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Abstract: 

Moral judgements about people based on their actions is a key component that guides social 
decision making. It is currently unknown how positive or negative moral judgments associated 
with a person’s face are processed and stored in the brain for a long time. Here, we investigate 
the long-term memory of moral values associated with human faces using simultaneous EEG-
fMRI data acquisition. Results show that only a few exposures to morally charged stories of 
people are enough to form long-term memories a day later for a relatively large number of new 
faces. Event related potentials (ERPs) showed a significant differentiation of remembered good 
vs bad faces over centerofrontal electrode sites (value ERP). EEG-informed fMRI analysis 
revealed a subcortical cluster centered on the left caudate tail (CDt) as a correlate of the face 
value ERP. Importantly neither this analysis nor a conventional whole brain analysis revealed any 
significant coding of face values in cortical areas, in particular the fusiform face area (FFA). 
Conversely an fMRI-informed EEG source localization using accurate subject-specific EEG head 
models also revealed activation in the left caudate tail.  Nevertheless, the detected caudate tail 
region was found to be functionally connected to the FFA, suggesting FFA to be the source of 
face-specific information to CDt. These results identify CDt as a main site for encoding the long-
term value memories of faces in humans suggesting that moral value of faces activates the 
same subcortical basal ganglia circuitry involved in processing reward value memory for objects 
in primates.  

Introduction: 

Our past experiences with people whether good or bad affect our future interactions with them 
and guide our social decision making. In particular, moral judgement about people based on 
their actions is a key component in our evaluation of an individual (Cornwell & Higgins, 2019; Jiang 
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et al., 2022)(Greene, 2009). It is currently unknown how positive or negative moral judgments 
associated with a person’s face are processed and stored in the brain in long-term memory. 

Human brain has specialized face processing areas in the temporal cortex including the occipital 
face area (OFA), superior temporal sulcus (STS) and the fusiform face area (FFA) (Duchaine & 
Yovel, 2015; Kanwisher & Yovel, 2006). Several studies have examined the coding of various aspects 
of faces based on their intrinsic visual features such as emotional expressions (Engell & Haxby, 
2007; Winston et al., 2004), attractiveness (Cloutier et al., 2008; Kranz & Ishai, 2006; O’Doherty et al., 
2003; Said et al., 2011; Winston et al., 2007)  trustworthiness (Engell et al., 2007; Winston et al., 
2002) or social value (Oosterhof & Todorov, 2008; Todorov et al., 2011) in the human brain with 
somewhat divergent results.  A review and meta-analysis of these findings suggests consistent 
activations for negative evaluations in the amygdala, and for positive evaluations in the medial 
orbitofrontal cortex (mOFC), anterior cingulate cortex (ACC), caudate nucleus and the nucleus 
accumbens (NAcc) (Mende-Siedlecki et al., 2013).  

The value circuitry for objects in general is extensively studied in both humans and non-human 
primates with key cortical and subcortical areas such as orbitofrontal cortex (OFC), insula, ACC, 
basal ganglia, amygdala and midbrain dopaminergic areas being activated during object reward 
association tasks (Berridge & Kringelbach, 2008; Kim et al., 2014; Morrison & Salzman, 2010; Padoa-
Schioppa & Assad, 2006; Rushworth & Behrens, 2008; Schultz, 2007) . Value memory is also shown to 
activate a temporal-prefrontal circuitry along with its functionally connected subcortical areas, 
in particular, the caudate nucleus, amygdala and claustrum (Ghazizadeh, Griggs, et al., 2018; 
Ghazizadeh, Hong, et al., 2018; Ghazizadeh & Hikosaka, 2021; Kang et al., 2021; Kim & Hikosaka, 2013; 
Yasuda et al., 2012). Interestingly, these studies have illuminated some different aspects of the 
short and long-term value memories. Specifically, it is shown that while the head of caudate 
nucleus exclusively represents the flexible and short-term memory of object values, the tail of 
caudate nucleus exclusively represents the stable and long-term memory of object values in 
monkeys (Kim et al., 2014). Replication of the same experimental task on humans using fMRI 
(Farmani Sepideh et al., n.d.; Kang et al., 2021) has revealed activities in the ventral striatum, 
caudate body and hypothalamus. While there are some recent studies that have looked at 
short-term effects of value assignment to faces using EEG or fMRI (Baum & Abdel Rahman, 2021b, 
2021a; Cloutier & Gyurovski, 2014; Luo et al., 2019; Schindler et al., 2021; Singer et al., 2004; Suess et 
al., 2015; Todorov et al., 2007), it is not known how long-term memory of associated value with 
faces engages this circuitry and whether it can change even the primary face processing in areas 
such as FFA. 

To address this question, we randomly assigned positive or negative values based on morally 
charged biographical stories to novel faces and then examined the brain activations to these 
faces a day later using a simultaneous EEG-fMRI paradigm which involved a binary choice for 
face values. The value ERP showed a significant differentiation of the correctly identified good 
and bad faces over center-frontal electrodes, peaking at about 600ms post-stimulus and lasting 
until almost the end of face presentation. This ERP is shown to originate from the left caudate 
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tail, based on results from both EEG-informed fMRI analysis and fMRI-informed EEG source 
localization. Interestingly, while none of the cortical face processing areas were found to encode 
the moral values of faces, some were found to be functionally connected to the detected value-
coding caudate tail region.  

