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DOA Estimation via
Optimal Weighted Low-Rank Matrix Completion

Saeed Razavikia, Mohammad Bokaei, Arash Amini, Stefano Rini and Carlo Fischione

Abstract—This paper presents a novel method for estimating
the direction of arrival (DOA) for a non-uniform and sparse
linear sensor array using the weighted lifted structure low-
rank matrix completion. The proposed method uses a single
snapshot sample in which a single array of data is observed.
The method is rooted in a weighted lifted-structured low-rank
matrix recovery framework. The method involves four key steps:
(i) lifting the antenna samples to form a low-rank stature, then
(ii) designing left and right weight matrices to reflect the sample
informativeness, (iii) estimating a noise-free uniform array output
through completion of the weighted lifted samples, and (iv)
obtaining the DOAs from the restored uniform linear array
samples. We study the complexity of steps (i) to (iii) above,
where we analyze the required sample for the array interpolation
of step (iii) for DOA estimation. We demonstrate that the
proposed choice of weight matrices achieves a near-optimal
sample complexity. This complexity aligns with the problem’s
degree of freedom, equivalent to the number of DOAs adjusted
for logarithmic factors. Numerical evaluations show the proposed
method’s superiority against the non-weighted counterpart and
atomic norm minimization-based methods. Notably, our proposed
method significantly improves, with approximately a 10 dB
reduction in normalized mean-squared error over the non-
weighted method at low-noise conditions.

Index Terms—Direction of arrival estimation, Hankel operator,
low-rank matrix completion, off-the-grid compressed sensing,
structured matrix.

I. INTRODUCTION

Direction-of-arrival (DOA) estimation retrieves the relative
direction of an unknown number of sources from the signal
outputs of several receiving antennas that form a sensor array.
DOA estimation is useful in several engineering applications,
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such as radar [2], wireless communication [3], [4], integrated
sensing and communications [5], and noise localization.

This paper considers a general method for DOA estimation
from a sparse, non-uniform linear array of antennas, where
the number of antenna pairs with small separations (small
multiples of λ/2) is much smaller than in uniform linear
arrays [6]. Sparse array configurations, including nested arrays
[7] and coprime arrays [8], [9], [10], are favored for their
efficiency in direction estimation. Under these settings, we
propose a novel method that estimates the DOAs. We show
that the proposed method reduces the sample complexity
(required array samples for perfect recovery) of estimating the
DOAs. Further, simulation results confirm that our method
outperforms previous techniques proposed in the literature,
such as atomic norm minimization (ANM) [11], [12], EMaC
method [13], [14], [15], double EMaC (DEMaC) method [16],
basis pursuit technique [17].

A. Literature Review

Over the past decades, considerable research efforts have
been poured into the DOA estimation problem [18], [19].
Traditional subspace methods like MUSIC [20], Prony [21],
and ESPRIT [22] have received wide attention in the literature.
The aforementioned methods need many snapshots to estimate
the covariance matrix of observations accurately and mostly
apply to uniform linear arrays (ULA)s [23]. Moreover, these
subspace methods are likely to fail when coherent, highly
correlated, or closely located sources occur [24]. Additionally,
subspace methods need to know the number of sources a priori.

To overcome the limitations above, some methods have been
proposed based on a covariance matrix sampled signal, such
as second-order statistics of eigenvalues [25] or information
criterion rules [26] that automatically take care of order esti-
mation. While most classical techniques rely on approximating
the auto-correlation function of the received signal [20], [22],
[27], more recent techniques can estimate the source locations
based on only one single snapshot (time slot) [19], [18].

With the emergence of compressed sensing [28], [29], sub-
stantial progress has been achieved in sparse signal recovery.
The sparsity-aware DOA estimation techniques brought the
advantage of estimating the directions with only a single
snapshot. Interestingly, the latter methods need only an upper
bound on the number of sources and not the exact number; the
drawback of this method is that the estimated source angles
(directions) are constrained to belong to a predefined finite set,
which is commonly referred to as the grid [24]. It is common
to use sparse recovery techniques in compressed sensing that
require discretizing the range of angles (an angular grid) to
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take advantage of the latter sparsity. In other words, the range
of feasible angles needs to be discretized beforehand; a finely
discretized grid is expected to yield more accurate DOAs at
the expense of more computational cost [30].

The super-resolution technique of [31] provided a grid-less
convex formulation for a frequency estimation problem closely
linked with the DOA estimation. Instead of a grid resolution
requirement, this method requires a minimum angular separa-
tion between the sources; nevertheless, it does not restrict the
exact direction of the sources. Although this method is more
accurate than the standard sparse recovery techniques without
a considerable additional computational burden, it is tailored to
a uniform linear array. Such a restriction seems too limiting,
as uniform arrays are generally inefficient for sparse DOA
estimation [32]. Moreover, the concept of virtual arrays [9]
studied in non-uniform arrays shows that certain non-uniform
array structures are equivalent to uniform arrays with more
sensors in the sparse source recovery. There has been a line of
recent research to identify suitable antenna placement within
an array to enhance the array’s potential in detecting sparse
sources. While such arrays can probably improve the accuracy
of DOA estimates, the super-resolution technique of [31]
becomes no longer applicable, and the grid mismatch error
(mismatch between the assumed and the actual grid) resurfaces
again [33]. This issue was first addressed in [34], where a grid-
less sparse recovery method was proposed using ANM for
sparse linear arrays (SLA)s. Recent extensions of ANM tech-
niques mainly focus on non-idealities in array configurations.
A regularization-free ANM framework was proposed in [35],
[36], introducing a fast semi-definite programming solver that
effectively handles non-uniform array and frequency spacing.
Similarly, [37] developed a novel nonconvex ANM method to
reduce hardware costs and algorithmic complexity in low-cost
passive direction-finding systems. Other advancements include
the exploration of lens antenna arrays in [38], [39], where
ANM was applied to enhance DOA estimation by leveraging
the focusing capabilities of lens antennas to mitigate the
challenges posed by sparse array configurations. Moreover,
[40] extended ANM for coherent sources using coprime arrays,
demonstrating improved estimation performance in scenarios
with non-uniform spacing. These works highlight the growing
interest in adapting ANM to handle practical challenges,
including sparse, non-uniform arrays and other real-world non-
idealities, further advancing the potential of grid-less DOA
estimation.

Inspired by the super-resolution technique, a noise-robust
grid-less sparse method was proposed in [41] based on ANM.
This technique was extended in [34] to SLAs with missing
elements. These methods are fairly accurate and robust under
a frequency separation constraint (equivalently, DOA separa-
tion), especially in noisy settings. Based on enhanced matrix
completion (EMaC), another grid-less method was proposed
in [13], which formulates the DOA problem using Hankel-
structured matrix recovery; some of the ideas are borrowed
from the matrix pencil algorithm in [42]. The main point in
lifting data to the Hankel matrix structure is the low-rank
property when the sources are sparse. Interestingly, compared
to ANM methods, low-rank Hankel matrix recovery imposes a

less restrictive constraint on the minimum angular separation
between the sources. Similar lifted structures are also proposed
for recovering frequencies in [16], [43].

The method achieves robust performance in scenarios with
non-uniform sampling and reduced computational overhead
by incorporating a gradient threshold iteration technique and
perturbations to escape saddle points. These recent efforts
demonstrate significant progress in adapting ANM-based DOA
estimation to practical scenarios with sparse and non-uniform
arrays, addressing limitations such as grid mismatch and
inefficiencies in traditional uniform linear array designs.

Recently, in [44], [45], we introduced a two-snapshot DOA
estimation method for SLAs inspired by the leverage scores
concept from the matrix completion framework in [46]. This
approach utilizes the first snapshot to compute leverage scores
and is then employed to identify the most informative array
elements not necessarily included in the observed samples. The
measurements from these selected array elements are used in
the second snapshot to estimate the DOAs. It is worth noting,
however, that in most practical DOA estimation scenarios, the
array configuration (e.g., SLA) is typically fixed and cannot
be adaptively adjusted. Hence, the method is restricted by the
demand for multi-snapshots (at least two), which makes it
inapplicable in some practical settings.

In summary, despite significant progress, the following
challenges remain unresolved in the DOA estimation literature:
• Grid and array configuration limitations: Sparse recovery

methods constrained by angular grids suffer from grid
mismatch errors, where the estimated source directions are
restricted to the grid points rather than the actual continuous
directions. On the other hand, grid-less techniques such
as ANM address this issue but are primarily designed for
ULAs. These techniques often fail to generalize to SLAs.

• Challenges with closely spaced or coherent sources: Ex-
isting methods struggle when sources are closely spaced or
exhibit high coherence. This scenario leads to performance
degradation, particularly in subspace methods, which rely
on strong separability in the angular domain.
In this work, we attempt to address the above challenges by

proposing a weighted lifted-structure low-rank matrix comple-
tion framework that leverages adaptive sample weighting to
improve recovery performance for sparse linear arrays.

B. Contributions

This paper considers the DOA estimation problem and
focuses on the weight optimization problem for the so-called
lifted-structure matrix completion method. More specifically,
we propose a general method that transforms the SLA samples
into ULA samples using lifted structures and low-rank matrix
recovery. The proposed method relies on a sample-adaptive
weighting scheme for matrix recovery [1]. The proposed
method employs a weighting scheme that adapts to samples
to improve matrix recovery performance. In this scheme, the
weights reflect the significance of the samples concerning the
antenna array configuration. First (i), the array of samples is
lifted into a Hankel structured matrix. Then (ii) left and right
weight matrices are applied to the lifted samples; the array
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configuration and rough approximate source angles determine
these weights. Successively (iii), the full samples from the
uniform linear array are estimated as a low-rank matrix
completion problem. Finally, (iv) the DOAs are estimated from
the reconstructed uniform linear array samples. In other words,
our scheme comprises two main steps: (a) determining the
weights and (b) lifting the samples to a structured low-rank
matrix over which matrix recovery is performed. We refer to
this method as the weighted lifted-structure (WLi) low-rank
matrix DOA estimation.

