons, in parAcular its posterior subpopulaAon that is known to 
differenAate objects based on their values (Kim et al., 2015). The exact mechanism by which this 
posterior basal ganglion circuitry work to differenAate faces based on their moral values in 
interacAon with other funcAonally connected corAcal and subcorAcal areas remains to be 
addressed. 

Materials & Methods: 

parAcipants: 

Twenty-one subjects (16 males, 5 females), aged between 21 and 40 years (mean=26.6 years, s.d.±5.3) 
parAcipated in the experiment. They were all healthy and right-handed and had normal or corrected-to-
normal vision. Wriaen informed consent was obtained in accordance with the School of CogniAve 
Sciences Ethics Commiaee at the InsAtute for research in fundamental sciences (IPM) in Tehran, ethics 
code: 99/60/1/6117 

SAmuli: 
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We used 24 arbitrary arAficial faces (13 males, 11 females) created by a deep neural network model, the 
StyleGAN2 (haps://thispersondoesnotexist.com) (Karras et al., 2019). Each face was randomly assigned 
to a brief unique biography with either a posiAve (good face) or a negaAve (bad face) moral value (see 
suppl. Table 1 for the list of all the stories). Assignment of stories to faces were random and the posiAve 
or negaAve values were swapped across subjects. 

Training session:  

The night before the experiment, the subjects watched a short (5 minutes) video (video 1 or 2) which 
introduced 24 faces with a brief biographical history about each face narrated in Persian (the subjects’ 
naAve language). Each history included a posiAve or a negaAve ethical value for the corresponding face 
on the screen (good and bad faces, Fig. 1a). The subjects passively watched the video two Ames, once at 
7pm and the second Ame at 9pm the night before the experiment. Each face was portrayed for 10s and 
the narraAon of history started with the emergence of the face. For a complete list of the histories 
translated to English, see suppl. Table 1. The memory session started about 10:00 AM the next day thus 
tesAng the long-term memory across a 13~14 hours Amespan. 

Memory session: 

During the memory session, the subjects were first equipped with an MRI-compaAble EEG cap and then 
laid on the MRI bed. They were also given two response handles to each hand to indicate their responses 
by pressing the buaons using their index fingers. The faces introduced in the training video were shown 
in a random order for each subject and he/she was instructed to indicate his/her judgement about the 
moral value of the presented face. Each trial started with a fixaAon cross for a random period between 1 
to 3.5 s. Then a face was portrayed for 2.5s and the subject passively watched it. A\er that, the face 
disappeared and two leaers of ‘G’ and ‘B’ (referring to “good” and “bad” respecAvely) were shown in the 
le\ and right sides of the midpoint of the screen for 2s, during which the subject had to indicate his/her 
response. The sides of the leaers ‘G’ and ‘B’ were randomly flipped in each trial. The subjects were 
instructed to answer for all faces even if they did not remember the story of the face or its exact value. 
Each face was shown only once during this test and the subjects performed only one run of this 
experiment. Subjects made a choice for almost all presented faces (99%). 

fMRI data acquisiAon: 

We acquired our fMRI data using a 3T ‘Siemens’ scanner in the “NaAonal Brain Mapping Laboratory, 
NBML” in Tehran. Specifically, we collected funcAonal Echo-Planar-Imaging (EPI) data using a 64-channel 
head coil with an anterior–posterior fold over direcAon (repeAAon Ame: 2.5 s; echo Ame: 30ms; number 
of slices: 42; number of voxels: 70×70; in-plane resoluAon: 3.543×3.543mm; slice thickness: 3.5mm; flip 
angle: 80o). Slices were collected in an interleaved order. Anatomical images were acquired using a 
MPRAGE T1-weighted sequence that yielded images with a 1×1×1mm resoluAon (176 slices; number of 
voxels: 256×256; repeAAon Ame: 2000ms; echo Ame: 3.47ms) as well as a T2 image with a 
0.9×0.475×0.475mm resoluAon (192 slices; number of voxels: 512×512; repeAAon Ame: 3200ms; echo 
Ame: 408ms). We also acquired field-map gradient images using a mulA-shot gradient echo sequence 
which was subsequently used to correct for distorAons in the EPI data due to B0 inhomogeneiAes (echo 
Ames: TE1=4.92ms, TE2= 7.38ms; isotropic resoluAon: 3.75mm; matrix: 64×64×38; repeAAon Ame: 
476ms; flip angle: 60o). 

