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Close-to-optimal Counter Histogram-Based
Forensics using Mean Structural Similarity Index

Metric
Reza Kazemi, Arash Amini,Borna Khodabandeh, Morteza Alikhani

Abstract—Image forensics and counter forensics (CF) are two
competing fields that have experienced significant developments
in recent years. Interestingly, the use of histogram is popular
in both forensic detectors and counter-forensic methods. In this
work, we focus on the histogram-based CF methods; in particular,
we propose a quasi-convex version of SSIM and MSSIM as the
cost function of CF which helps in restricting search domain
for optimal solution to the CF problem. Also, we propose two
sub-optimal methods for this problem: 1) a gradient descent
version of the optimal counter-forensics Method (OCM) with the
cost function MSSIM instead of MSE (which we call GDOCM),
and 2) another method that employs unitary matrices as the
transfer matrix (which we call UMM). We numerically compare
the proposed methods with the OCM method in different settings
including the common JPEG compression detection scenario.
Our experiments confirm superiority of the proposed methods
compared to OCM.

Index Terms—Counter forensics, histogram-based forensics,
image forensics, SSIM

I. INTRODUCTION

W ITH the spread of multimedia contents and image
processing and generating tools, originality of images

and image integrity have become important. The release of
manipulated or fake images influences different areas such as
judicial systems, economics, etc [1], e.g. [2]–[4]. As a result,
digital image forensics has become an important and growing
area of research. This caused a rivalry between forensics and
counter forensics [5]. The goal in forensics is to determine
whether a given content is original or deliberately manipulated.
In contrast, the goal in counter-forensics (CF) techniques is to
mislead forensics detectors.

Related Works

The CF methods can be categorized based on different
aspects. [6] reviews various categories for image integrity
techniques and [7] studies different categories of CF tech-
niques based on their manipulation approaches and the image
forensics detection methods they aim to attack. More recent CF
and counter-CF methods are based on machine learning (ML);
[1] reviews some of the image forensics, counter forensics, and
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anti-counter forensics. Deep learning (DL) is also strong tool
employed for image forensics [8]. A limitation of the ML and
DL-based methods in real applications is their vulnerabilities
in the detection of adversarial and train-test data mismatch [1].
For this reason, traditional methods (even heuristic methods),
are still of great importance. It is also possible to combine
them with new ML-based methods.

Two of the widely used counter image forensics detectors
are JPEG and double JPEG compression [9]–[12]. To bypass
the double JPEG compression test, some improvements for
the forensics methods are proposed [13]–[16]. Later, some
other works in the field of double JPEG compression detectors
in image forensics have been done such as in [13]–[16]. In
particular, [16] proposed an adversary-aware double JPEG
compression detector that detects universal counter forensics
of double JPEG compression.

Analyzing the statistics of an image, including its histogram,
is the most common image forensics technique. [17] intro-
duced an algorithm to detect contrast enhancement based on
the fact that natural images have smooth histograms in contrast
to manipulated contrast-enhanced images that have some picks
and gaps artifacts in their histogram. A universal CF approach
that aims to hide traces on the histogram of the images has
been introduced in [18], [19]. Similarly, optimal attacking
strategies are proposed in [5], [20] for the histogram-based
forensics detectors assuming the cost function is convex. [5]
used mean-squared error (MSE) as its convex cost function
and introduced optimal counter-forensics method (OCM) to
find the best solution for the CF problem.

The downside of using MSE as the cost function is that it is
not fully aligned with the image quality that humans perceive.
Although the structural similarity index (SSIM) is a better met-
ric, it is not convex. Therefore, both finding and implementing
the optimal solution based on SSIM might be computationally
impractical. In this work, instead, we introduce practical sub-
optimal methods using the SSIM metric.

Deep learning has greatly enhanced image and video foren-
sics [21]–[23], especially in detecting deepfakes [24]–[27],
by identifying subtle patterns and artifacts. CF techniques,
however, aim to evade these detectors. Unlike typical CF
methods that use adversarial attacks [28]–[30], our approach
focuses on histogram-based forensics. We employ a sub-
optimal method to maximize the perceptual metric of MSSIM,
ensuring modifications are less noticeable to human observers,
rather than fooling specific forensic detectors.
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Contributions

In this work, we introduce quasi-convex versions of the
SSIM and mean SSIM (MSSIM) metrics and incorporate them
as the cost function in the CF problem. Next, we show how
to considerably restrict the search domain for the optimal
solution to the CF problem.Particularly, we propose a sub-
optimal method that uses the OCM method but is based
on the gradient descent approach; we call it the gradient
descent OCM (GDOCM). As the method is histogram-based,
it leaves the histogram of the image unchanged. We propose
yet another sub-optimal method called the unitary matrices
method (UMM), by applying unitary matrices as transfer
matrices. We examine both methods numerically and show
that they outperform the traditional OCM technique in various
tests including the JPEG compression setup.

Notation

Throughout this paper, we use regular lowercase letters
for deterministic and random scalar variables, and lowercase
boldface letters for vectors. Matrices are represented by regular
uppercase letters, whose entries shall be denoted by lowercase
version of the same letter equipped with subscripts. The
notation ⟨x,y⟩ = xHy represents the inner product of the
vectors x and y, where ·H is the conjugate transpose operation.
Further, ∥x∥ =

√
⟨x,x⟩ stands for the ℓ2 norm of the vector

x. We define 1(statement) as the boolean function that takes
the value 1 in case the input statement is valid, and value 0
otherwise. For a vector x of size Np, F (x)k represents the
kth discrete Fourier coefficient defined by

∑Np−1
n=0 e− j kn

Np xn,
where k = 0, . . . , Np−1. Furthermore, if L ⊆ {0, . . . , Np−1},
xL defines the vector x restricted to the indices in L, i.e.,
xL = (xk)k∈L. Finally, we utilize x to indicate the sample

mean of x defined by x =
∑Np−1

i=0 xi

Np
. Similarly, X extends the

definition to matrices to represent the average of all elements.