One of our key contributions is in step (a) above. In this step,
we devise a strategy for determining the weights of a weighted
nuclear-norm minimization. From a high-level perspective, this
strategy determines a cost—in the form of a weighted nuclear
norm—for which the observed matrix entries are treated as
the highest leverage scores. These leverage scores measure
the influence of individual sample values on the estimation of
missing entries for matrix completion.

The resulting optimization problem is solved by an alternat-
ing direction method of multipliers (ADMM) algorithm [47].
We show that the weighting scheme in (a) reduces the sample
complexity of the problem, which corresponds to the number
of required array elements for estimating the DOAs. Indeed,
the selection of weight matrices results in a scenario where the
sample complexity becomes independent of leverage scores
and is nearly optimal, except for certain logarithmic factors.
The simulation results show that the weighted methods out-
perform the unweighted techniques, grid-based compressed
sensing methods, and ANM methods, especially when the
sources are not widely separated.

Our contribution can be summarized as follows.

• Weighted nuclear-norm minimization: We devise a
strategy for determining the weights in a weighted
nuclear-norm minimization framework, which assigns
costs based on the leverage scores of observed matrix
entries. These leverage scores quantify the influence of
individual samples on matrix completion performance.

• Low computational complexity solution: The resultant
optimization problem for completing the SLA into ULA
is based on nuclear norm minimization. To reduce the
complexity of the singular value decomposition, we pro-
pose a singular value decomposition-free approach by
deriving an ADMM algorithm for the given optimization
problem, ensuring computational efficiency.

• Single and Multi-snapshot: While our weighting
scheme is originally formulated for the single-snapshot
case, we also provide a generalization to the multi-
snapshot setting by modeling the data via block-Hankel
matrices and deriving snapshot-wise diagonal weights,
thus extending the algorithm’s utility to multiple mea-
surement vectors.

• Near optimal sample complexity: We theoretically
demonstrate that the weighting scheme reduces the sam-
ple complexity required for DOA estimation. Indeed,
the sample complexity becomes independent of leverage
scores and is nearly optimal, except for certain logarith-
mic factors.

• Numerical experiments: We provide numerical experi-
ments for the proposed weighted methods, outperforming
unweighted, grid-based, compressed sensing, and ANM
methods. Numerical results reveal that WLi-EMaC’s ad-
vantage is particularly evident in scenarios with closely
spaced sources, significantly reducing the normalized
mean squared error.

We note that although our scheme is similar to the ANM
methods in [48], [49], it does not need to input the statistics
of the sources. In addition, the weighted method applies
to single and multi-snapshot scenarios; however, the single-
snapshot version is discussed in the following. Furthermore,
unlike traditional methods such as MUSIC and ESPRIT, which
require the number of sources as input, the proposed method
does not need prior knowledge of the source count. The
sparsity-promoting optimization adaptively estimates the un-
derlying DOA structure based on the observed data. After hav-
ing presented the weighted lifted-structured low-rank matrix
completion DOA estimation in some generality, we consider
Hankel and double-Hankel structures as special cases (similar
to EMaC [13] and DEMac [16], respectively), resulting in our
proposed WLi-EMaC and WLi-DEMaC methods.

C. Organization

The rest of the paper is organized as follows: the signal
model and problem formulation for DOA estimation are pre-
sented in Section II. In Section III, we define our method for
DOA estimation in a noisy setup and introduce the proposed
weighted matrix completion. We study the weight matrix
optimization problem and DOA estimation in Section IV-A
and Section V, respectively. In Section VII, we give numerical
simulations by taking into account the special instances of
the proposed method, namely WLi-EMaC and WLi-DEMaC.
Finally, Section VIII concludes the paper.

Notations: We denote scalars, vectors, and matrices by low-
ercase letters and lower and upper-case boldface letters, re-
spectively. We represent linear operators and their adjoints by
calligraphic notations such as X and X †, where the superscript
in the latter stands for the adjoint operator. We frequently use
Ω as a finite set of integers and denote its cardinality by |Ω|.
The transpose and Hermitian of a matrix X are represented
by XT and XH, respectively. Following the conventional
notations, we define ∥X∥, ∥X∥F and ∥X∥∗ as the spectral,
Frobenius, and nuclear norms (sum of singular values) of the
matrix X, respectively. eNi represents the i-th canonical N -
dimensional basis vector. For an integer N , [N ] stands for
{1, 2, . . . , N}.

II. SYSTEM MODEL

A. Signal Model

Let us consider the DOA setting in Fig. 1: consider N
uniformly spaced points on a line, with spacing sd, so that
the point locations are s = [0, sd, . . . , (N − 1)sd]. Assume
that K narrow-band sources are in the surveillance region,
respectively located at angles {θk}k∈[K], θk ∈ [0, 2π). For
each position in s, let an(θk) represent the phase shift of the
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signal from the source k for the nth position. Assuming a
narrow-band reflection signal model with wavelength λ from
the source, the term an(θk) is subject to a constant phase shift
and thus can be expressed as

an(θk) = exp{−j2πλ nsd sin(θk)}. (1)

Accordingly, the overall signal received at the nth position is
obtained as

yn =
∑

k∈[K]
bk an(θk) + en (2a)

=
∑

k∈[K]
bke

−j2πτkn + en. (2b)

where the coefficients {bk}k∈[K] ∈ C model the effect of
the received power from the sources and their relative phase
values concerning a reference. Also, {en}n∈[N ] present noise
values whose amplitudes are upper-bounded as |en| < η with
high probability. The expression in (2b) is a commonly-used
reformulation of (2a) by defining τk = sd

λ sin(θk), in (1). Note
that in (2a), we have assumed that the narrow-band scattered
signals from all the sources have the same wavelength. For the
configuration of antenna elements in the array, we consider two
scenarios: (i) the uniform linear array (ULA) case in which
an antenna is placed in each position of s, and (ii) the non-
uniform array (SLA) in which antennas are placed in M out
of the N positions in s.

The DOA literature shows that generally speaking, ULAs
are simpler to study than other array configurations due to
their inherent symmetry. Therefore, we consider a non-uniform
array with M elements as an N -element ULA with missing
antenna arrays and try to recover the missing samples. Let Ω ⊆
[N ] with |Ω| = M be associated with the existing elements of
the ULA in the non-uniform array. A general method to the
reconstruction of the samples in the positions [N ]\Ω is through
an orthogonal projection PΩ : CN → CM . More precisely, let
us define PΩ as the orthogonal projection that keeps only the
M elements indexed within Ω of a vector y = [y1, . . . , yN ]T:

yΩ = PΩ(y). (3)

The orthogonal projection PΩ is determined by the sampling
strategy. In other words, (3) describes how the noisy samples
at the non-uniform array yΩ are obtained as a projection of
the vector of ULA noisy samples y. Note that the energy of
the noise in yΩ is upper-bounded by

√
|Ω|η =

√
M η with

high probability.

B. DOA Estimation

In this section, we introduce the proposed method. For
clarity of exposition, we present our algorithm for the noiseless
case, i.e., (2) when the error terms {en} are absent. In the
noiseless scenario, the source estimation problem in DOA is
equivalent to finding the pairs (τk, bk) for k ∈ [K], by using
the sample vector yΩ. Although k belongs to a discrete set, the
values of τk and bk vary continuously. One possible method
is discretizing τk to convert the problem of DOA estimation
into a finite-dimensional form. A direct consequence of the
discretization step is that the estimated source angles are
forced to lie on a grid. Therefore, the estimated angles are

θ1

θ2
θ3

s d
co
s(
θ 2
)

sd

b3
b1

b2

Figure 1. The received signal from K = 3 sources at a non-uniform array
with M = 6 elements as a sampling of a ULA array with N = 9 elements.

inherently imprecise due to the grid mismatch. A continuous-
domain modeling suitable for the DOA problem is proposed
in [31] as follows.

x(t) =
∑

k∈[K]
bkδ(t− τk), (4)

where δ(·) is the Dirac’s delta distribution, and (τk, bk) are the
unknown parameters to be estimated from the sample vector
yΩ. Then, the noiseless samples in (2a) can be obtained as
n-th Fourier samples of the signal x(t), i.e.,

yn = F(x(t))|t=n =

K∑
k=1

bke
−j2πτkn, n ∈ [N ], (5)

where F denotes the Fourier transform. For the setting in (4),
instead of estimating the set {(τk , bk)}k∈[K], one can consider
recovering the function x(θ) via

x̂ = argmin
x

∥x∥TV s.t. ∥A(x)− y∥22 ≤
√
Mη, (6)

where ∥.∥TV stands for the total variation (TV) norm, and
A is the linear operator that maps x(·) into the samples y.
As the TV norm promotes sparsity, the minimizer of (6) is
expected to comprise a few delta distributions. Using the dual
formulation, a computationally feasible algorithm for finding
the minimizer of (6) is proposed in [31]. This method is
applicable when |Ω| = N , i.e., when we have access to
the samples y associated with a ULA. This implies that
an efficiency solution to (6) can be determined by first (i)
estimating the missing elements of the SLA, followed by (ii)
applying the minimization method of [31].

Having defined the system model and the key challenges
in DOA estimation, we present our proposed method, which
leverages weighted low-rank matrix completion for improved
array interpolation, in the next section.

