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Abstract—In this paper, we consider the problem of blind
source separation under certain nonlinear mixing conditions
using a deep learning approach. Conventionally, the separation
of sources within linear mixtures is achieved by applying the
independence property of the sources. In the nonlinear regime,
however, this property is no longer sufficient. In this paper,
we consider nonlinear mixing operators where the non-linearity
could be fairly approximated using a Taylor series. Next, for
solving the nonlinear BSS problem, we design an end-to-end
recurrent neural network (RNN) that learns the inverse of the
system, and ultimately separates the sources. For training the
RNN, we employ a set of multi-variate polynomial functions
to simulate the Taylor expansion of the nonlinear mixture. Nu-
merical experiments show that the proposed method successfully
separates the sources with a performance superior to the recent
approach devised in [1].

I. INTRODUCTION

The problem of blind source separation (BSS) is well-
known and well-studied in the signal processing community
[2], [3]. In simple words, a number of source signals are
combined in a specific but unknown way to generate the
observations. Then, the objective is to reconstruct the sources
based on the observations. The blindness of the method refers
to the fact that the exact structure of the mixing operator
is not known; however, a general mixing model (such as
linearity) is available. The problem of BSS has applications in
various fields; most notably, it is used for separation of audio
signals, e.g., isolation of the speech of a single person from the
recordings of a group of people talking simultaneously. Other
applications include separation of EEG and ECG signals [4],
images separation, feature extraction, and wireless communi-
cation [3]. The BSS problem is generally ill-posed in the sense
that the solution is not unique. Hence, it is common to include
the statistical properties of the sources or the general model of
the mixing operator, or both. In the conventional linear case
where the independence of the sources is assumed, there is
still ambiguity in the amplitude and order of the sources.

The BSS problem is commonly solved by first estimating
the mixing operator, then, forming an inverse operator and
finally, applying the inverse operator to the observations to
obtain the sources. The availability of the statistics of the
sources is helpful in estimating the mixing and the inverse-
mixing operators [3]. In fact, the application of the correct
inverse operator to the observations shall result in signals
with matching statistics. The linear mixing model is possibly
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the simplest; in this model, the observations are found by
x(t) = As(t), where s(t), x(t), and A represent the vector
of all sources at time t, the vector of observations at time
t, and the mixing operator as a matrix, respectively. When
A is a square matrix (but unknown), the recovery of s(t)
was addressed in [5] with the assumption that the sources
are statistically independent (independent component analysis
or ICA). The estimation of matrix A requires a measure of
independence between two random variables. In other words,
instead of just determining whether two random variables are
independent or not, we need to quantify to what extent the
independence condition holds. With this measure, A could
be found by maximizing an overall independence measure
among the sources. The choice of this measure is not unique
and various techniques are proposed, such as HOSVD [6] and
JADE [7]. An adaptive approach is also studied in [8], known
as EASI. Another popular assumption instead of independence
is the sparsity of the sources [3].

While the linear mixing model fits in numerous applications,
there are practical settings in which the physics of the problem
impose non-linearity. Examples include hyperspectral imaging
[9], [10], remote sensing [11] and removing show-through in
scanned documents [12]. In contrast to linear BSS, there are no
general theoretical results on the separability and identifiability
of the sources in a nonlinear regime. To better highlight
the distinction between linear and nonlinear regimes, let us
consider the following example from [13]:[
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(
α(s(t))

)
− sin

(
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)
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where α(s(t)) = θ0(1 − rs)
n for 0 ≤ rs ≤ 1 and zero

otherwise, given that rs =
√
s2

1(t) + s2
2(t), θ0 ∈ R+ and

n ∈ N. It is shown in [13] that if the sources follow a
point-wise i.i.d. uniform distribution in the interval [−1, 1], the
observations x1(t), x2(t) also exhibit the same distribution.
Therefore, the ICA criterion cannot determine whether the
observation are the same as the sources or they need to be
unmixed. While some relatively successful non-linear ICA
methods are proposed in the past (e.g., [14]), the above ex-
ample reveals that the independence condition is not generally
sufficient. Recently, the nonlinear BSS problem is addressed
in [1] by approximating the nonlinear operator as a locally
linear operator in each interval. This simplifies the task into
the linear BSS problem in each interval.