II. BACKGROUND

There are several criteria to assess the amount of similarity
between two images. The two main categories are percep-
tual indices and canonical metrics. Oftentimes, the percep-
tual approaches are visually superior; however, due to their
complicated structure, it is usually difficult to analyze them
mathematically and incorporate them into optimization tasks
for deriving image processing tools. The structural similarity
(SSIM) index is among the well-known perceptual quality
assessment metrics. It is defined as [31]:

SSIM(x′,x) = S1 (x
′,x) · S2 (x

′,x) ;

S1 (x
′,x) =

2xx′ + c1

x2 + x′2 + c1
,

S2 (x
′,x) =

2σxx′ + c2
σ2
x + σ2

x′ + c2
,

(1)

where c1, c2 are non-negative constants, x,x′ are the two
images in vectorial form, σ2

x, σ
2
x′ represent the sample variance

of x and x′ respectively, and σxx′ stands for the sample

covariance between x and x′. The latter quantities amount
to

σ2
x = x2 − x2, σxx′ =

∑Np−1
i=0 (xi − x)(x′

i − x′)

Np
, (2)

where Np is the length of x (or x′). In this paper, c1, c2 are
either assumed to be 0 or very small. It is important to mention
that the SSIM is only an index and not a metric, as it does
not satisfy the triangular inequality [31]. Therefore,

gx(x′,x) =
√

1− SSIM(x′,x) (3)

is introduced in Section II-C of [31] as a modified version
of the SSIM that defines a metric. Unfortunately, gx(.,x)
is not convex; nevertheless, it admits a low-order convex
approximation.

Lemma 1. For any x, the low-order approximation of gx(.,x)
defined by

g̃x(x′,x)
.
=
√

2− S1(x′,x)− S2(x′,x), (4)

is quasi-convex1 with respect to x′ for all x′ ∈ Qx, where

Qx =
{
z ∈ RN

∣∣∣z ∈ [0,
√
3x], ∥(x−x)−(z−z)∥

∥(x−x)∥ ≤
√
3− 1

}
.

(5)

Proof. It is shown in Appendix A that

2− S1(x
′,x)− S2(x

′,x)

is a convex function of x′ in the neighborhood Qx of x. Thus,
for all positive values of h

Qx ∩
{
z
∣∣ 2− S1(z,x)− S2(z,x) ⩽ h

}
defines a convex set. Similarly,

Qx ∩
{
z
∣∣g̃x(z,x) ⩽ √

h
}

is a convex set for all h > 0, which implies the quasi-
convexity of g̃x(x′,x) restricted to x′ ∈ Qx. ■

Remark 1. The convexity region of 2−S1(x
′,x)−S2(x

′,x)
- which itself contains Qx - is a subset of the quasi-convexity
region for g̃x. Nevertheless, the quasi-convexity region for g̃x

might be larger than Qx in practice.

The introduced SSIM criterion is usually considered as a
basic similarity index between two windows rather than two
images. The Mean SSIM (MSSIM) is one of the various ways
to combine similarity indices of small windows inside two
images to obtain an overall index as follows [32]:

MSSIM(x′,x) =
1

Nc

Nc∑
i=1

SSIM(x′
ci ,xci), (6)

where xci denotes the vector x restricted to the pixels inside
the ith local window and Nc represents the number of possible

1A quasi-convex function is a real-valued function defined on an interval
or on a convex subset such that the inverse image of any set of the form
(−∞, a) is a convex set, where a is an arbitrary real value.
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local windows fitting inside the images. The windows are cho-
sen in a sliding fashion which allows for considerable overlap.
Extending the metric and quasi-convex approximations for the
MSSIM, we arrive at

gx
M
(x′,x)

.
=
√
1−MSSIM(x′,x),

g̃x
M
(x′,x) =

(
2− 1

Nc

Nc∑
i=1

S1

(
x′
ci ,xci

)
+ S2

(
x′
ci ,xci

))1

2
. (7)

Lemma 2. g̃x
M
(x′,x) is quasi-convex with respect to x′ within

the region

QM
x =

Nc⋂
i=1

{
z ∈ RN

∣∣∣zci ∈ [0,
√
3xci ],

∥(xci
−xci

)−(zci
−zci

)∥
∥(xci

−xci
)∥ ≤

√
3− 1

}
. (8)

Proof. Similar to gx(.,x), we can follow as

g̃x
M
(x′,x)2 = 2− 1

Nc

Nc∑
i=1

S1(x
′
ci ,xci) + S2(x

′
ci ,xci)

=
1

Nc

Nc∑
i=1

(
2− S1(x

′
ci ,xci)− S2(x

′
ci ,xci)

)
=

1

Nc

Nc∑
i=1

g̃xci (x′
ci ,xci)

2.

Since each term is convex within the range x′
ci ∈ Qxci

, we
can see that g̃x

M
(x′,x)2 is a convex function of x′ within QM

x .
Similarly, one can observe that for all positive values of h

QM
x ∩

{
z
∣∣∣ 1

Nc

Nc∑
i=1

g̃xci (zci ,xci)
2 ⩽ h

}
and

QM
x ∩

{
z
∣∣∣ g̃M

(z,x) ⩽
√
h
}
,

are convex, which by definition implies the quasi-convexity of
g̃x
M
(x′,x) restricted to x′ ∈ QM

x .
For the sake of clarity and notational simplicity, we consider

g̃x in our theoretical parts, i.e., Sections III, IV, and III-A and
proceed with g̃x

M
in Sections V and VI, where we concentrate

on near-optimal implementation of a minimization method. In
other words, our theoretical results are valid for g̃x, while our
introduced method aims at optimizing g̃x

M
.