fMRI pre-processing: 
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We discarded the first three volumes from each fMRI run (due to magneAzaAon arAfact). We performed 
the pre-processing steps using FSL. These steps include moAon-correcAon, field-map correcAon, slice-
Ame correcAon, high-pass filtering (>100 s) and spaAal smoothing to 5mm. The EPI images of each 
subject were first registered to his/her structural image using the BBR algorithm. RegistraAon of 
structural images to the MNI brain was performed using the nonlinear method with a 10 mm warp 
resoluAon.  

Power analysis: 

We conducted a power analysis based on GLM1 of the first 7 subjects and using the GPower so\ware 
with parameters: two-sided t-test, alfa=0.05 and power=0.85 which resulted in a minimum number of 14 
subjects. 

fMRI GLM Analysis: 

We used FSL to run the GLM analyses. We used the pre-whitening opAon and the 3-column or 1-column 
format for regressor specificaAon. In parAcular, each of the four main regressors was built as boxcars 
over the corresponding Ame intervals. For example, the “correct good” regressor was equal to 1 during 
all the 2.5s exposures to the good faces that were correctly remembered as good. The two confounding 
regressors for hand responses were built as sAck funcAons (100ms wide and amplitude equal to 1) at 
100ms before the response Ame (accounAng for motor delay), for subjects with accurately saved 
response Ames (7 subjects). For the rest of the subjects, the reacAon Ames were not saved. For these 
subjects we used the average reacAon Ame of those seven subjects and placed 600ms wide boxcars 
(with 1/6 height) centered at the average reacAon Ame. The 600ms was chosen as twice the standard 
deviaAon (std) of the saved reacAon Ames (300ms). Note that the subjects had to answer within Ame 
slots of 2s which was smaller than one fMRI repeAAon Ame. Then, we convolved all these regressors 
with the canonical hemodynamic response funcAon (HRF) to be used in the GLM analysis. We also used 
a ventricle mask (in the naAve space of each subject) to extract the non-neuronal Ame-series of the 
BOLD signal inside the ventricles and used the resulAng signal as a confound regressor. In our second 
GLM analysis (EEG-informed fMRI) we also calculated the average of electric potenAals on the electrodes 
C1 and FC1, and then its instantaneous power. We used the EEG power in intervals 0.5 to 1.5s post-
sAmulus and set the signal outside these intervals equal to zero. ConvoluAon of the resulAng signal with 
HRF, gave us our EEG-driven regressor. In parAcular, the GLM model was: 

                                                                                                                                             (1) 

where, Y is the Ame series of the preprocessed and demeaned BOLD response of a single voxel for T Ame 
samples, X is a  design matrix with rows represenAng n regressors (here, n=7: 4 main +3 
confounding for our ordinary GLM, and n=8 for our EEG-informed fMRI analysis),  is a  vector 
containing the regression weights for each regressor for this parAcular voxel and  is the  residual 
of this regression. The resulAng regression coefficients (beta maps) were finally normalized by the 
temporal mean of subject’s EPI images. 

fMRI group-level Analysis and staAsAcal tests: 

We performed the group-level and staAsAcal analyses using funcAons from AFNI 20.2.05. For group-level 
analysis, we used the funcAon “3daest++”. The group-level acAvaAon maps were then masked by the 
grey maaer mask associated with the standard MNI brain with a resoluAon of 2mm. By applying 
3dFWHMx on these group-level residuals, we esAmated the parameters for the non-Gaussian spaAal 
autocorrelaAon funcAon of the fMRI noise. 3dClustSim was used to calculate the cluster thresholds for 

y = βX + r

n × T
β 1 × n

r 1 × T
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various p-values such that the probability of a false posiAve cluster among the p-thresholded clusters 
was less than α=0.05. StaAsAcal correcAons for subcorAcal sources were calculated using a subcorAcal 
gray maaer mask, due to their intrinsic smaller sizes. The inflated surfaces for visualizaAon of fMRI 
results are presented using SUMA 20.2.05. 