III. PROPOSED METHOD AND FORMULATION

Our proposed approach consists of two main components:
(i) interpolating missing array elements using weighted low-
rank matrix completion and (ii) estimating the DOAs from
the reconstructed uniform array. The main idea is to convert
the SLA sample vector yΩ into an estimated ULA vector ŷ,
as we explain in the next section. Once the estimated ULA
vector is achieved, one can apply the DOA estimation of [31]
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Figure 2. An overview of the proposed DOA estimation procedure. The data from the M -element SLA is padded with zeros to form a vector with length
N and call it yo. Then, yo is lifted into the structured Hankel matrix H (yo), which includes many zeros due to initial zero-padding. Next, we compute
left and right diagonal weights matrices WR and WL via (26) such that the weighted matrix WLĤWH

R obtain lower leverage scores as defined in (15).
Next, we find a matrix Ĥ with the same structure that shares the same non-zero elements with H (yo) by solving the optimization problem in (14). Then,
we use the back projection operator H † to recover ŷ. As shown by the green (original) and brown (estimated) array patterns, the proposed interpolation step
markedly suppresses sidelobes.

to such an estimated vector. Thus, this paper’s major novelty
and originality are the proposal of the ULA vector estima-
tion, a challenging and complex task using weighted matrix
completion. The schematic of the proposed DOA estimation
is depicted in Figure 2.

With the goal of estimating the ULA vector ŷ from the
SLA vector yΩ, first (i) we lift the vector of observations
yΩ into a structured matrix with repeated elements, then (ii)
we recover the missing array samples of the ULA vector by
minimizing the rank of such structured matrix. The literature
considers various structured matrix choices: Hankel, double-
Hankel, wrap-around Hankel, Hankel-block-Hankel, Toeplitz,
and multi-level Toeplitz. To establish a cohesive framework
containing all such choices, we introduce definitions relevant
to lifting operators and matrix completion in the following
subsections.

A. Lifting Operator

The lifting operator transforms a vector into a matrix to
gain degrees of freedom. To properly define the class of lifting
operators considered in this paper, we initially introduce the
concept of the lifting basis.

Definition 1. We call {An}n∈[N ] ⊆ Cd1×d2 a lifting basis if
1) for all n ∈ [N ], we have that ∥An∥F = 1,
2) all the non-zero elements of An are positive, real and

equal, and
3) Ans are orthogonal:

tr
(
AT

n1
An2

)
= δ[n1 − n2], (7)

4) and each column of An (for n ∈ [N ]) has at most one
nonzero element, i.e.,

∑
j∈[d2]

( ∑
i∈[d1]

[An]i,j

)2

= 1. (8)

For a lifting basis {An}n∈[N ], Definition 1 implies that the
non-zero elements in An are all equal to 1/

√
∥An∥0. This

further shows that

∥An∥ ≤ ∥An∥F = 1. (9)

Definition 2. Let {An}n∈[N ] ⊆ Cd1×d2 be a lifting basis
according to Definition 1. The linear mapping H : CN 7→
Cd1×d2 defined by

H (x) =
∑

n∈[N ]

antr
(
eNnTx

)
An, (10)

is called a lifting operator, where {an}n∈[N ] ⊆ C are
constants. We can check that H † : Cd1×d2 7→ CN with

M ∈ Cd1×d2 : H †(M) =
∑

n∈[N ],an ̸=0

1
an

tr
(
AT

nM
)
eNn ,

defines the orthogonal back projection from Cd1×d2 into CN .

By tuning the lifting basis, one can achieve various ma-
trix structures in the output of the lifting operator. In our
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simulations– see Section VII– we examine the Hankel and
double-Hankel lifting operators, defined as

Hhnkl
d (x) = H (x) :=


x1 x2 . . . xN−d+1

x2 x3 . . . xN−d+2

...
...

. . .
...

xd xd+1 . . . xN

 . (11)

and double-Hankel, defined as H2hnkl
d =

[
Hhnkl

d Hhnkl
d

]
.

B. Matrix Completion

Once the array observation yΩ and the missing antenna
samples of y have been lifted, the missing array samples can
be recovered by minimizing the rank of the lifted matrix. This
matrix completion method can be mathematically formulated
as follows: (i) for the noiseless case,

ŷ = argmin
g∈CN

∥H (g)∥∗, s.t. PΩ(g) = yΩ, (12)

and (ii) for the noisy case,̂̃y = argmin
g∈CN

∥H (g)∥∗, s.t. ∥PΩ(g)− yΩ∥2 ≤
√
Mη,

(13)
where η > 0 was previously introduced as an upper bound for
noise amplitudes – with high probability.

Remark 1. Note that, for the system model in Section II, the
position of the array samples is fixed, which means adaptive
sampling is impossible.

IV. CONVERTING SLA TO ULA

In this section, we are now ready to propose a method to
convert the SLA into ULA samples. Since the position of array
samples is fixed, and we do not have the freedom to adjust
the position of the array samples, the standard unweighted
nuclear norm minimization in (13) and (12) are inefficient [50].
Therefore, instead of considering the original setting in (13),
we consider a variation that introduces two weight matrices–
WL and WR– to modify the recovery cost as WLH (g)WH

R

consistent with the available non-uniform samples. A more
rigorous definition of these weight matrices will be provided
later.

Accordingly, the weighted lifted-structured low-rank matrix
recovery of problem (13) is redefined by incorporating left and
right weight matrices into the nuclear norm cost function as

ŷ =argmin
g∈CN

∥WLH (g)WH
R∥∗,

s.t. ∥PΩ(g)− yΩ∥F ≤
√
Mη, (14)

where g stands for the variable for full array elements, WL ∈
Cd×d and WR ∈ C(N−d+1)×(N−d+1) are weight matrices,
and η > 0 was previously introduced as an upper-bound
for noise amplitudes (with high probability). The optimization
in (14) is convex and can be solved using CVX [51]. However,
the main issue now becomes the determination of the weight
matrices.

In the next subsection, we propose a method for designing
the weight matrices, WR and WL, to reduce the sample

complexity and, accordingly, to improve the performance of
the resulting DOA estimation.

Remark 2. Note that the weighted low-rank matrix completion
in (14) does not require prior knowledge of the number
of sources. Instead, the optimization promotes sparsity in
the recovered uniform array samples through nuclear-norm
minimization, inherently adapting to the number of significant
sources in the data.

A. Design of the Weight Matrices

Here, our objective is to formulate weight matrices to
reduce sample complexity. This entails a definition of sample
complexity in terms of leverage scores. Given a specific set of
observed samples, denoted as Ω, we propose an optimization
framework to decrease the leverage scores and, consequently,
the sample complexity. The optimization problem is subse-
quently recast to focus on weight matrices, enabling us to de-
termine weights directly associated with minimizing leverage
scores or sample complexity.

In [45], [50], it has been established that the complexity
associated with resolving the optimization problem in (14) is
directly correlated with the average leverage scores, which are
defined as follows.

Definition 3. For given weight matrices WL,WR and
an arbitrary vector x ∈ CN , assume that the rank of
WLH (x)WH

R is K̃. Further, let UΣVH be the reduced SVD
thereof. For each n ∈ [N ], [45], [50] define the weighted
leverage scores µn as

µn :=
N

K̃
max{∥PU (An)∥2F, ∥PV (An)∥2F}, n ∈ [N ], (15)

where PU (Y) and PV (Y) for arbitrary Y ∈ Cd×(N−d+1)

are defines as:

PU (Y) = WH
LU

(
UHWLW

H
LU

)−1
UHWLY, (16a)

PV (Y) = YWH
RV

(
VHWRW

H
RV

)−1
VHWR. (16b)

The rationale of Definition 3 is that it allows us to char-
acterize the sample complexity. It is shown in [45] that the
sample complexity of O(

∑
n µnK

2 log3 (N)) is required to
guarantee the perfect recovery of DOAs for the noiseless
scenario using optimization (14) when sampling each element
of the ULA proportional to its corresponding score. Note that
this complexity is for the case in which the sampling strategy
is random, while, in the current setting, the sampling strategy
is deterministic.

Accordingly, to reduce the upper bound on the sample com-
plexity, we need to design the weight matrices to minimize the
overall leverage scores. In the deterministic sampling strategy,
the strategy is to maximize the likelihood of observed samples
in Ω. As a result, the actual Ω can be considered a realization
of a random sampling set with elementwise probabilities
{pn}Nn=1. Accordingly, our method considers the given set of
array indexes– Ω– as a realization of a random sampling. It can
be verified that the likelihood of observing Ω in such a random
setting is given by

(∏
n∈Ω pn

)(∏
n̸∈Ω(1 − pn)

)
, where pn

is the probability of observing the sample n of the array. Next,
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we would like to maximize this likelihood by tuning the set
{pn}n∈[N ]. Note that the trivial solution pn = 1, n ∈ Ω and
pn = 0, n ̸∈ Ω is not consistent with given samples in Ω.
By taking the lower-bound of {pn} in [45, Theorem 1] into
account, we see that the highest likelihood happens when

pn =

{
1, n ∈ Ω,

min{1 , c µnK̃
2

N log3 (N)}, n ̸∈ Ω.
(17)

For n ̸∈ Ω, we expect c µnK̃
2

N log3 (N) to be small; otherwise,
the overall likelihood shall not be enough to consider Ω a typ-
ical outcome of the random sampling. Therefore, we assume
c µnK̃

2

N log3 (N) < 1 for tuning the weights; nevertheless,
we need to recheck this assumption after tuning the weight
matrices. Further, if pn is small enough for n ̸∈ Ω, we can
use the approximation

∑
n̸∈Ω log(1 − pn) ≈ −

∑
n̸∈Ω pn.