III. PROBLEM STATEMENT

In image CF, the goal is to modify an image with minimal
changes. Mathematically, an original image is replaced with
another image in a group of images such that the replaced
one maximally mimics the original one based on a chosen
similarity metric.

Let X ⊂ RN denote the space of images in the vectorial
form. A basic tool in every forensics system is the detector ϕx :
X 7→ {0, 1}, that decides between two alternative hypotheses
H0 revealing x ∈ X being “fake/modified” and H1 meaning

x ∈ X is “original”. Therefore, the space X is partitioned into
two subsets Rx

0 , Rx
1 as

Rx
k = {x ∈ X : ϕx(x) = k}, k = {0, 1}. (9)

In many scenarios, ϕx(x) has a simple characterization in
terms of a transformed version of x. This implies that
ϕx(x) = ϕy(f(x)), where f : X 7→ Y is a bijection and
ϕy : Y 7→ {0, 1} is an indicator function over Y ⊂ CN .
Among the widely-used examples of f one can name the linear
transforms such as DFT, DCT and wavelets. The partitioning
of X automatically induces a partitioning of Y into Ry

0

and Ry
1 . In forensics, it is usually desirable to have one or

a group of “fake/modified” images that resemble a given
“original” image. To elaborate, we explain the main challenge
in Problem 1.

Problem 1. Given an original image x ∈ Rx
1 and a similarity

index ∆ : X × X 7→ R, find

x∗ = argmin
x′∈Rx

0

∆(x′,x). (10)

Since Rx
0 and Rx

1 might not have a simple structure, finding
the solution to Problem 1 can potentially be a combinatorial
search. In Section IV, we try to narrow down the search
domain for ∆ ≡ g̃x, which might lead to substantial com-
putational gain.

A. Histogram-based detector
Investigating the histogram of the data, particularly in the

domain of discrete Fourier transform (DFT), has been one of
the successful detection approaches [33], which is the center
of our focus in this work. Taking the histogram into account,
a reliable counter-forensics method shall leave the histogram
of the image or its Fourier transform almost unchanged. Let
f(.) represent the full-frame DFT transform. According to the
bijective nature of this f(.), Problem 1 in terms of x can be
translated in terms of y as (ignoring the histogram constraint)

y∗ = argmin
y′∈Ry

0

g̃x
(
f−1(y′), f−1(y)

)
, (11)

where y = f(x). To account for the histogram, we indicate
the set of histogram bin points by B = {b0, . . . , bn1

}, in which
b0 < b1 < . . . < bn1 . This way, the histogram of x in terms
of B shown by

H(B,x) .
= [H(b0,x), . . . ,H(bn1 ,x)]

is given by

H(bi,x)
.
=


1
N

∑N
j=1 1(xj < b0), i = 0,

1
N

∑N
j=1 1(bi−1 ⩽ xj < bi), 1 ≤ i < n1,

1
N

∑N
j=1 1(bn1

⩽ xj), i = n1.

(12)

Now, the optimal histogram-based CF can be found via [5]:

H(B,y♯) = argmin
H(B,y′)∈RH

0

g̃H
(
H(B,y), H(B,y′)

)
, (13)

y∗ = argmin
y′

H(B,y′)=H(B,y♯)

g̃y(y′,y), (14)
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where g̃H measures the perceptual difference between his-
tograms and g̃y quantifies the perceptual difference between
two images in the DFT domain; specifically,

g̃H
(
H(B,y), H(B,y′)

) .
= min

y′′

H(B,y′′)=H(B,y′)

g̃y(y′′,y),

g̃y(y′,y) = g̃x(f−1(y′), f−1(y)). (15)

Although our general approach in this paper is similar
to [5] (as described above), rather than the MSE distance
considered in [5], we base our g̃x and g̃xM metrics on SSIM
and MSSIM, respectively. Since SSIM and MSSIM do not
have the component-wise additivity property [32], we can not
simplify the numerical optimizations, as opposed to what has
been done in [5].

IV. LOCATING THE OPTIMAL SOLUTION

In this section, by taking advantage of quasi-convexity of
g̃x
M
(.,x) stated in Lemma 1, we try to determine the minimizer

of (10). Intuitively, we show that, the most similar element of
Rx

0 to a given x ∈ Rx
1 lies at the border of the two regions.

To have a precise statement, we first define border points.

Definition 1. The detection boundary C is the set of all points
x ∈ Rx

0 ∪ Rx
1 that are arbitrarily close to both Rx

0 and Rx
1 .

More precisely, x belongs to C if and only if for all ϵ > 0,
there exist x′ ∈ Rx

0 and x′′ ∈ Rx
1 such that

∥x− x′∥, ∥x− x′′∥ < ϵ

To further proceed with finding the solution to Problem 1,
we consider two scenarios based on the distance of x to the
boundary C:

(i) The point x is far from the boundary such that the quasi-
convexity region Qx of g̃x(.,x) does not intersect C; i.e.,
Qx ∩ C = ∅.

(ii) The point x is so close to the boundary such that the
quasi-convexity region of x, Qx, contains at least one
boundary point, i.e., Qx ∩ C ̸= ∅.