In this work, we replace the algebraic procedure of esti-
mating the unmixing operator with a deep neural network
(DNN). More precisely, the DNN will be responsible for
automatically estimating the unmixing operator and recovering
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the sources. The use of DNNs in the BSS problem has been
previously considered in a number of works. In [15], through
learning audio signals, DNNs are employed to make the source
separation process robust to non-negative matrix factorization.
In a setup where the observations are generated by a linear
mixing operator and are corrupted by additive Gaussian noise,
a structure based on recurrent neural networks (RNN) is
proposed in [16].

In this paper, we focus on the nonlinear BSS problem. Our
approach is to represent the nonlinear mixing operator with
its Taylor expansion. Then, we train an end-to-end RNN to
estimate the inverse of the nonlinear operator using a dataset of
multi-variate polynomials corresponding to the Taylor series.

The rest of the paper is organized as follow: we first review
the nonlinear parametric BSS model in Section II. The main
results including the new model and the structure of the DNN
are covered in Section III. In Section IV we present the
simulation results and finally, we conclude the paper in Section
V.

II. SIGNAL MODEL

In general, we assume the existence of n sources
{sj(t)}nj=1, where t represents the time instance. In the BSS
problem, instead of the samples of sjs, we are given a
number of mixtures (possibly nonlinear) of sjs, where the
mixing rule is unknown. Let {xi(t)}mi=1 represent the available
observations (the mixtures) which follow:

xi(t) = fi
(
s1(t), . . . , sn(t)

)
, (2)

where fi : Rn 7→ R stands for the mixing rule that yields xi.
Here, we have implicitly assumed the simplified version of
the BSS problem with the instantaneous mixing rule; in other
words, each observed time sample xi(t) is generated by the
samples of the sources at the same time instance (and not their
past). To simplify the notations, let s(t) = [s1(t), . . . , sn(t)]T

and x(t) = [x1(t), . . . , xm(t)]T . This allows us to write

x(t) = f
(
s(t)

)
, (3)

where f : Rn 7→ Rm represents the unknown measurement
operator (set of all mixing rules). It is noteworthy that in
practical applications, t usually belongs to a finite set such
as {Ts, 2Ts, . . . NmaxTs}, where Ts stands for the sampling
period. In a BSS problem, we aim at recovering s(t) by
knowing n and observing x(t). Traditionally, f needs to be
estimated first in order to recover s(t). Indeed, f needs to be
invertible; otherwise, even by knowing f one cannot uniquely
recover s(t). For this purpose, we assume m = n in this
paper; however, our proposed method can work with general
invertible f .

When f is invertible, there exists g : Rm 7→ Rn which
acts as the inverse of f . In this paper, instead of estimating f
and then, finding its inverse, we directly aim at finding and
implementing g. Fig. 1 shows a system level block diagram
for the special case of m = n = 2. It is important to
highlight that when f is unknown, the problem inherently
includes an ambiguity regarding the order of the sources; i.e.,
any permutation of the input sources results in the same set

f(·) g(·)

[
s1(t)
s2(t)

] [
x1(t)
x2(t)

] [
y1(t)
y2(t)

]

Fig. 1. Nonlinear BSS problem basic model.

of observations if the input-output relationship of f is also
permuted accordingly. Hence, for the unique recovery of the
input (and f ), we shall impose asymmetric constraints on f .

A. Taylor series

Estimating a general nonlinear mixing operator f is very
difficult in practice. Here, we restrict f to be smooth and
continuous. Therefore, it can be fairly approximated using
its truncated Taylor series around the mean of s in time:

fi
(
s(t)

)
≈

j1+···+jn=N∑
j1+···+jn=0
0≤j1,...,jn

γ
(i)
j1,...,jn

(
s1(t)− s̄1

)j1
. . .
(
sn(t)− s̄n

)jn
︸ ︷︷ ︸

f̂i;N

,

(4)
where

γ
(i)
j1,...,jn

=
1

j1! . . . jn!

∂(j1+···+jn)

∂sj11 . . . ∂sjnn
fi(s)

∣∣∣
s=s̄

, (5)

and s̄ = [s̄1, . . . , s̄n] denotes the mean of s(t) over time. Here
N is the degree of the approximating Taylor polynomial; by
increasing N , we improve the error in approximating fi with
f̂i;N . Nevertheless, the series shall consist of more terms and
the model becomes more complicated.