Results: 

To create value memory for faces, we used 24 arbitrary artificial faces created by StyleGAN2 
(Karras et al., 2019) . Each face was randomly associated with a brief unique biography with 
either a positive (good faces) or a negative (bad faces) moral value (see supplementary table 1 
for a list of all stories). In the value training session (Fig. 1a), subjects viewed each face while 
listening to its short story. Each face was viewed for 10 sec within a block of 24 faces and the 
process was repeated 2 times, 2 hours apart. The assignment of biographies to the faces were 
swapped across so that each face was associated with positive values for half of the subjects 
and with negative values for the other half.  

One day later, we tested the face value memory of subjects in the MRI scanner being 
simultaneously equipped with an MRI-compatible EEG cap (value memory session). During the 
experimental task, each face was portrayed for 2.5s (Fig. 1b). Then, a black screen was shown 
with two letters of “G” and “B” (referring to “Good” and “Bad”, respectively) on the left or right 
visual hemifield for 2s, during which the subject had to indicate his/her response by pressing a 
response button using the corresponding hand. The location of letters “G” and “B” were 
randomly flipped in each trial. The subjects were instructed to answer all trials based on their 
closest guess, even if they did not remember an explicit history about a face. The subjects’ 
accuracy in identifying face types was 78% on average, which is significantly higher than the 
chance level. The subjects’ accuracies for each specific category were also significantly high (Fig. 
1c; t-test, p < 1e-6 & p < 1e-8, for bad and good faces respectively). This suggests that a brief 
exposure to a large number of new people (24 new faces) and their moral stories creates a 
lasting memory that is accessible a day later. Nevertheless, the performance for the good faces 
was significantly higher than that for bad ones by about 12% (Fig. 1c; paired t-test, p = 0.004). To 
ensure that there was no systematic bias for some faces to be remembered as good or bad, we 
looked at the percentage of times a certain face was chosen as good or bad across subjects 
(including additional subjects outside the EEG-fMRI experiment, n= 34). Results showed that 
among the 24 faces used, only 2 showed significant bias to be chosen as good (Suppl. Table 3).  
We conducted our subsequent analysis both by inclusion and exclusion of these 2 faces, which 
did not change any of our main findings as will be discussed. 
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Figure 1: Subjects’ training procedure, memory task and behavioral results. a) Value training video: In 
this video, 24 novel faces were associated with short biographical stories, each conveying a positive or 
negative moral value about the presented face (good or bad faces, see suppl. Table 1 for the list of 
morally-charged stories). b) Memory task: faces seen the day before were shown in a random sequence 
for each subject. Each face was shown for 2.5s. Then, a black screen was shown with two letters of “G” 
and “B” (referring to “good” and “bad”, respectively) for 2s during which, the subject had to indicate his/
her response by pressing the appropriate button. The sides of letters “G” and “B” were randomly flipped 
in each trial. Then, an inter-stimulus-interval (a black screen with a red fixation cross at center) followed 
for a random time period between 1 to 3.5s. c) Behavioral result: The performance of subjects in judging 
face values, along with the chance level (=50%, dashed line) is shown. Individual subject data points are 
shown. Error bars indicate standard errors. 

Robust differentiation of remembered good and bad faces over center-frontal electrodes 

To study the differential neuronal activity during remembered good and bad faces, event-
related potentials (ERPs) for each category, separately were calculated. In order to create a 
more precise group average, the EEG signals for each subject were normalized and transferred 
to the standard cap situated over the standard brain (see methods for details). The ERPs for 
both good and bad faces in electrode P8, showed significant negativities around 230ms post 
stimulus (lasting from about 190ms to 250ms, suppl. Fig. 2 a,b; one-sided t-test against baseline; 
p-value < 0.05, FDR-corrected) consistent with previously reported N170 and early posterior 
negativity (EPN) components (Baum & Abdel Rahman, 2021b; Schindler et al., 2021). The normalized 
z-scored ERPs for the remembered good and bad faces, as well as their difference (the value 
ERP) showed a robust differentiation between good and bad faces over a large portion of the 
2.5s stimulus presentation on center-frontal channels such as C1 and FC1 (Fig. 2a; one-sided t-
test against baseline; p-value ≤0.05, Bonferroni corrected over channels and time). This value 
dissociation is more strongly evident in the interval of 0.5 to 1.5s post-stimulus ( raw non-
normalized ERPs showed a similar value differentiation with a similar time course, suppl. Fig. 
2c). 
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Figure 2: Value ERP & the EEG-informed fMRI analysis. a) The group-average ERPs for the memorized 
good and bad faces and their difference (value ERP) in electrode FC1 along with the associated group-
average scalp potential topographies at some sample time points. Parts of the value ERP that are 
significantly different from its baseline are shown with bolded black segments (p-value < 0.05, 
Bonferroni-corrected over channels and time), b) The average of electric potentials in center-frontal 
electrodes over the significant interval (0.5-1.5s post-stimulus) is considered as the EEG-driven value 
signal. This signal is then squared and consequently convolved with the canonical HRF to build our EEG-
driven regressor.  c) EEG-informed fMRI analysis: the group-average of the beta coefficients for the EEG-
driven regressor shows significant activation in a cluster centered on the left caudate tail (p-value < 0.01, 
cluster-corrected). 

EEG-informed fMRI analysis reveals caudate tail as the origin of the value ERP 

We next performed an EEG-informed fMRI analysis. Based on the time course of value ERP, we 
used the average EEG signal over C1 and FC1 in the interval from 0.5s to 1.5s post-stimulus as 
our EEG-driven regressor in the fMRI GLM model (Fig.2b, see methods). We have previously 
shown that since the BOLD signal measures the energy consumption in the brain, the square (or 
power 2) of the EEG signals is the optimal regressor of the BOLD responses (Ataei et al., 2022). 
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Thus, to localize the source(s) of EEG signals in the center-frontal electrodes, its square was 
used as the trial by trial correlate of face value signal in the brain (Fig.2b). 