The scenario (i) corresponds to the case where x and its
immediate surroundings (at least those in Qx) are located deep
inside Rx

1 . Consequently, the closest or most similar element
of Rx

0 to x is still quite far from it. A simple calculation
shows that by evaluating the similarity of x with any x′ /∈ Qx,
we achieve an SSIM value no better than 0.73, as the g̃x

dissimilarity index exceeds
√
3−1√
2

≈ 0.52 (shown in Appendix
B) and consequently,

SSIM = S1(x
′,x) · S2(x

′,x) ≤
(

S1(x
′,x)+S2(x

′,x)
2

)2
=
(
1− (g̃x(x′,x))2

2

)2
≤ 0.73, (16)

which is considerably low and is very likely to be perceptu-
ally detectable. Therefore, scenario (i) presents a rather non-
interesting setting for the purpose of forensics. As case (ii)
is the only relevant case for forensics, we assume our setting
falls in this category.

Theorem 1. For ∆ ≡ g̃x, if (10) has a minimizer inside the
quasi-convexity region Qx, then, it also has a minimizer in
C ∩ Qx.

Proof. See Appendix C. ■
Theorem 1 helps in constraining the solution to Problem

1 in the sense that by knowing the boundary, we no longer
need to inspect other points. However, there are rare cases
in practice for which we know the boundary beforehand, or
we can explicitly evaluate the boundary. Usually, the available
tools can only check the values of ϕx(.) by examining the
points one-by-one and predicting the boundary.

One possible approach to benefit from Theorem 1 is by
combining the so-called optimal counter-forensics method (or
in short, OCM) [5] with the blind Newton search [34]. For
the latter to work, the initial point shall be in the intersection
of the boundary and the convexity region around the image
that contains Qx. As identification of the boundary is itself
a challenge, we employ OCM based on a simplified version
of Problem 1 where the SSIM perceptual metric is replaced
with the MSE. In line with the arguments above, we expect
the output of OCM to be inside the quasi-convexity region
Qx (otherwise, the MSE takes extremely poor values). Fur-
thermore, it is proven in [5] that OCM always finds a point
on the boundary C. All in all, the result of OCM can be used
as an initial point in the blind Newton search method.

While the combination of OCM and blind Newton search
could potentially solve Problem 1, the overall computational
cost is greatly affected by the structure of the boundary, partic-
ularly, when the regions are non-convex (i.e. Rx

0 , R
x
1 ). In the

next section, we define the common histogram-based detector
and then, we propose a simple but sub-optimal solution to
Problem 1.

V. SUBOPTIMAL METHODS

As mentioned earlier, with the aid of Theorem 1, we can
considerably restrict the search domain for the optimal solution
and offer a preliminary point; however, the computational
cost is still unfeasible in many practical cases. One possible
remedy is to sacrifice optimality in return for computational
cost reduction. What we propose is to find the optimal so-
lution whenever the computational budget allows; for other
scenarios, we introduce close-to-optimal solutions with low
computational-complexity. We should emphasize that both the
optimal and close-to-optimal methods are beneficial in special
cases and could be tailored for specific problems.

To find the suboptimal answer of Problem 1 in the case
of histogram-based detector, we propose two methods in the
following subsections. In the first method, we exploit the
concavity property of the low-order approximation to MSSIM
(4) and propose a method by combining the OCM with the
gradient descent algorithm; we call this method the gradient
descent OCM (GDOCM).

For the second method, we make use of the fact that each
permutation of x′ can be represented by Ux′, where U is
a permutation matrix (a binary-valued matrix with exactly a
single 1 in each row and columns). Thus, instead of finding
x∗, we can look for U∗ such that x∗ = U∗x′. However,
minimization problems over the set of permutation matrices
are combinatorial in nature. Therefore, we relax this constraint
and widen our search-space to the set of all unitary matrices
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TABLE I. UMM algorithm with optional orthogonal projection

• Inputs
1. x, β, µ;

• Initialization
1. k = 0;
2. W0 = I;
3. λ = 1;

• Compute the gradient of T (·;µ, λ):
1. Γ = ∂T

∂W (Wk)

= ∇W g̃x
M
(Wkx , x) + µ

(∑N
i,j=1 W (i, j)−N

)
− 2λ;

• Choose the gradient descent method:
1. If using the Riemannian gradient descent:

a. Project the gradient direction onto the Reimannian space
i. G = ΓWH

k −WkΓ
H ;

b. Determine the rotation Matrix:
i. P = exp(−βG);

c. Update the unitary matrix
i. Wk+1 = WkP ;

2. If using ordinary gradient descent with orthogonal projection:
a. Perform ordinary gradient descent

i. Wk+1 = Wk − βΓ;
b. Project onto the manifold of orthogonal matrices

i. Set Wk+1 = Orthogonalize(Wk);
• Update the augmented penalty parameter

1. λ = λ− µ
N

( N∑
i=1

N∑
j=1

Wk+1(i, j) −N
)

;

• Increment the iteration counter
1. k = k + 1;

with unit column and row sums. The row and column sum
constraints are imposed to obtain unitary matrices closer to
the set of permutation matrices. Denoting the set of unitary
matrices with unit column and row sums by W , we are
searching for W ∗ ∈ W such that x∗ = W ∗x′; we call this
second approach the unitary matrices method (UMM).

A. Gradient Descend OCM

In this subsection, we introduce GDOCM and then, compare
its performance with the optimal exhaustive search in some toy
examples (in particular, 4× 3-sized images).