Our strategy to determine weight matrices WL,WR is to
maximize the likelihood of observing Ω in the suitable random
sampling strategy given in (3). Note that the parameters µn

involved in (17) depend on the weight matrices. In summary,
our strategy to determine WL,WR is

WL,WR = argmax
WL∈Cd×d,

WR∈Cd′×d′

−
∑
n̸∈Ω

pn ≡ argmin
WL∈Cd×d,

WR∈Cd′×d′

∑
n̸∈Ω

µn, (18)

where d′ = N − d + 1. We recall that µns defined in
(15) depend on the matrices U and V, which are in turn,
determined by the optimal solution ŷ of optimization in (12).
To simplify (18), we restrict the weight matrices to be diagonal
and real-valued as follows.

{wL,i}i∈[d], {wR,i}i∈[d′] = argmin
wL,i,wR,i∈R+

∑
n̸∈Ω

µn, (19)

where wL,i and wR,i denote the square of the i-th diagonal
elements of WL and WR, respectively. Note that the cost
function in (19) does not have a unique minimizer1. To provide
uniqueness and a closed-form solution, we set the sum of
weights to be a constant as follows

{w∗
L,i}i∈[d], {w∗

R,i}i∈[d′] = argmin
wL,i,wR,i∈R+

∑
n̸∈Ω

µn,

s.t.
∑
i∈[d]

wL,i = 1,
∑
i∈[d′]

wR,i = 1. (20)

Next, we use the following proposition to minimize a surrogate
function of the leverage scores for the diagonal and real-valued
weight matrices.

Proposition 1 ([45] - Corollary 2). In Definition 3, if WL ∈
Rd×d

+ and WR ∈ R(d′)×(d′)
+ are restricted to be non-negative-

valued diagonal matrices, i.e.,

WL := diag
(√

wL,1, . . .
√
wL,d

)
, (21a)

WR := diag
(√

wR,1, . . . ,
√
wR,d′

)
. (21b)

1Notice that the set {µn} remains unchanged by constant scaling of the
weight matrices, as the projection matrices in (16) are scale-invariant with
respect to weight matrices.

Then, the leverage scores are bounded by

µnK̃

N
≤ max

{
∥WLAn∥2F∑⌊ N

βK̃
⌋

k=1 wL,ik

,

∥∥AnW
T
R

∥∥2
F∑⌊ N

βK̃
⌋

k=1 wR,jk

}
, (22)

where wL,i1 ≤ . . . ≤ wL,id and wR,j1 ≤ . . . ≤ wR,jd′

are sorted squared diagonal elements of WL and WR,
respectively and

β = N
K̃

max{1/∥UH∥2, 1/∥VH∥2}. (23)

Proposition 1 enables us to use the upper-bound given in
(22), i.e., the objective function in (20) can be upper-bounded
by the following surrogate function.∑

n̸∈Ω

µn ≤
∑
n̸∈Ω

max
(∥WLAn∥2

F

υβ
L,N

,
∥WRAT

n∥
2
F

υβ
R,N

)
, (24)

where υβ
L,N :=

∑
i∈[⌊N/(βK̃)⌋] wL,i and υβ

R,N :=∑
j∈[⌊N/(βK̃)⌋] wR,j . Next, we further bound the denom-

inator of µ̃ns as
∑

i∈[⌊N/(βK̃)⌋] wL,i ≤ ∥WL∥2F and∑
j∈[⌊N/(βK̃)⌋] wR,j ≤ ∥WR∥2F, for the sake of simplicity.

Accordingly, we obtain the following∑
n̸∈Ω

µn ≤
∑
n̸∈Ω

max
(∥WLAn∥2

F

∥WL∥2
F

,
∥WRAT

n∥
2
F

∥WR∥2
F

)
, (25)

Because weight matrices are diagonal, the constraint in (18)
simply implies that the denominators of the surrogate function
in (25) become one in the optimization problem. Hence, we
replace the value of the elements in {µn} in (18) with their
lower-bounds (22), optimization problem (20) transforms into

W∗
L, W∗

R

= argmin
WL,WR∈R+

∑
n̸∈Ω

max
(
∥WLAn∥2F , ∥WRA

T
n∥2F

)
,

s.t.
∑
i∈[d]

wL,i = 1,
∑
i∈[d′]

wR,i = 1. (26)

Such an optimization is a convex problem that can be tractably
solved. The solution to (26) provides us with the weight
matrices used in the optimization problem (14). Then, in the
following subsection, we show that this weight choice reduces
the weighted scenario’s sample complexity to the degree of
freedom of the input signal.

B. Sample Complexity

Sample complexity—the minimum number of mea-
surements needed to ensure accurate signal reconstruc-
tion—directly [52]. Indeed, given an array of size N , the
sample complexity measures the sufficient number of mea-
surements that can guarantee a perfect recovery, which affects
hardware cost and acquisition time in practical DOA estima-
tion.

As mentioned earlier, [45] shows that for a general
weighted scenario, the required samples for perfect recovery
is O(K2 log(N)). Here, we show that the proposed design
strategy reduces the leverage scores such that the overall
sample complexity becomes O(K log(N)). Hence, we have
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the following results regarding leverage scores of the solution
to (26).

Lemma 1. The optimal weight matrices W∗
L, W∗

R solution
to optimization (26) make the leverage scores bounded above
by a positive constant b > 4, i.e.,

∑
n∈[N ]

µ̃nK̃

N
≤ b. (27)

Proof. See Appendix A.

Lemma 1 states that the proposed choice of weight matrices
can reduce the leverage scores, consequently, reducing the
sample complexity for the DOA recovery. In what follows,
we provide the sample complexity for the weighted scenario
in (14).

Proposition 2. Let y ∈ CN be a sample vector with elements
as in (2a), and let Ω represent the set of M array element
locations formed by placing an element at location n ∈ [N ]
with probability

pn = min{1, cµ̃nK̃
2 log3(N)/N}, (28)

independent of other locations, where µ̃n is the weighted
leverage score in (15). Further, let ỹΩ = PΩ(ỹ) be the vector
of observed noisy samples where the noise term e ∈ CN

satisfies ∥PΩ(e)∥2 ≤
√
Mη. Then, any solution ŷ of (14),

satisfies∥∥W∗
L

(
H (ŷ)−H (y)

)
W∗T

R

∥∥
F
≤ c2
√
Mη

N

minn p2n
, (29)

for weight matrices W∗
L and W∗

R from (26), with probability
no less than 1−N3−b1 if

M ≥ cK̃ log4 (N), (30)

and

γN ≤ min
n∈[N ]

{
∥An∥0 min{∥PU (An)∥2F, ∥PV (An)∥2F}

}
,

where d, (N − d + 1), and K̃ are the number of rows,
the number of columns, and the rank of the lifted structure
H (y), respectively. Additionally, γN := 1/8

√
log(N), c =

36864(b1 + 1) for b1 ≥ 4 and c2 < 102.

Proof. From [45, Corollary 1], we know that for lifted struc-
ture parameter RL becomes log (N). Now, by invoking the
obtained upper-bound in (27) for the leverage scores and by
applying [45, Theorem 1] to the optimization problem in
(14), we achieve the lower-bound on the sample complexity
in (30).

Interestingly, Proposition 2 provides an upper bound for the
sample complexity independent of the leverage scores when
using the weight matrices W∗

L and W∗
R. This bound is of

O(K̃ log4 (N)), which is optimal up to a logarithmic factor.

Algorithm 1 Lifted interpolation using ADMM
1: Input:
2: Observed samples yΩ ∈ CM and corresponding coor-

dinates Ω ⊂ [N ],
3: Parameters ρ, γ for the augmented Lagrangian form
4: An upper-bound η on the noise energy,
5: The number of iterations I ,
6: Output:
7: Completed Vector ŷ ∈ CN .
8: procedure LIFTED INTERPOLATION(yΩ, ρ, γ, η)
9: compute WL and WR by solving (26),

10: Λ(0) ← 0,
11: g(0) ← PΩ(y),
12: S(0),R(0) ← Polar decomposition of H (g(0))
13: for i = 1 : I do
14: g(i) ← H †(W−1

L

(
S(i)R(i)H − Λ(i)

)
W−T

R

)
+

PΩ(z)
15: F← ρ

(
WLH (g(i))WT

R +Λ(i−1)
)

16: S(i) ← FR(i−1)
(
IK̃ + ρR(i−1)HR(i−1)

)−1

17: R(i) ← FHS(i)
(
IK̃ + ρS(i)HS(i)

)−1

18: Λ(i) ← Λ(i−1) + H (g(i))− S(i)R(i)H

19: end for
20: ŷ = g(i)

21: return ŷ
22: end procedure

C. A Fast Optimization Algorithm

Due to the inherently large dimension of the ULA estima-
tion problem (14), numerical methods for the optimization in
(14) are often not tractable as the computational complexity
is prohibitive. For this reason, in this subsection, we provide
an SVD-free method for solving the weighted nuclear norm
minimization (14). In particular, the nuclear norm can be
defined as [53]:

∥X∥∗ = min
S,R,X=SRH

∥S∥2F + ∥R∥2F. (31)

Hence, (14) can be reformulated as

minimize
S,R,g∈CN

∥S∥2F + ∥R∥2F,

s.t. ∥PΩ(g)− PΩ(y)∥22 ≤
√
Mη,

WLH (g)WT
R = SRH.

(32)

We wish to apply ADMM to this modified problem formu-
lation. To do so, we first incorporate the constraints into the
cost function as

L̃ρ,γ(S,R,g,Λ) = ∥S∥2F + ∥R∥2F+ (33)

ρ∥WLH (g)WT
R − SRH +Λ∥2F + γ∥PΩ(g)− ỹΩ∥2F.

In (33), the Lagrange multiplier Λ has the same size as H (g),
and ρ and γ are arbitrary positive scalars. γ should be properly
tuned to ensure ∥PΩ(g)− ỹΩ∥2F ≤Mη2 is satisfied. We have
obtained suitable γ values through simulation results.