Other regressors in the model included correct answer to good faces, “correct good”, correct 
answer to bad faces, “correct bad”, incorrect answer to good faces, “incorrect good” and 
incorrect answer to bad faces, “incorrect bad”. In case of no incorrect answer to a certain 
category, the associated regressor was omitted for that subject. Moreover, to account for the 
effect of subject’s motor action during his/her button press response, we also added two 
confounding regressors, one for each hand. Finally, the average BOLD signal inside the ventricles 
was used as another nuisance regressor to ensure that responses in structures near the 
ventricles are not affected by such nonneural extraneous signals (GLM1, see materials & 
methods for details of the regressor design). As a control analysis, the right versus left hand 
contrast showed significant activation in the contralateral and deactivation in the ipsilateral 
motor cortices (suppl. Fig. 3a, p-value < 0.01, cluster-corrected). Moreover, activation of the 
ipsilateral and deactivation of the contralateral cerebellar cortices were also observable (suppl. 
Fig. 3b, p-value < 0.01, cluster-corrected), consistent with existing literature (Thickbroom et al., 
2003). 

The BOLD correlate of the EEG-driven regressor showed significant activation only in a 
subcortical cluster centered on the left caudate tail (CDt) (Fig. 2c, p-value < 0.01, cluster-
corrected). Notably, the contrast of correct good vs. correct bad (the value contrast) did not 
reveal any significant activation in the brain suggesting that the source of observed EEG 
responses in the center-frontal electrodes were most likely limited to CDt and that this activity 
was well captured by the EEG power of center-frontal electrodes in each trial. This is expected 
since a correct model of statistical dependence among variables predicts that given the EEG 
signal originating from value contrast, BOLD should become independent of value contrast itself 
(suppl. Fig. 4a). 

To ensure that CDt is indeed activated by the value contrast, we repeated our GLM analysis 
without an EEG-driven regressor (GLM2). As expected, in this case correct good vs. correct bad 
contrast showed significant activation in the left CDt (suppl. Fig.3b). We note however that the 
extent of activation in this case was broader (including parts of the posterior hippocampus, 
table 1) compared to the more localized CDt activation seen in the EEG-informed analysis 
attesting to the advantage of simultaneous EEG-fMRI paradigm used in this study. Importantly, 
we observed no other significant subcortical or cortical value differentiations in either GLM1 or 
GLM2, suggesting a special role for CDt in representing long-term memory of moral value of 
faces. Repeating the analysis by excluding the two faces that had a choice bias across subjects 
did not change our results confirming the activations found in the left caudate tail. (suppl. Fig. 5, 
p-value < 0.01, cluster-corrected). 

fMRI-informed EEG source localization confirms left CDt as the origin of the value ERP 
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While the spatial resolution of EEG is low, the resolution of its localized sources is highly 
sensitive to the implemented head model and the method used to solve the inverse problem 
(Michel & Brunet, 2019; Michel & He, 2019). Conversely one may use fMRI-informed EEG source 
localization to find sources of neural activity of interest. Here we tried this approach by 
performing a source localization for each subject using a “mixed” forward model (assuming 
cortical dipoles perpendicular to the cortex surface and subcortical ones with unknown 
directions, see methods for details) conducted based on subject-specific MRI images. In our 
mixed model, we included all the neocortex, but selected subcortical structures based on fMRI 
results, to allow the low-SNR1 subcortical sources to be detected more robustly. Specifically, we 
included the caudate and hippocampus as they were found in the whole brain fMRI analysis 
(GLM2). We also included amygdala both as a subcortical benchmark and for its well-known role 
in value coding (Wassum & Izquierdo, 2015).  Notably, the group average of the EEG sources 
revealed significant activity in the left caudate tail and deactivation of the left anterior 
hippocampus (Fig. 3a; p ≤ 0.001, duration ≥ 150ms & cluster > 3 dipoles). Interestingly such 
deactivation of anterior hippocampus can be seen in whole brain fMRI analysis (GLM2) as well if 
no cluster correction is used.  (suppl. Fig. 6b). No significant activity was found in cortical areas 
(p ≤ 0.001, duration ≥ 150ms & cluster > 7 dipoles) or in amygdala (duration ≥ 150ms & cluster > 
3 dipoles). The time course of activity in the left caudate tail (Fig. 3b) shows the emergence of 
value memory at about 550ms after face presentation, roughly consistent with the onset of the 
value ERP seen in center-frontal electrodes (Fig. 2a). Also note that the sign of activities for the 
subcortical regions with unknown dipole directions is ambiguous (see methods for more 
details).  
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Figure 3: EEG sources of the value ERP. a) The t-stat maps for the group average of the sources of value 
ERP, against their baseline activities (two-sided t-test; p-value < 0.001, duration > 150ms, cluster > 3 
dipoles). Note that subcortical regions with unknown dipole directions (caudate & amygdala) are shown 
as masses of their grid points along with the opposite-side hemispheres. This map shows activation of 
the left caudate tail and deactivation of anterior hippocampus (note the ambiguity in the sign of dipole 
activities in caudate). b) The group-average time course of the activity in the caudate tail (normalized 
magnitude) along with standard error margins indicating group diversity around the mean. 