Let x∗ = M(x′,x) denote the permuted version of x′

which is closest to x based on the Euclidean distance (MSE
criterion) [35]. Therefore, if π and ϱ are the ordering permuta-
tions of x′ and x∗, respectively (meaning x′

π(1) ≤ · · · ≤ x′
π(N)

and x∗
ϱ(1) ≤ · · · ≤ x∗

ϱ(N)), then, we shall have x∗
ϱ(i) = x′

π(i)

for i ∈ 1, . . . , N [5]. Now that we can compute M(x′,x),
we propose GDOCM (x∗ = G(x)) as mentioned in Table II;
in particular, this method relies on descent steps of g̃x

M
(., .)

metric given by

A(x1,x, µ) = x1 − µ · ∇x1 g̃
x
M
(x1,x), (17)

where µ is the step size. As explained in Table II, the method
is initialized by the OCM solution, and the descent steps are
applied until x3 experiences no update within 20 consecutive
iterations (this number can be modified). For the DFT version
of the GDOCM (x∗ = GF (x)), we need to replace the 3rd
step in Table II with

F{x2}L = M (F{x′}L,F{x1}L) , (18)

TABLE II. GDOCM algorithm

• Initialization
1. x′ = the OCM solution

(will not be changed during algorithm);
2. x1 = x2 = x3 = x′, c = 0;

• While
(
g̃x
M
(x2,x) ̸= 0 and c < 21

)
1. Apply a descent step: x1 = A(x1,x, µ);
2. Increase the counter: c = c+ 1;
3. Permuting x′: x2 = M(x′,x1);
4. If g̃x

M
(x2,x) ≤ g̃x

M
(x3,x)∣∣∣∣ x3 = x2;

c = 0;
• x∗ = x3;

where L indicates the set of specific frequencies considered
by the detector [5].

Additionally, while this paper focuses on maximizing per-
ceptual metrics like the mean structural similarity index
(MSSIM), a GDOCM or UMM-like algorithm could also
generate adversarial examples that preserve the histogram. By
using adversarial loss l(x′) instead of the perceptual metric
g̃(x,x′), without requiring the original image x as a prior,
this approach could fool specific forensics detectors while
keeping modifications imperceptible. However, we leave this
exploration for future work.

B. Unitary Matrices Method

In this method, we enlarge the feasible domain from per-
mutation matrices to unitary matrices with unit column and
row sums (the set W),

W =
{
W
∣∣WHW = WWH = I, (19)

N∑
i=1

W (i, j) =

N∑
j=1

W (i, j) = 1
}
, (20)

and look for the optimal solution in the enlarged domain based
on the descent algorithm:

W ∗ = argmin
W∈W

g̃x
M

(
W x′,x

)
, (21)

x∗ = W ∗x′. (22)

For solving the above optimization, we combine the aug-
mented Lagrangian method [36] and the steepest descent
algorithms for optimization under unitary matrix constraint
[37]. To elaborate, we consider

T (W ;µ, λ) = g̃x
M
(Wx′,x)+

µ

[ N∑
i=1

( N∑
j=1

W (i, j) − 1
)2

+

N∑
j=1

( N∑
i=1

W (i, j) − 1
)2]

− λ

[ N∑
i=1

( N∑
j=1

W (i, j) − 1
)
+

N∑
j=1

( N∑
i=1

W (i, j) − 1
)]

,

(23)

as our cost function, in which λ and µ are penalty parameters
in the augmented Lagrangian method. Inspired by the method
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in [37], we propose the UMM technique as explained in
Table I. Similar to the GDOCM method, we first find the
gradient of the augmented cost T (·;µ, λ) (called Γ); next,
we project it onto the Reimannian space (G) and translate
it into a rotation matrix P by scaling (using a given scalar β)
and exponentiation. Moreover, instead of using Riemannian
gradient descent to maintain orthogonality, one could employ
ordinary gradient descent and subsequently project the result
onto the manifold of orthogonal matrices. This projection can
be done exactly by performing a singular value decomposition
(W = UΣVH → W = UVH ) or through approximate
iterative orthogonalization processes [38], [39] . Then, we
update the solution and the penalty parameter λ.

Considering the O(n3) computational complexity and
O(n2) memory requirements, where n = w × h, GDOCM
is preferred for larger images.

VI. SIMULATION RESULTS

To investigate the efficacy of the proposed methods, we
consider three simulation setups. In the first experiment, we
generate random images with small sizes and compare all
the methods including the exhaustive search. Next, we apply
the methods on the logo of the Mozila Firefox browser as a
representative of a real but small image. Finally, we consider
the experimental setup in [5] consisting of real images.

A. Random images

In the first experiment, we generate random 3 × 4-pixel
images2 denoted in vectorial form by x. We denote the double
JPEG-compressed version of x by x′ while fixing the quality
factors of f1, f2 for the first and second JPEG-compression.
Also, let Sx′ indicate the set of all permutations of x′. We
now have

Rx
k

.
= {x ∈ R12 : ϕx(x,x

′) = k}, k = 0, 1, (24)

ϕx(x,x
′) =

{
1; x ∈ S

x′

0; x /∈ S
x′

. (25)

The MSSIM metric of the results obtained by the MSE
method (OCM), GDOCM and exhaustive search (ES) which
are formulated as

xOCM = argmin
x′′∈S

x′

MSE(x′′,x), (26)

xGDOCM = argmin
x′′∈S

x′

g̃x
M
(x′′,x), (27)

xES = argmax
x′′∈S

x′

MSSIM(x′′,x), (28)

are reported in Table III for different f1 and f2 quality factors
in the first and second compressions, respectively. Obviously,
the exhaustive search method in (28) yields the highest quality.
It is worth mentioning that for this method, we checked for
the highest MSSIM metric among all possible permutation of
x′. Due to the computational cost (checking N ! permutations,
where N is the overall number of pixels), this approach is

2The high computational cost of the optimal exhaustive search method is
the rationale behind considering such toy images.

TABLE III. The average MSSIM metric for the OCM (MSE),
GDOCM and ES methods over 50 random 3× 4 images.

f2 f1 OCM GDOCM ES
Scenario 1 70 10 0.8715 0.9133 0.9229
Scenario 2 70 20 0.8883 0.9215 0.9331
Scenario 3 70 30 0.9023 0.9297 0.9377
Scenario 4 70 40 0.9105 0.9368 0.9414
Scenario 5 70 50 0.9180 0.9412 0.9433
Scenario 6 70 60 0.9219 0.9531 0.9596

TABLE IV. Average wall clock time, memory usage, and com-
plexity over 50 random 3× 4 images. experiments done using
an x86 64 CPU, and an NVIDIA A100 80GB GPU which
was heavily utilised for ES. Here R denotes the maximum
number of iterations utilized for each algorithm.