Note that (32) is bi-linear in terms of S and R, but not
necessarily convex. As shown in [43], [54], the above ADMM
method is known to converge when the penalty parameter ρ is
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sufficiently large. For the ADMM formulation, we divide the
minimization in (31) into simpler sub-problems. Let g(i),S(i),
R(i), and Λ(i) be the matrices estimates at the i-th iteration.
The update rules for the matrix g(i+1) is

g(i+1) =H †(W−1
L

(
S(i)R(i)H −Λ(i)

)
W−T

R

)
+ PΩ(z),

(34)

where the elements of z ∈ CN are given by

zj =
(
γyj + ρ

[
H †(S(i)R(i) −Λ(i)

)]
j

)
·
(
γ + ρ

[
H †H (ej)

]
j

)−1

, (35)

in which [·]j refers to the j-th element of the vector. Then, for
matrices S(i+1) and R(i+1), we have

S(i+1)

= argmin
S
∥S∥2F + ρ∥WLH (g(i+1))WT

R − SR(i)H +Λ(i)∥2F,

= ρ
(
WLH (g(i+1))WT

R +Λ(i)
)
R(i) ·

(
IK̃ + ρR(i)HR(i)

)−1
,

(36)

and similarly

R(i+1)

= argmin
R

∥R∥2F+∥WLH (g(i+1))WT
R−S(i+1)RH+Λ(i)∥2F,

= ρ
(
WLH (g(i+1))WT

R +Λ(i)
)H

S(i+1)

·
(
IK̃ + ρS(i+1)HS(i+1)

)−1
, (37)

and the standard update rule for the Lagrangian multiplier

Λ(i+1) =Λ(i) + H (g(i+1))− S(i+1)R(i+1)H. (38)

Algorithm 1 provides a unified summary of the overall pro-
cedure of the proposed method. In the next subsection, we
reformulate the algorithm for DOA estimation.

D. Computational Complexity

Computational complexity quantifies the number of arith-
metic operations required for performing Algorithm1, directly
affecting run-time and real-time applicability. The operation
includes all elementary arithmetic operations—additions, sub-
tractions, multiplications, and divisions. The computational
complexity of the proposed algorithm primarily arises from
the matrix operations in (34), (36) , and (37). Specifically,
updating g(i+1) in (34) involves the inversion of a matrix of
size d × d, leading to a complexity of O(d3). Similarly, the
updates of S(i+1) and R(i+1) in (36) and (37) require inverting
matrices of size K̃ × K̃ and d × d, resulting in O(K̃3) and
O(d3), respectively. In addition to these matrix inversions, ma-
trix multiplications introduce computational costs of O(d2K̃).
Overall, the per-iteration complexity of the proposed algorithm
is O(d3 + K̃3 + d2K̃), where d is the size of the structured
matrix and K̃ is the rank.

In contrast, solving the nuclear norm minimization problem
in (14) directly using CVX involves solving the SDP problem.
The complexity of SDP solvers is highly dependent on the
size of the lifted matrix and the number of constraints. For

a structured matrix of size d × (N − d + 1), the computa-
tional complexity for each iteration of CVX is approximately
O(d3(N − d + 1)3), which is significantly higher than the
proposed algorithm. Additionally, SDP solvers require storing
all constraints explicitly, leading to storage complexity of
O(d2(N − d+ 1)2), compared to the O(d(N − d+ 1) + d2)
storage required by the proposed method. Thus, the proposed
ADMM-based approach significantly reduces the computa-
tional burden and storage requirements compared to CVX
while achieving comparable recovery accuracy. This efficiency
makes the method more suitable for real-time applications.

V. DOA ESTIMATION FOR ULA

We have previously described how to interpolate the mea-
sured data on a non-uniform array (yΩ) to obtain a full uniform
array (ŷ). Next, we need to estimate the DOAs. The Prony
method is one of the simplest yet successful techniques for
noiseless samples [21]. Due to the involved algebraic opera-
tions, the performance substantially degrades with noise [13].
Therefore, we opt to use a super-resolution technique to
estimate the final DOAs; the involved optimizations add to
the complexity of the method but make the procedure more
robust to non-idealities such as additive noise.

By completing the non-uniform array elements yΩ, we
use the super-resolution method to estimate DOAs from the
estimated full linear uniform array, i.e., ŷ. This problem was
previously studied in [31]. For completeness, we provide a
summary of this method below. To recover the DOAs, we
estimate τks along with their amplitudes bk. For this purpose,
similar to (6), we minimize the TV norm of a continuous-
domain signal h that produces ŷ in a linear fashion:

minimize
h

∥h∥TV s.t. A(h) = ŷ, (39)

where ∥h∥TV is equal to the amplitude sum
∑

k∈[K] bk.
Here, ŷ stands for the recovered full linear uniform array
from Algorithm 1. Using the dual formulation, the infinite-
dimensional optimization in (39) reduces to finding the roots
of a trigonometric polynomial. More precisely, the Lagrange
dual problem associated with (39) reads [31] as

qopt = argmax
q∈CN

R
(
qHŷ

)
s.t. sup

τ
|qHa(τ)| ≤ 1, (40)

where a(τ) is a(τ) =
[
a0(τ), a1(τ), . . . , aN−1(τ)

]T
, with

an(τ) following the definition in (1). For finding τks, we shall
solve |qH

opta(τ)| = 1 (a trigonometric polynomial equation).
After deriving τks, we can obtain bks by solving the system
of equations

∑
k∈[K] e

−j2πτknbk = ŷ[n] for n ∈ [N ], using
the method of least squares.

Remark 3. The formulation in (39) enforces exact data fitting
and hence admits perfect recovery in the noiseless regime
whenever the sample-complexity conditions of Proposition 2
are met. In practice, however, measurements are often con-
taminated by noise. To account for this, one may replace the
hard equality constraint in (39) with a tolerance ball below.

∥A(h)− ŷ∥F ≤ κ, (41)
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Figure 3. DOA estimation performance of BP, ANM, EMaC, and WLi-EMaC algorithms in Sec. VII-A; the circles represent the 360◦ angular space and the
height of the bars indicate the strength of the received signal from each source. The 3 source setups consist of 8 different sources in the first row, two pairs
of which are seemingly co-angled, and 9 sources with two almost co-angled triplets in the second row.

TABLE I
THE THREE SOURCE SETUPS IN DOA ESTIMATION SIMULATIONS FOR

FIGURES 3, 4, 5 AND 7 IN SECS. VII-A, VII-B, VII-C, AND VII-D

Scenario Angle of Sources Amplitudes

(a)
−71.56◦, −34.58◦, −34.44◦,
−14.58◦, 8.74◦, 26.80◦, 26.92◦,
48.08◦

3.79, 3.06, 3.89,
4.14, 2.18, 2.02,
3.85,2.18

(b)
−36.17◦, −22.66◦, 35.20◦,
35.48◦, 35.76◦, 49.60◦, 59.66◦,
60.11◦, 60.58◦

3.07, 2.28, 2.17,
2.18, 3.43, 2.78,
2.46, 3.60, 3.31

(c) −25.48◦, −24.04◦, −22.79◦,
47.12◦, 48.83◦

2.66, 2.59, 2.61,
3.75, 2.83

(d) −30.46◦, −6.89◦, 41.29◦ 2.62, 3.86, 3.48

where κ can be chosen according to the upper bound on the
interpolation error. The lifted error given in Proposition 2
can also provide an upper bound for the interpolation error,
i.e., κ = c2

√
Mη N

minn p2
n

. Although this provides a principled
estimate of the allowable deviation (and thus a guideline for
selecting κ), the resulting bound is generally conservative and
need not be tight in all scenarios.

A. DOA Recovery Performance

The central issue revolves around the degree to which ULA
estimation can improve the DOA estimation problem in (40).
To address this matter, we need to identify the conditions
under which the estimated θ̂ks coincide with the true θ̂ks.
In particular, the recovery of DOAs depends on the minimal
separation of DOAs {θk}Kk=1 or the minimal wrap-around
distance between any pair of distinct DOAs.

Proposition 3. ([55, Theorem 2.2]) Let Θ = {θk}Kk=1 be the
set be all the received DOAs in (2) for an array of size N and

the ∆(Θ) be the minimal wrap-around distance defined as

∆(Θ) = inf
θi,θj∈Θ
θi ̸=θj

min
q∈Z

∣∣ sin(θi)− sin(θj) + q
∣∣. (42)

For N ≫ 1, if the minimum separation obeys

∆(Θ) ≥ λ2.52

sdN
, (43)

then qopt is the unique solution to (39). Here, sd denotes the
spacing of array elements, and λ is the wavelength of the
reflected signal from the source.

Proposition 3 clearly indicates that for a ULA with N ′

antenna elements, the separation condition must be ∆(Θ) ≤
O(1/N ′). Therefore, by using the proposed weighted method
alongside Proposition 2, it is deducible that, with a high
probability, the separation condition ∆(Θ) for SLA array
of size M = cK log4(N), enhances from an initial value
O(1/K log4(N)) to O(1/N).

Remark 4. We note that both the denoising and interpolation
steps rely on the gridless recovery principle, which implies that
DOAs can be estimated without prior knowledge of the number
of sources. Moreover, although measurements are corrupted
by Gaussian noise, Proposition 2 shows that the interpolation
error decays on the order of 1/N , so that for sufficiently
large N and moderate to high SNR the recovered lifted matrix
converges arbitrarily close to the true one, which in turn
guarantees accurate DOA estimation without prior knowledge
of the number of sources.

VI. GENERALIZATION TO MULTIPLE SNAPSHOT CASE

Extending the proposed DOA estimation framework to a
multiple-snapshot scenario significantly enhances the robust-
ness and applicability of our approach. To this end, the gener-
alization is addressed through three principal steps: First, we
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generalize the Hankel transform to multiple snapshots; second,
we adapt the design of the weight matrices to account for the
aggregated structure across snapshots; and third, we provide
a method for performing estimation using these extended
weights.