Approximating fis with their Taylor series enables us to
parametrize the nonlinear mixing operator. This way, instead
of estimating the operator f , we can estimate these parameters.

III. UNMIXING USING NEURAL NETWORKS

In this section, we introduce the proposed neural network
structure for separating the sources from nonlinear mixtures.
As the training phase is based on polynomials, we expect the
method to work well when the nonlinear functions can be
fairly approximated with their Taylor series.

A. Main strategy

Our approach in this paper is to train a neural network
based on a training dataset. However, there is no available
dataset that includes various types of nonlinear mixtures. For
this reason, we synthetically generate combination of sources
and nonlinear mixtures in form of polynomials. In this way, for
each set of observations, the original sources are known. With
this technique, we build a database for the training phase. If we
succeed in training a suitable network, we expect the network
to unmix polynomially mixed sources. This is likely to hold
also for nonlinear mixtures that can be fairly approximated
with their Taylor series.
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Fig. 2. Structure of the proposed neural network: The network composes
with p layers, includes p−1 bidirectional layers and a one-directional LSTM
layer. Dropout technique inserted between layers to avoid overfitting issue.

B. Structure

The input and output signals of the BSS problem can be
considered as sequences. Hence, we need neural network
structures that can deal with sequential data. The RNN struc-
ture is the best known example. The high-level block diagram
of the RNN structure for m inputs, n outputs with k samples,
and p-stacked recurrent units is drawn in Fig. 2. In this paper,
we focus on the cases of m = n = 2 and m = n = 3 by
setting k = 1000 and p = 3 (both cases). Also, the output
size of each recurrent unit (except the last one) is set to 128.
For n > 3, most likely we need larger p values.

We construct our end-to end network with three recurrent
layers (for p = 3) each containing a long short-term memory
(LSTM) unit [17]. The first two layers are bidirectional and
the last layer is one-directional. We choose the bidirectional
LSTM for the first two layers because of their better prediction
performance compared to the one-directional ones [18]. In
this setup, the neural network receives a block of m source
mixtures and returns 128 sequences at the output of the first
layer with the same length as the input block. The second
layer repeats the same procedure except that it receives 128
sequences and returns 128 sequences. Finally, the third layer
converts the resulting 128 sequences into n separated sources.

C. Training procedure

As explained earlier, we approximate the nonlinear mixing
operator with a set of n-variable polynomials. Thus, the role
of the neural network is to invert a polynomial system of

equations. For the training of the network, we generate a
dataset of random polynomials. For this purpose, we generate
polynomials with random coefficients following uniform dis-
tribution within [−1, 1]; we limit the degree of the polynomials
to 2 in this paper for the sake of simplicity. Next, we generate
up to n random signals and combine them via the polynomial
mixing operators (less than n sources is interpreted as having
sources with all zero values). In this way, we generate a dataset
for training the proposed neural network. Note that during the
training phase, we have access to both the sources and their
mixtures. The blindness of the method refers to the tests in
which we only observe the mixtures.

We divide the dataset into three parts: 70% for training,
10% for validation and 20% for the test. For optimizing the
weights of the neural network, the Adam optimizer [19] was
used in the experiments; the values of the hyper-parameters
(for the optimizer) are set as suggested in [19]. Moreover, the
mean absolute error (MAE) between the predicted and source
signals is used as the loss function. To avoid overfitting, we
apply the dropout technique [20] with probability 0.2 at the
output of each bidirectional layer.

IV. EXPERIMENTS AND DISCUSSION

We assume the cases of m = n = 2 and m = n = 3 in our
experiments; therefore, we are dealing with quadratic polyno-
mials with 2 and 3 variables, respectively (i.e., polynomials
with 6 and 10 coefficients, respectively). For generating the
training dataset, we apply the technique of [1] for generating
random signals. More precisely, we use integral of sinusoid
and saw-tooth functions with varying (random) frequencies
distributed uniformly within [0, 100]. We set the length of the
signals as 1000 and extend the dataset to include 100, 000 sets
of mixtures (whether n = 2 or n = 3). Our experiments are
conducted on a Linux desktop computer with an Intel Core-i7
3.6GHz CPU and 32GB RAM. With this machine, the training
procedure with 150 epochs took roughly 16 hours for each of
the cases n = 2, 3.