OCM GDOCM UMM ES
Runtime 0.4 ms 11.57 s 23.10 s 910.35 s

Memory usage 0.12 KiB 302.40 KiB 319.70 KiB 284.31 KiB
Complexity O(n log n) O(R · n log n) O(R · n3) O(n!)

Memory O(n) O(n) O(n2) O(n)

impractical in moderate to high dimensions. With this point
of view, (26) and (27) could be considered as computationally
feasible approximations of (28). The results reported in Table
III clearly distinguish GDOCM as the superior approximate.
Besides, the results of GDOCM closely follow the optimal
results by the ES method.

We acknowledge that our initial experiments focused on
small synthetic datasets, such as 3×4 pixel images, due to the
computational infeasibility of the exhaustive search (ES) algo-
rithm, which scales with O(n!). This approach was necessary
for theoretical validation but has limited practical applicability.
To address this, we have expanded our experiments to include
larger, more complex natural images for evaluating double
JPEG compression distortion, excluding the ES algorithm.
This shift allows us to demonstrate the practical utility of our
methods on more realistic datasets, providing robust evidence
of their effectiveness in real-world scenarios.

B. Mozila Firefox logo

As a more realistic image, we experiment on the logo of
the “Mozilla Firefox” browser with size ranging from16×16
to 64× 64; we refer to the vectorial form of the non-distorted
and original logo by x. We further add white Gaussian noise
to form the fake image x′ = x+ s, in which s stands for the
added noise. According to (24), our goal is to find the most
similar image to the original logo among all permutations of
the distorted image (i.e., x′). In Figure 1, we plot the resulting
MSSIM metrics for the OCM method, as well as the proposed
GDOCM and UMM methods, under different noise levels,
when the logo of size 16 × 16 is considered. In Figures 2
and 3, we plot similar curves when the logo size is changed to
32×32 and 64×64, respectively. All these figures confirm that
GDOCM and UMM have similar performances considerably
better than the OCM method. Another interesting observation
is that although GDOCM is computationally less expensive



7

TABLE V. The MSSIM and wall clock time for the OCM,
GDOCM, and UMM methods in the Block-DCT domain,
evaluated on natural images resized to various dimensions
under Double JPEG Compression.

MSSIM Wall Clock Time (s)
Image size OCM GDOCM UMM OCM GDOCM UMM
12× 12 0.9636 0.9709 0.9863 0.0015 0.5385 54.64
32× 32 0.9872 0.9919 0.9951 0.0046 1.2799 104.32
64× 64 0.9651 0.9891 — 0.0094 1.4093 —

128× 128 0.9258 0.9785 — 0.0254 2.1092 —
256× 256 0.8787 0.9645 — 0.0356 2.8716 —
512× 512 0.8239 0.9542 — 0.0900 5.7799 —
1024× 1024 0.9266 0.9793 — 0.2601 5.0552 —

PSNR[dB]
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0.98
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OCM

Fig. 1. MSSIM comparison of the methods applied to the 16×
16 Mozila Firefox logo: GDOCM: µ = 2 × 10−7, UMM:
β = 2×10−7, µ = 100, and applying the Riemannian gradient
descent.

than UMM (the latter requires N2-sized matrices, while the
former fully operates in dimension N ), it exhibits a marginally
better performance, particularly, with larger images. For better
illustration of the results, we have sketched the outcomes in
Figure 4 for the 64× 64 logo and three different noise levels.

C. Test on real images

Finally, we experiment on real images provided in the
UCIDv2 image database [40] and compare OCM with the
proposed GDOCM. We provide the same setup as in the ex-
perimental section in [5]; in particular, we include the double
JPEG-compression detector proposed in [33] in contrast to
(24). As illustrated in Table VI, GDOCM outperforms OCM in
terms of MSSIM, while OCM outperforms GDOCM in terms
of PSNR (or MSE).

VII. CONCLUSION

In this work, based on an introduced quasi-convex approxi-
mation of SSIM, we considered the counter-forensics problem.
In particular, we showed that the optimal solution based on
this approximation lies on a specific region that we call
boundary. This results, considerably restricts the search area.
To practically find a solution, we proposed two computational

PSNR[dB]

12 13 14 15 16 17 18

M
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S
IM
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0.94

0.95

0.96

0.97

0.98
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UMM

OCM

Fig. 2. MSSIM comparison of the methods applied to the 32×
32 Mozila Firefox logo: GDOCM: µ = 3.5 × 10−7, UMM:
β = 2×10−7, µ = 100, and applying the Riemannian gradient
descent.

PSNR[dB]
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0.99
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Fig. 3. MSSIM comparison of the methods applied to the 64×
64 Mozila Firefox logo: GDOCM: µ = 5 × 10−7, UMM:
β = 2×10−7, µ = 100, and applying the Riemannian gradient
descent.

tractable but sub-optimal methods. Simulations results show
that both methods outperform the conventional OCM method.

APPENDIX A
REGION OF QUASI-CONVEXITY

According to Section II-C of [31], we have that

g̃x(x′,x) = ∥d(x,x′)∥2

=
√

d1(x,x
′)2 + d2(x− x,x′ − x′)2 (29)
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t

Fig. 4. The reconstructed 64×64 Mozila Firefox logo based on the noisy images by the OCM, GDOCM and UMM methods at
different noise levels; the first, second and third rows correspond to noisy images with PSNR=14.7067dB, PSNR=15.5946dB,
PSNR=16.6654dB, respectively.