More precisely, consider a set of T measurement vectors
(snapshots), each denoted by yt ∈ CN , with t ∈ [T ]. Each
vector xt retains a common spectral structure, permitting a
block Hankel matrix representation. Thus, an extended block
Hankel matrix Hdt,d : CN×T 7→ Cdtd×(T−dt+1)(N−d+1) is
defined as:

Hdt,d(Y) :=


H (y1) H (y2) . . . H (yT−dt+1)
H (y2) H (y3) . . . H (yT−dt+2)

...
...

. . .
...

H (ydt
) H (ydt+1) . . . H (yT )

 ,

where Y := [y1, . . . ,yT ] ∈ CN×T contains all T snapshot
measurements and each H (yt) ∈ Cd×(N−d+1) is the Hankel
transform of snapshot t. This concatenation exploits spectral
correlations across snapshots, leading to a low-rank structure
whose rank is bounded by the number of distinct spectral
components shared across the snapshots [56], [14]. Conse-
quently, we interpolate the matrix of T multiple measurements
by solving the following weighted matrix completion.

Ŷ =argmin
G∈CN×T

∥Wb
LH(G)WR

b,H∥∗,

s.t. ∥PΩ(G)− PΩ(Y)∥F ≤
√
TMη, (44)

where Wb
L and Wb

R are left and right square weighed matrices
with size of dtd×dtd and (T −dt+1)(N−d+1)×(T −dt+
1)(N−d+1), respectively. While for the interpolation step, we
do not need to impose any structure on the weighted matrices,
and the leverage score can be refined by only replacing the
weighted matrices Wb

L and Wb
R in (15), we incorporate the

concatenated Hankel structure for design the weighted matri-
ces to use Proposition 1. Indeed, we consider the following
block Hankel structure for the weighted matrices.

Hd(W) :=


W

(1)
L W

(2)
L . . . W

(T−dt+1)
L

W
(2)
L W

(3)
L . . . W

(T−dt+2)
L

...
...

. . .
...

W
(dt)
L W

(dt+1)
L . . . W

(T )
L

 ,

where each block of W(t)
L or W(t)

R are restricted to be diagonal
as in (21a). Then, to design the weighted matrix, we pose the
following minimization,

{w(t)
L,i}i∈[d], {w

(t)
R,i}i∈[d′] = argmin

w
(t)
L,i,w

(t)
R,i∈R+

∑
n̸∈Ω

µ̃n, (45)

where w
(t)
L,i denotes element i of diag of the weight matrix

W
(t)
L . Similarly, to obtain a unique minimizer for the cost in

(45), we propose the sum of each diag weight to be a constant,
i.e,

{w(t)∗
L,i }i∈[d], {w

(t)∗
R,i }i∈[d′] = argmin

w
(t)
L,i,w

(t)
R,i∈R+

∑
n̸∈Ω

µn,

s.t.
∑
i∈[d]

w
(t)
L,i = 1,

∑
i∈[d′]

w
(t)
R,i = 1. (46)

The advantage of such a block Hankel structure for the weight
matrices is that we can use similar arguments from (20) to
(26) and the fact that the constraints are over each block,
and optimizing each weight block, W(t)

L and W
(t)
R separately.

Indeed, the upper bound on µn is the Frobenius norm and
decomposable in terms of each block, and together with
separate constraints, makes the optimization of the weighted
separable. Specifically, each block of diagonal weights can be
obtained by solving the following T optimizations.

W
(t)∗
L ,W

(t)∗
R = argmin

W
(t)
L ,W

(t)
R

∑
n̸∈Ω(t)

max
(
|W(t)

L An|2F, |W
(t)
R AT

n|2F
)
,

s.t.
∑
i∈[d]

w
(t)
L,i = 1,

∑
i∈[d′]

w
(t)
R,i = 1, (47)

where Ω(t) denotes the subset of the antenna selected at
snapshot t. We note that in most cases Ω(t) is the same for
all the snapshots, as we do not change the location of the
antenna array in most of the applications. Consequently, all
T optimizations would result in the same weighted matrices.
After solving these T convex optimizations in (47), we com-
plete the array over multiple snapshots by solving the weighted
optimization problem in (44).

By completing the non-uniform array elements YΩ, we
stack the T estimated ULA vectors into Ŷ ∈ CN×T and re-
cover the standard spectral components by solving the multiple
measurement vector atomic-norm method [48]. In the noiseless
case, we enforce exact data fitting:

X̂ = arg min
X∈CN×T

∥X∥A s.t. A(X) = Ŷ,

where the MMV atomic norm is defined via the continuous
dictionary of rank-one atoms

A =
{
a(τ)bH : τ ∈ [0, 1), ∥b∥2 = 1,b ∈ CT

}
, (48)

with a(τ) := [a0(τ), . . . , aN (τ)] and

∥X∥A = inf
{∑

k

ck : X =
∑
k

ck a(τk)b
H
k ,

ck ≥ 0, ∥bk∥2 = 1
}
.

Both programs admit equivalent semidefinite-program repre-
sentations and can be solved efficiently. The dual problem of
the noiseless formulation reads

Zopt = arg max
Z∈CN×T

ℜ⟨Z, Ŷ⟩ s.t. sup
τ∈[0,1)

∥∥ZHa(τ)
∥∥
2
≤ 1,

and the support locations {τk} coincide with the frequencies
at which the dual-polynomial norm ∥ZH

opta(τ)∥2 achieves
its maximum of one. The corresponding snapshot amplitudes
{bk} are then obtained via least-squares fitting of Ŷ to the
recovered spectral atoms.
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Figure 4. Scenario in Sec. VII-B.(a) and (b) respectively represent the probability of correct DOA estimation (BP, Atomic, EMaC, DEMaC, WLi-EMaC and
WLi-DEMaC algorithms) and the normalized mean square error of the SLA interpolation to form the ULA (Atomic, EMaC, DEMaC, WLi-EMaC algorithms)
in terms of the size of the SLA for a fixed source setup with 5 sources, two and triplet of which are almost co-angled.

VII. NUMERICAL SIMULATIONS

For our numerical simulations, we consider two choices
of the lifting structure: (i) Hankel and (ii) double Hankel.
These two choices result in two implementations of the
proposed algorithm: WLi-EMaC for Hankle and WLi-DEMaC
for double Hankle - see also [45]. The naming of these two
algorithms is because of the similarity of the method with
EMaC and DEMaC in [13], [16], respectively. This section
presents several numerical experiments comparing WLi-EMaC
and WLi-DEMaC with competing methods for the single
snapshot DOA problem. More specifically, we consider (i) the
EMaC method [13], (ii) the double EMaC (DEMaC) method
[16], (iii) the ANM technique [11], and (iv) the grid-based
implementation via the basis pursuit technique [17]. Before
proceeding further, let us clarify some general aspects of our
simulations.
ULA setting: A requirement for all the above methods–
WLi-EMaC, WLi-DEMaC, EMaC, DEMaC, and ANM– for
applicability to the DOA estimation using a non-uniform grid
is a completion procedure to form a uniform grid. After this
completion step, the DOAs are obtained by applying the super-
resolution technique in [31] over the estimated ULA. We
assume the λ/2 spacing for this uniform grid, where λ is the
wavelength in (1). Additionally, we assume the ULA consists
of an odd number of array elements. These assumptions enable
us to set the pencil parameter d such that a square Hankel
matrix is achieved.
Antenna/Source location: SLA elements are selected uni-
formly at random from the ULA. For the source locations, two
settings are considered: (i) pre-determined source locations,
where some sources are collocated, and (ii) random source
locations. For (i), the pre-determined source angles and am-
plitudes are provided in Table I. For (ii), the DOA angles in (1)
are generated uniformly at random in the range [−90◦, 90◦].
We note that this random selection ensures a general treatment
of SLA configurations.
Estimation performance: Generally, the array interpolation
performance is evaluated through the normalized mean square

(NMSE), which is defined as

NMSE :=
∥y − ŷ∥22
∥y∥22

, (49)

where y is the actual array samples and ŷ is the interpolated
array using Algorithm 1. In Section VII-B and VII-C, a
different metric is used.
Grid-based DOA estimation: In our simulations, we also
compare the super-resolution methods with a grid-based DOA
estimation. We uniformly divide the interval [−1, 1] into 212

segments for the latter. The outcome of the angle estimation
is, then, the angle corresponding to one such grid position.
Note that the DOA problem in the grid-based setting simplifies
to the standard compressed sensing problem. As such, the
solution is determined through basis pursuit (BP). Therefore,
the label BP in our figures in this section indicates this grid-
based method.

Finally, for the parameters of the ADMM method, we set
ρ = 103 and γ = 105. Note that the value of ρ needs to be
chosen sufficiently large to guarantee convergence; thus, larger
values are also allowed. In contrast, γ is tuned for each test.