 

Functional connectivity between CDt and FFA 

How does CDt receive the specific information of each face? To address this question, we 
performed a functional connectivity analysis (based on GLM1 residuals) to find the probable 
cortical or subcortical sources of this face-specific information, by selecting the detected left CDt 
in GLM1 (Fig. 3b) as the correlation seed (see methods for details). Multiple regions in the 
temporal and frontal cortex were found to be functionally connected to the left CDt (Fig. 4a: p-
value < 0.001, cluster-corrected, suppl. Table 2). Interestingly, face processing areas in the 
inferior temporal cortex were among the functionally connected regions. In particular, the 
anterior part of the left fusiform gyrus (FFA) found at the group-level by the face localizer scans 
performed for each subject (faces vs. scrambled faces), overlapped with the functionally 
connected areas to CDt (Fig. 4a; p-value<0.001, cluster-corrected, see methods & suppl. Fig. 7). 
Despite this overlap, FFA itself does not show a significant differentiation between remembered 
good and bad faces (GLM2, Fig.4b), suggesting that while face-specific information can be 
supplied to CDt by FFA, it is the CDt which does the moral value-based face discrimination. 

 

Figure 4: Functionally connected regions to the left CDt overlap with FFA. a) functional connectivity 
map for the left caudate tail on the left hemisphere: the group-average of the correlation coefficients (p-
value < 0.001, cluster-corrected). Contours of cortical face-selective areas (using a separate face localizer 
scan for each subject) are marked. b) The beta values for correct good, correct bad and incorrect 
answers in the right fusiform gyrus (averaged over cluster and subjects), compared in bar plots. See 
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Suppl. Fig. 7 for more details about the additional localizer task used to localize the FFA region for each 
subject separately. 

Discussion: 

Our social interactions are highly affected by our judgements about a person’s integrity. In many 
situations one or two encounters with events that show ethical or unethical behavior of a 
person, is enough for us to form lasting positive or negative memories of that individual. Yet, 
the neural mechanism of such a robust phenomenon was not previously addressed. Here, we 
investigated the neural encoding of long-term memory of moral values associated with human 
faces using simultaneous EEG-fMRI data acquisition to reveal both spatial and temporal 
dynamics of brain activations. First, our behavioral results confirmed that only a few exposures 
to morally charged stories of people are adequate for forming long-term memories a day later 
(Fig. 1). There was significant differentiation of the memorized good vs bad face ERPs over 
center-frontal electrodes lasting during the face presentation (value ERP). EEG-informed fMRI 
analysis using the power of EEG signal over the center-frontal electrodes revealed a significant 
activity centered on the left CDt (Fig 2). Conversely, fMRI-informed EEG source reconstruction 
localized sources of “value ERP” in CDt with an onset time of about 550ms (Fig. 3). Notably, EEG-
informed fMRI analysis and fMRI-informed EEG source localization as well as traditional whole 
brain fMRI analysis did not show any significant differentiation of remembered good and bad 
faces in any cortical areas including the face processing regions (Table 1). Nevertheless, 
functional connectivity analysis revealed a connection between CDt and anterior FFA which 
presumably can be the source of face specific information to this part of the caudate (Fig. 4). 
The subjects had a higher performance in detecting good faces compared with bad ones. While 
a bias toward the positive value in some subjects could probably be a partial reason for this 
observation, this does not alter our findings since they rely only on the correctly chosen values 
for good and bad faces. Furthermore, the subjects’ response statistics for each face also 
confirmed that there was no value bias in most of the faces and exclusion of the few biased 
faces did not change our results (suppl. Fig. 5).   

Caudate and in particular its tail region was previously shown to be a key node for encoding 
long-term value memories of objects in general, in non-human primates (Kim & Hikosaka, 2013; 
Yamamoto et al., 2013) and in humans (Farmani Sepideh et al., n.d.). Single-unit recordings from 
monkey caudate tail has showed higher activation to good compared to bad objects (Yamamoto 
et al., 2013). Our results extend these previous findings by implicating CDt in differentiation of 
faces based on good and bad moral values (Fig. 2,3 & suppl. Fig.4). Electrophysiological 
recordings and fMRI data from monkeys have shown several cortical regions to be involved with 
object value memory including areas in temporal and prefrontal cortices (Ghazizadeh, Griggs, et 
al., 2018; Ghazizadeh, Hong, et al., 2018). While we did not find significant cortical 
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representation of long-term value memory in those areas, we found some of them (vlPFC & STS, 
Fig. 4a, suppl. Table 2) functionally connected to the left caudate tail. We also note that the 
previously found cortical activations were observed for over-trained objects (>10 days reward 
learning) while in our tasks the value of each faces were only encountered 2 times. 

Some recent EEG and fMRI studies have assigned social/moral values to faces independent of 
their physical attributes. While (Cloutier & Gyurovski, 2014; Luo et al., 2019) have studied the fMRI 
BOLD changes during the training or value assignment phase and shown activities in the 
ventromedial prefrontal cortex (vmPFC), middle occipital gyrus (mOG) and mOFC, (Singer et al., 
2004; Todorov et al., 2007) reported differential BOLD responses for valued faces compared 
with neutral faces in various regions including insula, fusiform gyrus and STS. Some EEG studies 
have also paired faces and morally-charged stories, and show an enhancement of the late 
positive potential (LPP, 400~600ms post-stimulus) for the valued faces compared to neutral 
ones, as well as a weaker effect for the N170 and early posterior negativity (EPN, 250~350ms) 
components (Baum & Abdel Rahman, 2021b, 2021a; Schindler et al., 2021; Suess et al., 2015). None of 
these studies however, address neural mechanism for long-term storage of facial moral values. 
This is particularly important in the light of literature that shows a clear segregation of short- 
and long-term value memories for objects (Kim paper). Notably, recent studies on long-term 
memory of non-face object values in humans (Farmani Sepideh et al., n.d.; Kang et al., 2021) 
have shown value discrimination in ventral striatum and part of the caudate. The absence of 
activation in ventral striatum in our study could to be due to the difference in stimuli type (the 
faces vs non-face objects) or to the form of value (money reward for objects vs moral values for 
faces). Further investigations are needed to check whether long-term value memory are 
encoded in different parts of the striatum based on the stimulus and reward types. 