Fig. 5. Reconstruction of the 512×512 Stanford logo in the Block-DCT domain, with MSSIM values indicating structural
similarity: (Attacked) 0.7539, (OCM) 0.9008, (GDOCM) 0.9618.
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TABLE VI. Comparing the results of OCM and GDOCM in
terms of MSSIM and PSNR (averaged over a selection of
UCIDv2 images). Different rows have different added noise
levels.

PSNR PSNR MSSIM MSSIM
(OCM) (GDOCM) (OCM) (GDOCM)

1 30.9 30.5 0.913 0.928
2 32.9 32.6 0.921 0.932
3 33.8 33.3 0.939 0.946
4 35.7 35.1 0.952 0.959
5 38.3 37.8 0.963 0.966
6 40.1 39.5 0.979 0.988

where d1 and d2 are defined below based on δx = x− x and
δx′ = x′ − x′:

d1(x,x
′) =

√
|x− x′|2

x2 + x′2 + c1
= NRMSE(x,x′, c1),

d2(δx, δx′) =

√
∥δx − δx′∥2

∥δx∥2 + ∥δx′∥2 + (N − 1)c2

= NRMSE(δx, δx′ , c2).

As discussed in [31], one can see that NRMSE(x,y, 0) is
convex with respect to x within the hyper-sphere

Ry =
{
x ∈ RN

+

∣∣ ∥x− y∥ ≤ (
√
3− 1)∥y∥

}
.

Since both x and x − x are linearly related to x, we know
that d1(x,y) and d2(δx, δy) are simultaneously convex with
respect x restricted to the curved hyper-cylinder Qy

Qy =
{
x
∣∣x ∈ Q1 , x− x︸ ︷︷ ︸

δx

∈ Q2

}
, (30)

where

Q1 =
[
0,
√
3y
]
,

Q2 =
{
δx ∈ RN−1

+

∣∣∣ ∥δx − δy∥ ≤ (
√
3− 1)∥δy∥

}
,

δy = y − y. (31)

As observed in [31], the actual convexity region of
NRMSE(x,y, 0) forms a teardrop shape that extends be-
yond Q2. Consequently, the simultaneous convexity region of
d1(x,y) and d2(δx, δy) (with respect x) exceeds the bound-
aries of Qy. Because of the fact that the ℓ2-norm operator
∥ · ∥2 is both convex and non-decreasing with respect to each
element, we can conclude that its composition with d1(x,y)
and d2(δx, δy), i.e.,√

|d1(x,y)|2 + ∥d2(δx, δy)∥2 (32)

is also convex, given x ∈ Qy. This conforms that g̃x(x,x′) is

convex on at-least Qx:

Qx =
{
x′ ∈ RN

∣∣∣x′ ∈ [0,
√
3x],

∥(x−x)−(x′−x′)∥
∥(x−x)∥ ≤

√
3− 1

}
. (33)

It is worth noting that g̃x(x′,x)2 = 2− S1(x
′,x)− S2(x

′,x)
and the vector (S1, S2) also exhibit convexity within this
region, as demonstrated in the proof and corroborated by the
findings in [31]. In our proof, we set c1 = 0 and c2 = 0; it
is, however, common in practical applications to use small but
nonzero values to avoid numerical instability.

B UPPER BOUND FOR THE SSIM OF THE POINTS
OUTSIDE THE QUASI-CONVEXITY REGION

Here, we establish a lower bound on g̃x(x′,x) knowing that
x′ ̸∈ Qx, which essentially means ∥δ′−δ∥

∥δ∥ ≥
√
3− 1 (where

δ = x−x and δ′ = x′−x′) and that x′ /∈
[
0,
√
3x
]
. Because

of this constraint, we rewrite (29) as

g̃x(x′,x)2 = |x−x′|2
x2+x′2+c1

+ ∥δ−δ′∥2

∥δ∥2+∥δ′∥2+(N−1)c2

=
|x−x′|2

x2

1 + x′2

x2 + c1
x2

+

∥δ′−δ∥2

∥δ∥2

1 + ∥δ′∥2

∥δ∥2 + (N−1)c2
∥x∥2

. (34)

Now, we can write

x′2

x2 = [(x′−x)+x]2

x2 = 1 + |x−x′|2
x2 ± 2 |x′−x|

|x| , (35)

and
∥δ′∥2

∥δ∥2 = ∥[(δ′−δ)+δ]∥2

∥δ∥2 = 1 + ∥δ′−δ∥2

∥δ∥2 + 2∥δ′−δ∥
∥δ∥ cos(θ),

(36)

where θ denotes the angle between δ′−δ and δ. If we further
define

α =
∥δ′ − δ∥

∥δ∥
> 0 , β =

|x′ − x|
|x|

> 0, (37)

we can reformulate (34) as

g̃x(x,x′) = β2

2±2β+β2+
c1
x2

+ α2

2+2α cos(θ)+α2+
(N−1)c2

∥x∥2
. (38)

If c1 = c2 = 0, or we can assume x2 ≫ c1, ∥x∥2 ≫ (N −
1)c2, then, we can fairly approximate g̃x(x,x′) via

g̃x(x,x′)2 ≈ α2

2 + 2α cos(θ) + α2
+

β2

2± 2β + β2

≥ 1

f(β)
+

1

f(α)
, (39)

where f(x) = x2+2x+2
x2 = 1 + 2

x + 2
x2 is a strictly decreasing

function at x > 0. Moreover, we recall that x′ ̸∈ Qx implies
α, β ≥

√
3− 1. Thus,

g̃x(x′,x)2 ≥ 2

f(
√
3− 1)

= (2−
√
3)2 =

(√
3−1√
2

)2
⇒ g̃x(x′,x) ≥

√
3− 1√
2

≈ 0.52. (40)
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C PROOF OF THEOREM 1

To simplify the notations and the proof, we first state a
definition and a lemma.