EEG data acquisiAon: 

EEG data was acquired at a 5-kHz sampling rate at the same Ame as the fMRI data collecAon, using an 
MR-compaAble EEG amplifier system (BrainAmps MR-Plus, Brain Products, Germany) and the Brain 
Vision Recorder so\ware (BVR; Version 1.10, Brain Products, Germany). Data were filtered online with a 
hardware band-pass filter of 0.1 to 250Hz. The EEG cap included 65 Ag/AgCl scalp electrodes which were 
localized according to the internaAonal 10–20 system. The AFz and FCz electrodes were chosen as the 
ground and reference electrodes, respecAvely. All electrodes had in-line 10k surface-mount resistors to 
ensure subject safety. All leads were bundled together and twisted for their enAre length to minimize 
inducAve pick-up and ensure parAcipants’ safety. Input impedances were kept below 20k (including the 
10k surface-mount resistors). EEG data acquisiAon was synchronized with the fMRI data (Syncbox, Brain 
Products, Germany) and triggers from the MR-scanner were collected separately to remove MR gradient 
artefacts offline.  

Recording the EEG electrode coordinates: 

We captured the EEG electrode coordinates registered to the subjects T1-image using ‘Localite’ TMS 
navigator just a\er when subject came out of the MRI scanner. 

EEG pre-processing: 

We performed EEG-preprocessing using the EEGLAB toolbox in MATLAB. MRI gradient noise was 
removed via the FMRIB’s “FASTER” plug-in for EEGLAB. A\er down-sampling the resulAng signal to 1000 
Hz, the signal was bandpass filtered between 0.5Hz to 40 Hz. Then, we detected the QRS events from the 
ECG signal and removed the ballistocardiogram (BCG) arAfact using the FMRIB plug-in for EEGLAB. 
Subsequently, we detected the high noise secAons or channels in the data by visual inspecAon and put 
them equal to zero and then, used ICA decomposiAon in order to remove the eye-moAon arAfacts, the 
residual of BCG and other non-brain sources. Finally, we interpolated high noise secAons or channels (if 
any) and re-referenced the EEG signals to the common average so that we could recover the signal at 
FCz.  For Event-Related-PotenAals (ERPs) we also subtracted the average of the signal over the baseline 
period (250 ms before sAmulus). Four subjects (out of the whole 21 subjects) were excluded from 
further EEG analyses due to their severe residual MRI gradient noise. One subject was also excluded due 
to not showing meaningful visual ERPs. The group-average of the ERPs in electrode O1 (suppl. Fig. 1) 
showed a strong visual ERP with clear P200 and P300 components, ensuring a suitable removal of MRI 
gradient noise from the EEG signals. 

EEG source reconstrucAon: 

We used “Brainstorm” toolbox in MATLAB for EEG source localizaAon. We conducted the MRI 
segmentaAons based on both structural T1 and T2 MRI images of each subject using “FreeSurfer” 
program and generated the boundary element model (BEM) based on these segmentaAons. We used 
the simple BEM model to register the scalp potenAals to the standard MNI scalp (described further in 
detail). 
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To localize the sources of the value ERP, we needed to consider the subcorAcal areas in our forward 
model as well, since the fMRI analysis had shown the caudate nucleus to encode the value memory of 
the faces. In order to get more accurate localizaAon results, we used a “mixed” head model offered by 
Brainstorm. Mixed models do not place dipoles in the white maaer and assume dipoles on the cortex 
surface to be perpendicular to it, but let subcorAcal dipoles to have unknown direcAons. We avoided 
using a finite-element model (FEM) due to the very large number of unknown variables considered for 
the inverse problem in this model, which can severely degrade the results of the ill-posed source 
reconstrucAon problem. In the “mixed” forward model offered by Brainstorm, a constrained BEM model 
for the cortex (one dipole at each grid, perpendicular to the cortex) is combined with an unconstrained 
model for subcorAcal grey maaer regions (three orthogonal dipoles at each subcorAcal grid). Some 
subcorAcal regions (e.g. hippocampus) also have known dipole direcAons which are considered in this 
mixed model.  