While the onset of face value ERP in center-frontal scalp EEGs and in caudate tail activation 
detected by EEG source reconstruction (~550ms, Fig. 2,3) seems compatible with the onset of 
value-representing ERP signal in (R. Frömer et al., 2023) and the onset of  value-related LPP 
components  in (Baum & Abdel Rahman, 2021b; Schindler et al., 2021), it seems to be later than the 
onset of value signal in the  electrophysiological recordings from monkeys in the caudate tail (~ 
150ms) (Yamamoto et al., 2013). This could be due to difference in stimuli used (fractals vs face) 
and the type and duration of value training in the two experiments if not the species 
differences. We also note that the value ERP also showed a smaller yet significant (p<0.001, but 
not corrected) value differentiation around 180ms in FC1 electrode.  

We also note that while both EEG-informed fMRI analysis and fMRI-informed EEG source 
localization found CDt as the main substrate for encoding remembered good and bad faces, 
there is a mismatch in the exact location of CDt in the two methods. This is mainly due to the 
limitations in EEG source localization and its subcortical head model for the caudate which does 
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not include the CDt part immediately adjacent to the hippocampus. Nevertheless, the fMRI-
informed EEG source localization still manages to find the most posterior part of CD in its model 
which is part of CDt, as the source of face value differentiation. Notably, this analysis finds no 
value encoding  neither in other subcortical areas (but some deactivation in the hippocampus) 
nor in the cortical areas despite their much shorter distance to the EEG electrodes consistent 
with lack of such activation in EEG-informed fMRI and the traditional whole brain fMRI analyses. 

Interestingly, we did not find any significant activation of face processing areas to moral values 
of faces seen a day before. The fusiform gyrus is previously shown to encode facial expressions 
to some degrees (Engell & Haxby, 2007; Winston et al., 2004). (Singer et al., 2004) assigned social 
value to faces through a prisoner’s dilemma game and also showed an increased activity in the 
fusiform gyrus for good faces compared to neutral ones, albeit shortly after the value 
assignment. This modulation is more likely to reflect an elevated salience for good faces rather 
than a coding of face value. Indeed, recent ERP analyses showed enhanced LPP component for 
both good and bad faces, indicating an effect of saliency for face values rather than a value 
coding (Baum & Abdel Rahman, 2021b; Schindler et al., 2021). Together, our findings and these 
results suggest that while value maybe encoded in caudate, salience of faces may engage a 
wider circuitry including the face processing areas.   

In summary, our results showed robust coding of face moral values in the CDt. Functional 
connectivity analysis showed this part of caudate to be connected to FFA, which can provide the 
face specific information. Similar to other parts of striatum, CDt is a major target for 
dopaminergic (DA) neurons, in particular its posterior subpopulation that is known to 
differentiate objects based on their values (Kim et al., 2015). The exact mechanism by which this 
posterior basal ganglion circuitry work to differentiate faces based on their moral values in 
interaction with other functionally connected cortical and subcortical areas remains to be 
addressed. 

Materials & Methods: 

participants: 

Twenty-one subjects (16 males, 5 females), aged between 21 and 40 years (mean=26.6 years, s.d.±5.3) 
participated in the experiment. They were all healthy and right-handed and had normal or corrected-to-
normal vision. Written informed consent was obtained in accordance with the School of Cognitive 
Sciences Ethics Committee at the Institute for research in fundamental sciences (IPM) in Tehran, ethics 
code: 99/60/1/6117 

Stimuli: 
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We used 24 arbitrary artificial faces (13 males, 11 females) created by a deep neural network model, the 
StyleGAN2 (https://thispersondoesnotexist.com) (Karras et al., 2019). Each face was randomly assigned 
to a brief unique biography with either a positive (good face) or a negative (bad face) moral value (see 
suppl. Table 1 for the list of all the stories). Assignment of stories to faces were random and the positive 
or negative values were swapped across subjects. 

Training session:  

The night before the experiment, the subjects watched a short (5 minutes) video (video 1 or 2) which 
introduced 24 faces with a brief biographical history about each face narrated in Persian (the subjects’ 
native language). Each history included a positive or a negative ethical value for the corresponding face 
on the screen (good and bad faces, Fig. 1a). The subjects passively watched the video two times, once at 
7pm and the second time at 9pm the night before the experiment. Each face was portrayed for 10s and 
the narration of history started with the emergence of the face. For a complete list of the histories 
translated to English, see suppl. Table 1. The memory session started about 10:00 AM the next day thus 
testing the long-term memory across a 13~14 hours timespan. 