Besides the point of interest x, let x′ be any point inside
the quasi-convexity region Qx. We denote the line connecting
x to x′ by Lx,x′ :

Lx,x′
.
=
{
(1− λ)x+ λx′ ∣∣ 0 ⩽ λ ⩽ 1

}
. (41)

As Qx is a curved hyper-cylinder (see (33) for the definition),
it is a convex set. Thus, with x,x′ ∈ Qx we are guaranteed
that Lx,x′ ⊆ Qx. We also define z

Lx,x′

d as a point on Lx,x′ with
the normalized distance d ∈ [0, 1] from x′:

z
Lx,x′

d = d
x− x′

∥x− x′∥
+ x′. (42)

Lemma 3. For all z ∈ Lx,x′ we have that,

g̃x(z,x) ⩽ g̃x(x′,x). (43)

Proof of Lemma 3. Contrary to the claim, let z̃ ∈ Lx,x′ be
such that

g̃x(z̃,x) > g̃x(x′,x).

Set h = g̃x(z̃,x)+g̃x(x′,x)
2 . By invoking the continuity of

g̃x(·,x), we know that h ∈ Range
(
g̃x(·,x)

)
. Further, let

Qh
x

.
=
{
z ∈ Qx

∣∣ g̃x(z,x) ⩽ h
}
. (44)

Obviously, x,x′ ∈ Qx and z̃ /∈ Qh
x. Thus, Qh

x includes two
points such that their connecting line does not completely lie
in Lx,x′ . This contradicts the quasi-convexity of g̃x(·,x) inside
Qh

x and consequently Qx. ■
Now that we covered the required background, we get back

to the proof of Theorem 1. Below, we prove the equivalent
statement that, for each x′ ∈ Rx

0

⋂
Qx there exists z ∈ C

⋂
Qx

such that:
g̃x(z,x) ⩽ g̃x(x′,x). (45)

Hence, at least one of the minimizers of g̃x(·,x) shall be on
the boundary C. Note that the minimum value of g̃x(x′,x) for
x′ ∈ C

⋂
Qx cannot be strictly less than the minimum value

for x′ ∈ Rx
0

⋂
Qx, because g̃x(·,x) is continuous and any

point in C is the limit of a sequence in Rx
0 .

Proof of Theorem 1. Let us fix x′ ∈ Rx
0

⋂
Qx. If we

manage to show that the line Lx,x′ intersects the boundary C,
then, the proof directly follows by applying Lemma 3. Here,
we explicitly introduce one of the points in this intersection
(note that Lx,x′ and C can intersect in more than one point,
particularly, when the Rx

0 and Rx
1 are non-convex). To this

end, we consider the point on Lx,x′ furthest from x′ such that
all the line segment connecting x′ to this point fall inside Rx

0 .
More precisely, if

r
.
= sup

{
∥z−x∥
∥x′−x∥

∣∣∣ z ∈ Lx,x′ , (1− λ)x+ λz ∈ Rx
0

∀0⩽λ⩽1

}
, (46)

then, we show that zLx,x′

r is on the boundary C and could be
used as z in (45). For this reason, we separately treat the
following three cases:
a) r = 0 or alternatively, zLx,x′

r = x. The definition of r in (46)
demonstrates that any ϵ-neighbourhood of z

Lx,x′

r in Lx,x′

contains a point in Rx
1 . As z

Lx,x′

r = x ∈ Rx
0 , it is arbitrarily

close to both Rx
0 , Rx

1 ; i.e., zLx,x′

r = x is a boundary point.
b) r = 1 or alternatively, zLx,x′

r = x′. Again, the definition of
r in (46) implies that for all ϵ > 0, the point zLx,x′

r−ϵ is only
ϵ away (normalized distance) from x′ and belongs to Rx

0 .
Since x′ ∈ Rx

1 , we conclude that zLx,x′

r−ϵ = x′ is a boundary
point.

c) 0 < r < 1. Let ϵ be a small positive real, namely, 0 < ϵ <
min(r, 1 − r). Based on the definition of r, it is evident
that zLx,x′

r− ϵ
2
∈ Rx

0 . Furthermore, the set{
(1− λ) z

Lx,x′

r− ϵ
2
+ λ z

Lx,x′

r+ ϵ
2

∣∣ 0 ⩽ λ ⩽ 1
}

shall intersect Rx
1 ; otherwise, r can be replaced with at

least r + ϵ
2 in the definition of (46). This completes the

proof, as for any small-enough ϵ, the ϵ
2 neighborhood of

z
Lx,x′

r intersects with both regions Rx
0 and Rx

1 .
■

REFERENCES

[1] E. Nowroozi, A. Dehghantanha, R. M. Parizi, and K.-K. R. Choo, “A
survey of machine learning techniques in adversarial image forensics,”
Computers & Security, vol. 100, p. 102092, 2021.

[2] S. Ferreira, M. Antunes, and M. E. Correia, “Exposing manipulated
photos and videos in digital forensics analysis,” Journal of Imaging,
vol. 7, p. 102, 06 2021.

[3] M. Chawki, “Navigating legal challenges of deepfakes in
the american context: a call to action,” Cogent Engineering,
vol. 11, no. 1, p. 2320971, 2024. [Online]. Available:
https://doi.org/10.1080/23311916.2024.2320971

[4] M.-P. Sandoval, M. Vau, J. Solaas, and L. Rodrigues, “Threat of
deepfakes to the criminal justice system: a systematic review,” Crime
Science, vol. 13, 11 2024.
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