The Ame-series of neuronal acAviAes were reconstructed using weighted minimum norm esAmaAon 
(wMNE), and the “automaAc shrinkage” method for noise covariance matrix regularizaAon. We 
esAmated the noise covariance matrix based on the rest periods of the experiment.  

In order to boost the signal-to-noise raAo of the esAmated source Ame series and prepare them for the 
group-level analysis, we divided the ERP Ame course (+ its baseline) into 55 Ame-bins of 50 ms and 
conducted the temporal mean of each source over each Ame bin. Then we z-scored all source Ame 
series by subtracAng the baseline mean and dividing by baseline std (for the subcorAcal sources, division 
by the norm of the 3D acAviAes). In order to figure out a single acAvaAon magnitude for subcorAcal 
sources, we computed the principle component of the associated three Ame-vectors at each grid point, 
which revealed the main dipole direcAons but for a sign ambiguity. 

Cluster-correcAon for EEG sources: 

In order to address the mulAple-comparison problem for the detected EEG sources, we conducted 
cluster thresholds similar to that used for fMRI results. Specifically, we mapped the baseline acAviAes of 
the EEG sources to the MRI voxels including them and then used the 3dFWHMx funcAon to esAmate the 
spaAal autocorrelaAon parameters of the noise data. Then we used 3dClustSim funcAon to calculate the 
cluster thresholds so that the false posiAve rate was kept below 5%.  We did this paradigm separately for 
the corAcal and subcorAcal sources. We restricted these calculaAons to a caudate mask for the detected 
acAvity in the CDt. The equivalent volume for the subcorAcal threshold was simply calculated using 
Brainstorm GUI. For the corAcal surface sources, the equivalent area of the threshold was conducted and 
the number of verAces building this area was to be esAmated again using Brainstorm GUI. Due to non-
homogeneous parcellaAon of the cortex surface we selected the maximum vertex cluster size building up 
the same thresholding area. 

CalculaAon of the group-average ERPs: 

Given the variaAons in the subjects’ head size and shape as well as some possible and unavoidable 
variaAons in EEG cap placement on individual subjects’ heads, it would be beaer to map the EEG 
topographies and ERPs on a common standard head in order to compute a more precise group average 
of them. This implies the access to the exact posiAon of the EEG electrodes for each subject. We had 
recorded these exact electrode coordinates for each subject, in order to conduct a more precise lead-
field matrix. Therefore, we used this informaAon to map single-subject ERPs to a standard scalp. 
Specifically, we first mapped ERPs to brain sources in the naAve space and then mapped them to the 
standard MNI brain and finally mapped these acAviAes back to the surface potenAals on the MNI scalp. 
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Since we used a linear inverse soluAon, the overall end-to-end mapping of ERPs to the standard head is a 
linear mapping and hence, it is completely reversible. The resultant potenAals were then normalized by 
the overall norm of channels’ baselines acAviAes for each subject, before averaging. Also note that we 
used this mapping and normalizaAon only to conduct the average of value ERPs across subjects, while 
raw EEG signals and raw ERPs were used in the subject-level “EEG-informed fMRI GLM” and “EEG source 
reconstrucAon” analyses respecAvely.  