Memory session: 

During the memory session, the subjects were first equipped with an MRI-compatible EEG cap and then 
laid on the MRI bed. They were also given two response handles to each hand to indicate their responses 
by pressing the buttons using their index fingers. The faces introduced in the training video were shown 
in a random order for each subject and he/she was instructed to indicate his/her judgement about the 
moral value of the presented face. Each trial started with a fixation cross for a random period between 1 
to 3.5 s. Then a face was portrayed for 2.5s and the subject passively watched it. After that, the face 
disappeared and two letters of ‘G’ and ‘B’ (referring to “good” and “bad” respectively) were shown in the 
left and right sides of the midpoint of the screen for 2s, during which the subject had to indicate his/her 
response. The sides of the letters ‘G’ and ‘B’ were randomly flipped in each trial. The subjects were 
instructed to answer for all faces even if they did not remember the story of the face or its exact value. 
Each face was shown only once during this test and the subjects performed only one run of this 
experiment. Subjects made a choice for almost all presented faces (99%). 

fMRI data acquisition: 

We acquired our fMRI data using a 3T ‘Siemens’ scanner in the “National Brain Mapping Laboratory, 
NBML” in Tehran. Specifically, we collected functional Echo-Planar-Imaging (EPI) data using a 64-channel 
head coil with an anterior–posterior fold over direction (repetition time: 2.5 s; echo time: 30ms; number 
of slices: 42; number of voxels: 70×70; in-plane resolution: 3.543×3.543mm; slice thickness: 3.5mm; flip 
angle: 80o). Slices were collected in an interleaved order. Anatomical images were acquired using a 
MPRAGE T1-weighted sequence that yielded images with a 1×1×1mm resolution (176 slices; number of 
voxels: 256×256; repetition time: 2000ms; echo time: 3.47ms) as well as a T2 image with a 
0.9×0.475×0.475mm resolution (192 slices; number of voxels: 512×512; repetition time: 3200ms; echo 
time: 408ms). We also acquired field-map gradient images using a multi-shot gradient echo sequence 
which was subsequently used to correct for distortions in the EPI data due to B0 inhomogeneities (echo 
times: TE1=4.92ms, TE2= 7.38ms; isotropic resolution: 3.75mm; matrix: 64×64×38; repetition time: 
476ms; flip angle: 60o). 

fMRI pre-processing: 
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We discarded the first three volumes from each fMRI run (due to magnetization artifact). We performed 
the pre-processing steps using FSL. These steps include motion-correction, field-map correction, slice-
time correction, high-pass filtering (>100 s) and spatial smoothing to 5mm. The EPI images of each 
subject were first registered to his/her structural image using the BBR algorithm. Registration of 
structural images to the MNI brain was performed using the nonlinear method with a 10 mm warp 
resolution.  

Power analysis: 

We conducted a power analysis based on GLM1 of the first 7 subjects and using the GPower software 
with parameters: two-sided t-test, alfa=0.05 and power=0.85 which resulted in a minimum number of 14 
subjects. 

fMRI GLM Analysis: 

We used FSL to run the GLM analyses. We used the pre-whitening option and the 3-column or 1-column 
format for regressor specification. In particular, each of the four main regressors was built as boxcars 
over the corresponding time intervals. For example, the “correct good” regressor was equal to 1 during 
all the 2.5s exposures to the good faces that were correctly remembered as good. The two confounding 
regressors for hand responses were built as stick functions (100ms wide and amplitude equal to 1) at 
100ms before the response time (accounting for motor delay), for subjects with accurately saved 
response times (7 subjects). For the rest of the subjects, the reaction times were not saved. For these 
subjects we used the average reaction time of those seven subjects and placed 600ms wide boxcars 
(with 1/6 height) centered at the average reaction time. The 600ms was chosen as twice the standard 
deviation (std) of the saved reaction times (300ms). Note that the subjects had to answer within time 
slots of 2s which was smaller than one fMRI repetition time. Then, we convolved all these regressors 
with the canonical hemodynamic response function (HRF) to be used in the GLM analysis. We also used 
a ventricle mask (in the native space of each subject) to extract the non-neuronal time-series of the 
BOLD signal inside the ventricles and used the resulting signal as a confound regressor. In our second 
GLM analysis (EEG-informed fMRI) we also calculated the average of electric potentials on the electrodes 
C1 and FC1, and then its instantaneous power. We used the EEG power in intervals 0.5 to 1.5s post-
stimulus and set the signal outside these intervals equal to zero. Convolution of the resulting signal with 
HRF, gave us our EEG-driven regressor. In particular, the GLM model was: 

                                                                                                                                             (1) 

where, Y is the time series of the preprocessed and demeaned BOLD response of a single voxel for T time 
samples, X is a  design matrix with rows representing n regressors (here, n=7: 4 main +3 
confounding for our ordinary GLM, and n=8 for our EEG-informed fMRI analysis),  is a  vector 
containing the regression weights for each regressor for this particular voxel and  is the  residual 
of this regression. The resulting regression coefficients (beta maps) were finally normalized by the 
temporal mean of subject’s EPI images. 

fMRI group-level Analysis and statistical tests: 

We performed the group-level and statistical analyses using functions from AFNI 20.2.05. For group-level 
analysis, we used the function “3dttest++”. The group-level activation maps were then masked by the 
grey matter mask associated with the standard MNI brain with a resolution of 2mm. By applying 
3dFWHMx on these group-level residuals, we estimated the parameters for the non-Gaussian spatial 
autocorrelation function of the fMRI noise. 3dClustSim was used to calculate the cluster thresholds for 

y = βX + r

n × T
β 1 × n

r 1 × T
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various p-values such that the probability of a false positive cluster among the p-thresholded clusters 
was less than α=0.05. Statistical corrections for subcortical sources were calculated using a subcortical 
gray matter mask, due to their intrinsic smaller sizes. The inflated surfaces for visualization of fMRI 
results are presented using SUMA 20.2.05. 