A. DOA Estimation

In this experiment, we evaluate the performance for (i)
four methods: BP, ANM, EMaC, and WLi-EMaC, and for (ii)
two source structures under a noiseless setting (η = 0). We
consider an array aperture of 100λ/2 and a 25-element SLA.
Source setups are chosen as the first two rows of Table I.
In Figure 3, the estimated DOAs and the original DOAs are
plotted. The results in Figures 3(a)-3(d) correspond to a setting
with 8 sources; two pairs of sources are intentionally placed
very close. The WLi-EMaC has the best performance in this
setting. First, BP could not resolve the seemingly collocated
two sources. While ANM and EMaC were able to detect
two separate sources in these locations, one of the estimated
sources is greatly suppressed. Besides, both methods predict
several small ghost sources. Note that these ghost sources
are primarily due to interpolation inaccuracies and model
imperfections inherent in existing processes, which are further
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Figure 5. Scenario in Sec. VII-C. (a) and (b) respectively represent the probability of correct DOA estimation (BP, Atomic, EMaC, and WLi-EMaC algorithms)
and the normalized mean square error of the SLA interpolation to form the ULA (Atomic, EMaC, and WLi-EMaC algorithms) for a 20-element SLA in terms
of the input SNR. The location of 5 sources is fixed such that two pairs are almost co-angled.
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Figure 6. Performance of the CVX and ADMM implementation in Sec.
VII-D. of WLi-EMaC in array interpolation with aperture size 48λ/2 for
two scenarios. In Figure 6(a), two algorithm performances are compared in
noiseless for SLA with 5 to 30 number of elements in terms of NMSE.
In Figure 6(b), the performance of the algorithms is compared for different
SNRs in terms of NMSE. In both cases, 4 sources are generated with random
directions.
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Figure 7. Performance of ADMM algorithm in Sec. VII-Din solving WLi-
EMaC for different γs for following scenario: 30 sample SLA with SNR =
20dB is chosen randomly from ULA with 60λ/2 aperture size. Source setup
is the last row of Tabel I, and ρ is 103 in all simulations

exacerbated by the sparse and non-uniform nature of the
array; however, our proposed WLi-EMaC method significantly
reduces their occurrence and amplitude by leveraging adaptive
weighting to minimize interpolation errors.

In Figures 3(e)-3(h), we have included 9 sources with
two almost collocated triplets. While WLi-EMaC detects all
source locations correctly, with unbalanced amplitudes, it still
performs best among the considered methods.

B. The Effect of the Array Size

To investigate the effect of the number of array elements in
the overall performance, again, we consider a uniform array
with aperture 58λ/2. We further form the SLA with 5 to 26
elements. We consider scenario (c) in Table I.

The first, second, and third sources are seemingly collo-
cated, as well as four and five. Note that, for all θi and θj ,
| sin(θi)− sin(θj)| ≥ 0.01. For this scenario, DOA estimation
is considered successful if there is only one estimated angle
θ̂ for the angle θ that satisfies | sin(θ)− sin(θ̂)| ≤ 0.005.

In Figure 4(a), the percentage of correct source recovery
concerning the size of the SLA is plotted. The performance
is averaged over 100 random realizations of the SLA ele-
ments for each curve. As expected, the recovery percentage
increases as the elements increase. The results show that the
EMaC-based algorithms outperform the other two methods. In
addition, the weighted versions of EMaC and DEMaC – WLi-
EMaC and WLi-DEMaC – have slightly better performances.

In Figure 4(b), the NMSE of the estimated unobserved
ULA elements in the SLA is depicted. These curves represent
the performance of the involved matrix completion procedure
(therefore, the BP method is excluded here). Weighted-based
methods have smaller NMSE values than their corresponding
structures in most parts. Also, DEMaC performs better than
EMaC for most sample sizes; however, WLi-EMaC outper-
forms DEMaC for larger sample sizes.

C. Robustness Against Noise

To investigate the methods’ estimation performance in a
noisy setting, we consider the ULA with 100λ/2 aperture and
fix the size of the SLA as 20. We consider the 5-source setup of
the previous subsection and use the same criteria for successful
DOA estimation. In this section, we investigate WLi-EMaC
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performance. For each SNR value, we consider 100 random
realizations of the SLA with 20 elements.

In Figures 5(a) and 5(b), the percentage of true source
recovery and the average NMSE in the matrix completion
procedure are shown, respectively. While the performance of
all the methods degrades gradually as the SNR decreases,
WLi-EMaC has considerably superior performance.

Note that the proposed WLi-EMaC and WLi-DEMaC are
evaluated in scenarios with varying numbers of sources,e.g.,
Figures 3,4, and 5. The array completion method consistently
demonstrated accurate DOA recovery without requiring prior
knowledge of the number of sources, highlighting its adapt-
ability and flexibility in practical applications.

Moreover, to assess the impact of the number of snapshots
T on DOA estimation under a fixed noise level, we fix SNR =
10 dB and vary T from 1 to 10. For each T , we generate 100
independent SLA realizations (each with 20 sensors randomly
selected from the 100λ/2 ULA) and simulate the same 5-
source scenario. Figure 8 shows the average NMSE of the
matrix-completion step as a function of T .

As T increases, with a single snapshot the NMSE remains
high, whereas by T = 10 snapshots the NMSE falls around
−10 dB. These results confirm that WLi-EMaC effectively
leverages temporal diversity to enhance robustness against
noise, achieving near-optimal performance with a moderate
number of snapshots.

D. ADMM Algorithm Versus Convex Implementation

In closing, we compare the performance of the ADMM
algorithm versus the CVX toolbox [51] in terms of accuracy
and complexity for the noiseless and noisy scenarios. In the
first setup, we consider a ULA with aperture 48λ/2, and
form an SLA with 5 to 30 elements. In the noisy case, we
create a 25-element SLA and SNRs between 0 dB and 25 dB.
Furthermore, the direction of 4 sources is chosen uniformly
at random in both scenarios. In Figure 6, the performance of
the ADMM algorithm compared to the CVX Toolbox for both
noiseless and noisy cases is shown.

We observe that ADMM is slightly less accurate with the
considered number of iterations; however, the computational
cost is drastically lower. More specifically, ADMM was around
34 times faster than the CVX Toolbox in this experiment. To
investigate the effect of γ in the convergence of the ADMM
algorithm, we consider a ULA with 60λ/2 aperture size from
a 30-element SLA and add noise with SNR = 20 dB to the
SLA samples. We consider the 3-source setup in the last row
of Table I, set ρ = 103, and sketch the normalized mean-
squared error of the recovered ULA by the ADMM algorithm
for 500, 1000, 2000, and 5000 iterations in Figure 7. Each
curve is averaged over 100 Monte Carlo trials. In Figure 7,
we observe that for γ ≥ 104, the ADMM algorithm with the
considered number of iterations reaches its converging point.

E. Performance Comparison with Analytical Lower Bounds

For the last simulation, we evaluate the performance of the
proposed DOA estimation method compared to state-of-the-art
methods. Here, to compute the DOA estimation performance,
we use root mean square error (RMSE) as a metric, which is
defined by

RMSE :=

√√√√ 1

K

K∑
k=1

E{(θ̂k − θk)2}, (50)

where θk is the actual angle of source k and θ̂k is the
estimation thereof. We also provide RMSE of the methods
against the Cramér-Rao bound (CRB) [57] and the Ziv-
Zakai bound (ZZB) [58] to assess theoretical and practical
limitations. The scenario considers two closely spaced sources
with a separation of | sin(θi)− sin(θj)| = 0.015 and an array
with an aperture size of 58λ/2 consisting of 25 elements.
Each experiment has been performed over 500 Monte Carlo
trials. This setup provides insight into different algorithms’
resolution capabilities and robustness under challenging con-
ditions. The result is depicted in Figure 9. We observe that
the proposed WLi-EMaC and WLi-DEMaC outperform the
other methods in terms of RMSE. However, in the low SNR
regime (< 10 dB), the weighted schemes appear to exceed the
theoretical lower bounds; we speculate this artifact is due to
the finite number of Monte Carlo trials.

VIII. CONCLUSION

In this paper, we proposed a method for the direction
of arrival (DOA) estimation for non-uniformly spaced linear
antenna arrays. Our method comprised three steps: (i) the
array samples are lifted to a chosen structured matrix, such as
Hankel or Toeplitz. Then, (ii) left and right weighting matrices
were determined to reflect the sample informativeness, and
(iii) the weighted and lifted structure was used to estimate the
noiseless uniformly-spaced array samples through low-rank
matrix completion. For a given choice of the lifting structured
matrix, this weighting method generalizes other low-rank
matrix completion methods introduced in the literature, such as
EMaC – for Hankel lifting– and DEMaC – for double Hankel.
Numerical results showed that the weighted lifted (WLi-)
method generally outperforms the case without weighting. In
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other words, WLi-EMaC/WLi-DEMac outperforms EMaC and
DEMaC regarding the NMSE metric.

APPENDIX

A. Proof of Lemma 1

Let us begin by describing the proof strategy from a high-
level perspective. To obtain an upper-bound for the leverage
scores, we first use a surrogate function for simplifying the
minimization in (26). For this surrogate function, the upper
bound allows us to obtain a closed-form solution for the weight
matrices. Accordingly, we prove the upper-bound for the
leverage scores using the resultant weight matrices; therefore,
the upper bound is valid for optimization in (26) as we used
a surrogate approximation.

Towards obtaining a closed-form solution, instead of solving
(26), one can minimize an upper-bound of the objective
function as

minimize
WL,WR∈R+

∑
n̸∈Ω

∥WLAn∥2F + ∥WRA
T
n∥2F (51)

s.t. ∥WL∥2F = 1, ∥WR∥2F = 1.

or equivalently

minimize
WL,WR∈R+

tr
(
WT

LWLG
L
Ω

)
+ tr

(
WT

RWRG
R
Ω

)
,

s.t. ∥WL∥2F = 1, ∥WR∥2F = 1,

where

GL
Ω :=

∑
n̸∈Ω

AnA
T
n, GR

Ω :=
∑
n̸∈Ω

AT
nAn.