EvaluaAon of the proposed method for mapping subject ERPs on a standard scalp: 

As menAoned above, the proposed method is a linear reversible interpolaAon method for mapping the 
subject ERPs over another (standard) scalp. The main concern is to preserve the overall scalp topography 
and thus, some probable errors in the source reconstrucAon are not important unless they affect the 
scalp topography. Such a localizaAon error does not result in any changes to the scalp topography in the 
naAve space (note the under-determinacy of the localizaAon problem) and hence it belongs to the null-
space of the naAve lead-field matrix. The intuiAon is that these errors would also result in negligible 
deflecAons in scalp topographies on the standard scalp, given the high correlaAons between the rows of 
the naAve lead-field matrix and the lead-field matrix for a standard brain. In order to quanAfy our 
intuiAon, we ran simulaAons by assigning neuronal dipoles with random magnitudes according to a 
normal distribuAon. Then we reconstructed the sources based on MNE method, mapped them to the 
MNI brain and consequently over the MNI scalp and then conducted the correlaAons between the EEG 
signals (topographies) in the naAve and standard spaces. We repeated these simulaAons 1000 Ames. The 
resulted histogram of these correlaAons indicates that this correlaAon was greater than 0.5 and of 
course it was o\en about 0.9 (suppl. Fig 8a).   

For the real EEG, our method has an extra added value of denoising the scalp topographies. Using a 
noise covariance matrix weighAng method inside the wMNE soluAon, the effects of noisy channels are 
highly alleviated. We also note that in tackling with real data, the EEG noise covariance matrices (or 
simply the set of noisy channels) differ among subjects, and hence this is an added value of our mapping 
method. In order to evaluate the performance of this method on real data, we took a visual ERP of the 
subject, parAAoned it to intervals of 50ms and conducted the Ame-average over each interval. We then 
conducted the correlaAons between the denoised EEG topography in the naAve space and that mapped 
over the standard scalp. Similar to the syntheAc data, the correlaAons between the denoised EEG in the 
naAve and standard spaces were high and o\en about 0.9 (suppl. Fig 8b).   

FFA Localizer task: 

In a separate experimental run, the subjects passively watched blocks of four image types: general 
objects, the scrambled version of the same objects, human faces (other than those introduced in the 
training video) and the scrambled versions of the same faces, being repeated in three periods (suppl. Fig. 
7a). Each block lasted for 12.5s and contained images of 10 different random samples of that category 
chosen from a source of 100 images. Each sample image was portrayed for 1s, followed by a 250ms 
inter-sAmulus-interval. We analysed the BOLD signals using a GLM with four regressors, one for each 
category. The fusiform face area was localized for each subject by thresholding the “face vs scrambled 
face” contrast with p-value < 10-5. The group average of this contrast showed acAviAes in the FFA and 
OFA (suppl. Fig. 7b, p-value < 10-4, cluster-corrected). 

The funcAonal connecAvity analysis: 

We used the residuals from our first GLM (the EEG-informed fMRI) analysis as an esAmate of the non-
modulated brain acAvity. We used the detected CDt cluster in GLM1 (Fig. 2c) as the correlaAon seed. We 
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used the same FSL and AFNI funcAons for GLM and group-level analyses as those used for other fMRI 
analyses in this paper. 

Code Accessibility: 

The AFNI codes used for fMRI analyses as well as MATLAB codes used for EEG analyses are available at: 
haps://github.com/AliAtaei1/face-value  
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Table 1: ac?vated clusters. Sizes, coordinates and cluster-correcAon thresholds for the acAvated clusters. 
CM: Center of Mass 

cluster 
size 
(vox-
els)

CM x CM y CM z peak x peak y peak z cluster 
threshold for 
p=0.01 (vox-
els)corr. good -corr. Bad 

(GLM2):
66

L caudate tail 86 29.3 38.3 -1.2 32 38 -4

EEG-driven regressor 
(GLM1):

54

L caudate tail 55 29.8 27.5 -6.1 28 26 -4

EEG-driven regressor 
(GLM3):

56

L caudate tail 129 29.5 28.7 -8.8 22 26 -10

 

correct - incorrect: 74

L angular gyrus 296 47.7 59.5 35.1 46 56 34

L superior frontal gyrus 151 18.7 -27.8 52.2 18 -28 58

L medial temporal gyrus 75 64 25.9 -7.3 62 26 -8

right hand - le\ hand 80

R motor cortex 1393 -37.8 25 56.1 -52 16 56

L cerebellum 655 17.5 52.7 -21 26 50 -22
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