EEG data acquisition: 

EEG data was acquired at a 5-kHz sampling rate at the same time as the fMRI data collection, using an 
MR-compatible EEG amplifier system (BrainAmps MR-Plus, Brain Products, Germany) and the Brain 
Vision Recorder software (BVR; Version 1.10, Brain Products, Germany). Data were filtered online with a 
hardware band-pass filter of 0.1 to 250Hz. The EEG cap included 65 Ag/AgCl scalp electrodes which were 
localized according to the international 10–20 system. The AFz and FCz electrodes were chosen as the 
ground and reference electrodes, respectively. All electrodes had in-line 10k surface-mount resistors to 
ensure subject safety. All leads were bundled together and twisted for their entire length to minimize 
inductive pick-up and ensure participants’ safety. Input impedances were kept below 20k (including the 
10k surface-mount resistors). EEG data acquisition was synchronized with the fMRI data (Syncbox, Brain 
Products, Germany) and triggers from the MR-scanner were collected separately to remove MR gradient 
artefacts offline.  

Recording the EEG electrode coordinates: 

We captured the EEG electrode coordinates registered to the subjects T1-image using ‘Localite’ TMS 
navigator just after when subject came out of the MRI scanner. 

EEG pre-processing: 

We performed EEG-preprocessing using the EEGLAB toolbox in MATLAB. MRI gradient noise was 
removed via the FMRIB’s “FASTER” plug-in for EEGLAB. After down-sampling the resulting signal to 1000 
Hz, the signal was bandpass filtered between 0.5Hz to 40 Hz. Then, we detected the QRS events from the 
ECG signal and removed the ballistocardiogram (BCG) artifact using the FMRIB plug-in for EEGLAB. 
Subsequently, we detected the high noise sections or channels in the data by visual inspection and put 
them equal to zero and then, used ICA decomposition in order to remove the eye-motion artifacts, the 
residual of BCG and other non-brain sources. Finally, we interpolated high noise sections or channels (if 
any) and re-referenced the EEG signals to the common average so that we could recover the signal at 
FCz.  For Event-Related-Potentials (ERPs) we also subtracted the average of the signal over the baseline 
period (250 ms before stimulus). Four subjects (out of the whole 21 subjects) were excluded from 
further EEG analyses due to their severe residual MRI gradient noise. One subject was also excluded due 
to not showing meaningful visual ERPs. The group-average of the ERPs in electrode O1 (suppl. Fig. 1) 
showed a strong visual ERP with clear P200 and P300 components, ensuring a suitable removal of MRI 
gradient noise from the EEG signals. 

EEG source reconstruction: 

We used “Brainstorm” toolbox in MATLAB for EEG source localization. We conducted the MRI 
segmentations based on both structural T1 and T2 MRI images of each subject using “FreeSurfer” 
program and generated the boundary element model (BEM) based on these segmentations. We used 
the simple BEM model to register the scalp potentials to the standard MNI scalp (described further in 
detail). 
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To localize the sources of the value ERP, we needed to consider the subcortical areas in our forward 
model as well, since the fMRI analysis had shown the caudate nucleus to encode the value memory of 
the faces. In order to get more accurate localization results, we used a “mixed” head model offered by 
Brainstorm. Mixed models do not place dipoles in the white matter and assume dipoles on the cortex 
surface to be perpendicular to it, but let subcortical dipoles to have unknown directions. We avoided 
using a finite-element model (FEM) due to the very large number of unknown variables considered for 
the inverse problem in this model, which can severely degrade the results of the ill-posed source 
reconstruction problem. In the “mixed” forward model offered by Brainstorm, a constrained BEM model 
for the cortex (one dipole at each grid, perpendicular to the cortex) is combined with an unconstrained 
model for subcortical grey matter regions (three orthogonal dipoles at each subcortical grid). Some 
subcortical regions (e.g. hippocampus) also have known dipole directions which are considered in this 
mixed model.  

The time-series of neuronal activities were reconstructed using weighted minimum norm estimation 
(wMNE), and the “automatic shrinkage” method for noise covariance matrix regularization. We 
estimated the noise covariance matrix based on the rest periods of the experiment.  

In order to boost the signal-to-noise ratio of the estimated source time series and prepare them for the 
group-level analysis, we divided the ERP time course (+ its baseline) into 55 time-bins of 50 ms and 
conducted the temporal mean of each source over each time bin. Then we z-scored all source time 
series by subtracting the baseline mean and dividing by baseline std (for the subcortical sources, division 
by the norm of the 3D activities). In order to figure out a single activation magnitude for subcortical 
sources, we computed the principle component of the associated three time-vectors at each grid point, 
which revealed the main dipole directions but for a sign ambiguity. 

Cluster-correction for EEG sources: 

In order to address the multiple-comparison problem for the detected EEG sources, we conducted 
cluster thresholds similar to that used for fMRI results. Specifically, we mapped the baseline activities of 
the EEG sources to the MRI voxels including them and then used the 3dFWHMx function to estimate the 
spatial autocorrelation parameters of the noise data. Then we used 3dClustSim function to calculate the 
cluster thresholds so that the false positive rate was kept below 5%.  We did this paradigm separately for 
the cortical and subcortical sources. We restricted these calculations to a caudate mask for the detected 
activity in the CDt. The equivalent volume for the subcortical threshold was simply calculated using 
Brainstorm GUI. For the cortical surface sources, the equivalent area of the threshold was conducted and 
the number of vertices building this area was to be estimated again using Brainstorm GUI. Due to non-
homogeneous parcellation of the cortex surface we selected the maximum vertex cluster size building up 
the same thresholding area. 