The latter minimization problem consists of two separate
objective functions, and it can be divided into two separate

optimization problems as below:

w∗
L := argmin

wL∈R+

tr
(
wT

Ldiag(G
L
Ω)

)
,

s.t.
∑
i∈[d]

wL,i = 1, (52a)

w∗
R := argmin

wR∈R+

tr
(
wT

Rdiag(G
R
Ω)

)
,

s.t.
∑

i∈[N−d+1]

wR,i = 1, (52b)

where wL = [wL,1, . . . , wL,d]
T,wR =

[wR,1, . . . , wR,N−d+1]
T. The minimum to (52) occurs

when all elements of wL and wR become zero except for the
ones selecting the minimum diagonal value of GL

Ω and GR
Ω ,

respectively. The minimum diagonal value of GL
Ω and GR

Ω

can be bounded by the maximum diagonal value, which can
be written as

0 ≤ min{diag(GL
Ω)} ≤ 2 log(d), (53a)

0 ≤ min{diag(GR
Ω)} ≤ 2 log(d). (53b)

Note that given Ω, the minimum values can even become
zero. Then, by substituting w∗

L and w∗
R into (15) and (51)

and summing up over n, we obtain∑
n∈[N ] µ̃nK̃

N
≤

∑
n∈[N ]

∥W∗
LAn∥2F + ∥W∗

RA
T
n∥2F,

≤ 4 log(N), (54)

for b = 4; this concludes the proof.
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l’Ecole Polytechnique, vol. 1, pp. 24–76, 1795.

[22] R. Roy and T. Kailath, “ESPRIT-estimation of signal parameters via
rotational invariance techniques,” IEEE Trans. Acoust., Speech, Singal
Processing, vol. 37, no. 7, pp. 984–995, 1989.

[23] A. Moghaddamjoo, “Application of spatial filters to DOA estimation of
coherent sources,” IEEE Trans. Sig. Proc., vol. 39, no. 1, pp. 221–224,
1991.

[24] D. Malioutov, M. Cetin, and A. S. Willsky, “A sparse signal recon-
struction perspective for source localization with sensor arrays,” IEEE
Trans. Sig. Proc., vol. 53, no. 8, pp. 3010–3022, 2005.

[25] K. Han and A. Nehorai, “Improved source number detection and
direction estimation with nested arrays and ulas using jackknifing,” IEEE
Trans. Sig. Proc., vol. 61, no. 23, pp. 6118–6128, 2013.

[26] P. Stoica and Y. Selen, “Model-order selection: a review of information
criterion rules,” IEEE Signal Processing Mag., vol. 21, no. 4, pp. 36–47,
2004.

[27] H. Kim and M. Viberg, “Two decades of array signal processing
research,” IEEE Signal Processing Mag., vol. 13, no. 4, pp. 67–94, 1996.

[28] D. L. Donoho, “Compressed sensing,” IEEE Trans. Info. Theo., vol. 52,
no. 4, pp. 1289–1306, 2006.

[29] E. J. Candes, J. K. Romberg, and T. Tao, “Stable signal recovery from
incomplete and inaccurate measurements,” Communications on Pure and
Applied Mathematics, vol. 59, no. 8, pp. 1207–1223, 2006.

[30] M. F. Duarte and R. G. Baraniuk, “Spectral compressive sensing,”
Applied and Computational Harmonic Analysis, vol. 35, no. 1, pp. 111–
129, 2013.

[31] E. J. Candès and C. Fernandez-Granda, “Towards a mathematical theory
of super-resolution,” Communications on pure and applied Mathematics,
vol. 67, no. 6, pp. 906–956, 2014.

[32] G. Xu and Z. Xu, “Compressed sensing matrices from Fourier matrices,”
IEEE Trans. Info. Theo., vol. 61, no. 1, pp. 469–478, 2014.

[33] Y. Chi, L. L. Scharf, A. Pezeshki, and A. R. Calderbank, “Sensitivity to
basis mismatch in compressed sensing,” IEEE Trans. Sig. Proc., vol. 59,
no. 5, pp. 2182–2195, 2011.

[34] G. Tang, B. N. Bhaskar, P. Shah, and B. Recht, “Compressed sensing
off the grid,” IEEE Trans. Info. Theo., vol. 59, no. 11, pp. 7465–7490,
2013.

[35] Y. Wu, M. B. Wakin, and P. Gerstoft, “Non-uniform array and frequency
spacing for regularization-free gridless doa,” IEEE Trans. Sig. Proc.,
2024.

[36] Y. Wu, M. B. Wakin, P. Gerstoft, and Y. Park, “Non-uniform frequency
spacing for regularization-free gridless doa,” in Proc. Intl. Conf. Acous-
tics Speech and Sig. Proc., 2024, pp. 9291–9295.

[37] Y. Zhao, P. Chen, Z. Cao, and X. Wang, “Noncovanm: Gridless DOA
estimation for LPDF system,” IEEE Trans. Veh. Tech., 2023.

[38] T.-D. Hoang, X. Huang, and P. Qin, “Low-complexity direction-of-
arrival estimation with orthogonal matching pursuit for large-scale lens
antenna array,” IEEE Trans. on Commun., 2024.

[39] F. Dong, W. Wang, and B. Xue, “Atomic norm minimization based doa
estimation with lens antenna arrays,” in CIE International Conference
on Radar. IEEE, 2021, pp. 2011–2015.

[40] X. Zhang, Z. Zheng, W.-Q. Wang, and H. C. So, “DOA estimation of
coherent sources using coprime array via atomic norm minimization,”
IEEE Signal Process. Lett., vol. 29, pp. 1312–1316, 2022.

[41] V. Chandrasekaran, B. Recht, P. A. Parrilo, and A. S. Willsky, “The con-
vex geometry of linear inverse problems,” Foundations of Computational
Mathematics, vol. 12, no. 6, pp. 805–849, 2012.

[42] Y. Hua, “Estimating two-dimensional frequencies by matrix enhance-
ment and matrix pencil,” IEEE Trans. Sig. Proc., vol. 40, no. 9, pp.
2267–2280, 1992.

[43] J. C. Ye, J. M. Kim, K. H. Jin, and K. Lee, “Compressive sam-
pling using annihilating filter-based low-rank interpolation,” IEEE
Trans. Info. Theo., vol. 63, no. 2, pp. 777–801, 2016.

[44] M. Bokaei, S. Razavikia, A. Amini, and S. Rini, “Two-snapshot DOA
estimation via Hankel-structured matrix completion,” in Proc. Intl. Conf.
Acoustics Speech and Sig. Proc., 2022, pp. 5018–5022.

[45] M. Bokaei, S. Razavikia, S. Rini, A. Amini, and H. Behrouzi, “Harmonic
retrieval using weighted lifted-structure low-rank matrix completion,”
Signal Processing, p. 109253, 2023.

[46] Y. Chen, S. Bhojanapalli, S. Sanghavi, and R. Ward, “Coherent matrix
completion,” in International Conference on Machine Learning. PMLR,
2014, pp. 674–682.

[47] S. Boyd, N. Parikh, and E. Chu, Distributed optimization and statistical
learning via the alternating direction method of multipliers. Now
Publishers Inc, 2011.

[48] Y. Li and Y. Chi, “Off-the-grid line spectrum denoising and estimation
with multiple measurement vectors,” IEEE Trans. Sig. Proc., vol. 64,
no. 5, pp. 1257–1269, 2015.

[49] Z. Yang and L. Xie, “On gridless sparse methods for line spectral
estimation from complete and incomplete data,” IEEE Trans. Sig. Proc.,
vol. 63, no. 12, pp. 3139–3153, 2015.

[50] Y. Chen, S. Bhojanapalli, S. Sanghavi, and R. Ward, “Completing any
low-rank matrix, provably,” The Journal of Machine Learning Research,
vol. 16, no. 1, pp. 2999–3034, 2015.

[51] M. Grant and S. Boyd, “CVX: Matlab software for disciplined convex
programming, version 2.1,” http://cvxr.com/cvx, Mar. 2014.

[52] B. Bah and R. Ward, “The sample complexity of weighted sparse
approximation,” IEEE Trans. Sig. Proc., vol. 64, no. 12, pp. 3145–3155,
2016.

[53] N. Srebro, “Learning with matrix factorizations,” Ph.D. dissertation,
MIT, 2004.

[54] M. Hong, Z.-Q. Luo, and M. Razaviyayn, “Convergence analysis of
alternating direction method of multipliers for a family of nonconvex
problems,” in Proc. Intl. Conf. Acoustics Speech and Sig. Proc., 2015,
pp. 3836–3840.

[55] C. Fernandez-Granda, “Super-resolution of point sources via convex
programming,” Information and Inference: A Journal of the IMA, vol. 5,
no. 3, pp. 251–303, 2016.

[56] Y. Chen and Y. Chi, “Spectral compressed sensing via structured
matrix completion,” in Proceedings of the 30th International Conference
on International Conference on Machine Learning - Volume 28, ser.
ICML’13. JMLR.org, 2013, p. III–414–III–422.

[57] H. Cramér, Mathematical methods of statistics. Princeton university
press, 1999, vol. 26.

[58] Z. Zhang, Z. Shi, and Y. Gu, “Ziv-zakai bound for doas estimation,”
IEEE Trans. Sig. Proc., vol. 71, pp. 136–149, 2022.

http://cvxr.com/cvx

	Introduction
	Literature Review
	Contributions
	Organization

	System Model
	Signal Model
	DOA Estimation

	Proposed Method and Formulation
	Lifting Operator
	Matrix Completion

	Converting SLA to ULA
	Design of the Weight Matrices
	Sample Complexity
	A Fast Optimization Algorithm
	Computational Complexity

	DOA Estimation for ULA
	DOA Recovery Performance

	Generalization to Multiple Snapshot Case
	Numerical Simulations
	DOA Estimation
	The Effect of the Array Size
	Robustness Against Noise
	ADMM Algorithm Versus Convex Implementation
	Performance Comparison with Analytical Lower Bounds

	Conclusion
	Appendix
	Proof of Lemma 1

	References