By training the network for n = 2 using the generated
dataset, we achieve mean absolute error (MAE) values of
0.0308, 0.0312 and 0.0315 for the train, validation and test
data, respectively. Also, the average MAE value of a 5-fold
cross validation is obtained as 0.0307. As expected, the MAE
values increase for n = 3; for instance, 0.266 is achieved for
the test data.

A. Results

We evaluate the quality of the reconstructed signals using
the two metrics of MAE and N-ENF (introduced in [1] as the
error of nonlinear fit) defined as:

MAE = 1
n

n∑
i=1

‖si − ŝi‖1, N-ENF = 1
n

n∑
i=1

‖ĉ(si)− ŝi‖2
‖ĉ(si)‖2

,

(6)

where si and ŝi represent the 1000×1 vector of the ith original
source and its estimate, respectively. ĉ(si) is a smoothing
spline that minimizes ‖ĉ(si) − ŝi‖22 + δ‖ĉ′′(si)‖22,∀i ∈ [n],
where ĉ′′(s) is the second-order time-derivative of ĉ(s) and
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Fig. 3. Comparing the result of the source separation with proposed approach and method of [1]. The considered nonlinear mixture is x1 = s1 + 0.2s32,
x2 = s2 − 0.2s31. (a) and (b) are s1(t) and s2(t) signals with its estimation, respectively.
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Fig. 4. The result of source separation with 3 sources using proposed approach. The used nonlinear mixture is x1 = −3s2 + 0.76 cos(s1) − cos(2s2) +
0.2 sin(3s3)+s23+exp(s2), x2 = exp(s3)+1.24 sin(s1)+0.43 cos(s2)+sin(2s3)+s1, x3 = exp(s1)+0.76 sin(s2)+0.43 cos(s1)+sin(2s2)+exp(s3).
(a), (b) and (c) are s1(t), s2(t) and s3(t) signals with its estimation, respectively.
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Fig. 5. Comparing the result of the source separation with proposed approach and method of [1] in linear mixture model. The considered linear mixture
is x1 = 0.2s1 + 0.5s2, x2 = 0.4s1 + 0.1s1. (a) and (b) are s1(t) and s2(t) signals with its estimation, respectively. The MAE and N-ENF metrics for
proposed method are 0.027 and 0.002, respectively. The MAE and N-ENF metrics for [1] method are 0.074 and 0.037, respectively.

TABLE I
COMPARING THE PERFORMANCE OF PROPOSED METHOD WITH [1] IN

TERMS OF MAE AND N-ENF

Nonlinear Mixture MAE Metric N-ENF Metric
Proposed [1] Proposed [1]

x1 = s1 + 0.2s32
x2 = s2 − 0.2s31

0.030 0.368 0.019 0.174

x1 = sin(2s1 − s2)
x2 = sin(s1 − s2) 0.018 0.503 0.017 0.135

x1 = cos (α1) s1 − sin (α1) s2
x2 = sin (α1) s1 + cos (α1) s2

0.044 0.397 0.003 0.450

x1 = cos (α2) s1 − sin (α2) s2
x2 = sin (α2) s1 + cos (α2) s2

0.046 0.334 0.003 0.088

x1 = s1 exp(s1)− cos(s2)
x2 = s2 sin(s1) + exp(s2)

0.146 0.472 0.012 0.074

α1 = π
2

(
1−

√
s21 + s22

)2
, α2 = π

8
sin( s1π

‖s1‖∞
) sin( s2π

‖s2‖∞
)

δ is a fixed smoothing parameter [1]. Table I compares
the performance of the proposed method with that of [1]
in terms of MAE and N-ENF for a number of nonlinear

mixtures including polynomials, trigonometric functions and
exponential functions. The results reveal the superiority of
the proposed method in terms of both metrics. As typical
examples, a case of nonlinear mixing for 2 and another for
3 sources (and their estimated versions) are shown in Fig. 3
and Fig. 4, respectively.

In Fig. 5, we compare our method with [1] with the
conventional setting of a linear mixing model for n = 2. The
results again confirm the superiority of the proposed method.

V. CONCLUSION

In this paper, we introduced a blind source separation
techniques for the case of nonlinear mixture operator. For this
purpose, we employed the truncated Taylor series to model
the nonlinear mixing operator. Next, we designed an end-to-
end recurrent neural network to invert the nonlinear mixing
operator and separate the sources. This way, the neural network
is responsible for both estimating the mixing operator and find
its inverse.
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