Calculation of the group-average ERPs: 

Given the variations in the subjects’ head size and shape as well as some possible and unavoidable 
variations in EEG cap placement on individual subjects’ heads, it would be better to map the EEG 
topographies and ERPs on a common standard head in order to compute a more precise group average 
of them. This implies the access to the exact position of the EEG electrodes for each subject. We had 
recorded these exact electrode coordinates for each subject, in order to conduct a more precise lead-
field matrix. Therefore, we used this information to map single-subject ERPs to a standard scalp. 
Specifically, we first mapped ERPs to brain sources in the native space and then mapped them to the 
standard MNI brain and finally mapped these activities back to the surface potentials on the MNI scalp. 
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Since we used a linear inverse solution, the overall end-to-end mapping of ERPs to the standard head is a 
linear mapping and hence, it is completely reversible. The resultant potentials were then normalized by 
the overall norm of channels’ baselines activities for each subject, before averaging. Also note that we 
used this mapping and normalization only to conduct the average of value ERPs across subjects, while 
raw EEG signals and raw ERPs were used in the subject-level “EEG-informed fMRI GLM” and “EEG source 
reconstruction” analyses respectively.  

Evaluation of the proposed method for mapping subject ERPs on a standard scalp: 

As mentioned above, the proposed method is a linear reversible interpolation method for mapping the 
subject ERPs over another (standard) scalp. The main concern is to preserve the overall scalp topography 
and thus, some probable errors in the source reconstruction are not important unless they affect the 
scalp topography. Such a localization error does not result in any changes to the scalp topography in the 
native space (note the under-determinacy of the localization problem) and hence it belongs to the null-
space of the native lead-field matrix. The intuition is that these errors would also result in negligible 
deflections in scalp topographies on the standard scalp, given the high correlations between the rows of 
the native lead-field matrix and the lead-field matrix for a standard brain. In order to quantify our 
intuition, we ran simulations by assigning neuronal dipoles with random magnitudes according to a 
normal distribution. Then we reconstructed the sources based on MNE method, mapped them to the 
MNI brain and consequently over the MNI scalp and then conducted the correlations between the EEG 
signals (topographies) in the native and standard spaces. We repeated these simulations 1000 times. The 
resulted histogram of these correlations indicates that this correlation was greater than 0.5 and of 
course it was often about 0.9 (suppl. Fig 8a).   

For the real EEG, our method has an extra added value of denoising the scalp topographies. Using a 
noise covariance matrix weighting method inside the wMNE solution, the effects of noisy channels are 
highly alleviated. We also note that in tackling with real data, the EEG noise covariance matrices (or 
simply the set of noisy channels) differ among subjects, and hence this is an added value of our mapping 
method. In order to evaluate the performance of this method on real data, we took a visual ERP of the 
subject, partitioned it to intervals of 50ms and conducted the time-average over each interval. We then 
conducted the correlations between the denoised EEG topography in the native space and that mapped 
over the standard scalp. Similar to the synthetic data, the correlations between the denoised EEG in the 
native and standard spaces were high and often about 0.9 (suppl. Fig 8b).   

FFA Localizer task: 

In a separate experimental run, the subjects passively watched blocks of four image types: general 
objects, the scrambled version of the same objects, human faces (other than those introduced in the 
training video) and the scrambled versions of the same faces, being repeated in three periods (suppl. Fig. 
7a). Each block lasted for 12.5s and contained images of 10 different random samples of that category 
chosen from a source of 100 images. Each sample image was portrayed for 1s, followed by a 250ms 
inter-stimulus-interval. We analysed the BOLD signals using a GLM with four regressors, one for each 
category. The fusiform face area was localized for each subject by thresholding the “face vs scrambled 
face” contrast with p-value < 10-5. The group average of this contrast showed activities in the FFA and 
OFA (suppl. Fig. 7b, p-value < 10-4, cluster-corrected). 

The functional connectivity analysis: 

We used the residuals from our first GLM (the EEG-informed fMRI) analysis as an estimate of the non-
modulated brain activity. We used the detected CDt cluster in GLM1 (Fig. 2c) as the correlation seed. We 
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used the same FSL and AFNI functions for GLM and group-level analyses as those used for other fMRI 
analyses in this paper. 

Code Accessibility: 

The AFNI codes used for fMRI analyses as well as MATLAB codes used for EEG analyses are available at: 
https://github.com/AliAtaei1/face-value  
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Table 1: activated clusters. Sizes, coordinates and cluster-correction thresholds for the activated clusters. 
CM: Center of Mass 

cluster 
size 
(vox-
els)

CM x CM y CM z peak x peak y peak z cluster 
threshold for 
p=0.01 (vox-
els)corr. good -corr. Bad 

(GLM2):
66

L caudate tail 86 29.3 38.3 -1.2 32 38 -4

EEG-driven regressor 
(GLM1):

54

L caudate tail 55 29.8 27.5 -6.1 28 26 -4

EEG-driven regressor 
(GLM3):

56

L caudate tail 129 29.5 28.7 -8.8 22 26 -10

 

correct - incorrect: 74

L angular gyrus 296 47.7 59.5 35.1 46 56 34

L superior frontal gyrus 151 18.7 -27.8 52.2 18 -28 58

L medial temporal gyrus 75 64 25.9 -7.3 62 26 -8

right hand - left hand 80

R motor cortex 1393 -37.8 25 56.1 -52 16 56

L cerebellum 655 17.5 52.7 -21 26 50 -22
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