
1

Zero Knowledge Focusing in Millimeter-Wave Imaging Systems
Using Gradient Approximation

Hojatollah Zamani, Mohammad Fakharzadeh, Senior Member, IEEE, Arash Amini, Senior Member, IEEE, Farokh
Marvasti, Life Senior Member, IEEE

Abstract—This communication addresses the focusing problem in the
millimeter-wave imaging systems. We categorize the focusing problem
into the frequency focusing for wideband systems and the range
focusing for narrow-band systems. In an out of focus wideband system,
a shifted shadow of the object is present in the reconstruction, whereas
for a range out of the focused system, the recovered images are
blurred. To overcame these issues, first we theoretically show that the
defocusing variations for both categories are bounded. Then, we present
a universal formulation for focusing problem, which covers both
wideband and the narrow-band systems. As the true focused images
are sharp at the boundaries of the objects, our strategy for solving
the problem is to maximize a defined sharpness metric. Moreover, we
propose an autofocusing zero knowledge algorithm, which concerns
with maximizing the sharpness metric from an unknown object, while
the exact gradient of the cost function is unknown. The proposed
method is suitable for practical applications, since it is simple, fast,
and computationally efficient. The simulation results on synthetic and
measured data are promising and support our claims that the proposed
method increases the quality of the reconstruction.

Index Terms—Millimeter wave imaging, range focusing, wideband
focusing, coherent points, gradient approximation.

I. INTRODUCTION

M ILLIMETER-WAVE (MMW) imaging systems are widely
used for different applications such as airport security,

nondestructive tests, medical diagnosis and through wall imaging
[1]–[3]. The MMW signals penetrate through thin dielectric layers,
such as plastic, wood, and clothing, but reflect from metal and
human body, which makes this band suitable for radar imaging in
detecting flaws and concealed objects [4], [5].

In the case of wideband imaging, the TX sequentially sweeps
all frequencies for each object pixel. Based on the geometric
position of the TX and RX, the imaging system is categorized into
the mono-static (same position for TX and RX) and multi-static
(different positions for TX and RX). In this work, we consider the
mono-static system for the sake of simplicity. Extending this work
to the multi-static case is straightforward.

Most of the previous work in the image focusing problem are
related to the synthetic aperture radar (SAR) imaging systems. In
the context of focusing for MMW imaging systems, very few work
exist. In [6] a multichannel autofocus technique based on a non-
iterative algorithm is introduced, which finds the focused image
in terms of basis functions formed with respect to the defocused
image, relying on a condition on the image support to obtain
a unique solution. In [7], an autofocus algorithm for wideband
holographic imaging system is presented based on comparing
the amplitude integral value of holographic imaging results. The
algorithm reconstructs the image at different focusing distances
and then selects the optimal focusing distance. A sparsity-driven
technique for joint SAR imaging and phase error correction by
using a non-quadratic regularization-based framework is introduced
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Fig. 1. Problem statement. The blue lines depict the focus points and the
green color shows defocus area. To have a focused imaging setup, each of
object point should placed in the red point.

in [8], where the phase errors are estimated and removed during
image formation. The cost function in this work is composed of a
data fidelity and a regularization term.

In [9], a method based on a holographic algorithm for near-
field 3-D MMW imaging is proposed, where an extension of
the single frequency autofocus holographic imaging algorithm
for the wideband signals is studied. For SAR-based microwave
imaging, a SVD-autofocus approach using range Doppler algorithm
is introduced in [10]. A single-frequency autofocus millimeter wave
holography scheme is developed in [11] in which the measured
data is split into multiple sections and the autofocus algorithm is
applied to each section. In [12], a software-hardware technique with
the goal of quality improvement in the MMW imaging system is
proposed, where the dual polarization arrays measure the co- and
cross-polarization data with low cross-coupling.

To the best of our knowledge, there is no in-depth investigation
of autofocus algorithms for MMW imaging systems. As shown in
Fig. 1, the MMW wave propagates from a source point, where its
intensity pattern is periodically repeated. If the object point is on the
maximum intensity line (blue lines), which we call it focus point,
the corresponding recovery is the sharpest (at the boundaries).
We call the area between the blue lines as the defocused area,
which means that the object is placed on a nonfocused point. In
practice, some factors such as the range distance and sweeping
frequencies cause the defocused measurements. Switching between
frequencies is usually accompanied with the jitter; hence, the data is
received with a different phase making it non-coherent. If the non-
coherent data is directly used for reconstruction, the outcome will
be a blurred image with considerable degradation of the quality. In
this paper, first we determine the bound of defocusing variation
theoretically for both single and wideband frequency systems.
Then, we propose a gradient based approach to eliminate the
defocus information by defining a sharpness metric. For a focused
recovery, we apply concepts from the zero-knowledge beamforming
[13]–[15]; the latter is concerned with maximizing the received
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power from a target with unknown Direction of Arrival, while
the phase-voltage characteristics of the beamforming network is
unknown. We use the same idea to estimate the unknown phases
from an unknown object.

The rest of this paper is organized as follows. Section II describes
the imaging system model. The main contributions are presented in
Section III. The simulation and measurement results are presented
in Section IV. Finally we conclude the paper in Section V.

II. SYSTEM MODEL AND PROBLEM SETUP

A. MMW Imaging System Model

The MMW mono-static imaging system can be mathematically
modeled as follows. A pair of TX and RX antennas are located at
the same place, which forms a transceiver. In a process of scanning
an object plane (Fig. 2), the TX transmits the millimeter wave
onto the object plane and the reflected signals from the illuminated
object are captured by the RX. Assume that the transceiver antenna
position, the corresponding illuminated point on the target, and the
reflected wave are denoted by (x′, y′, 0), (x, y, z0) and f(x, y),
respectively. The scattered field at the receiver, is a linear combi-
nation of the reflected waves from all object points, which can be
represented as [5]

s(x′, y′) =

∫∫
f(x, y)e−j2krdxdy, (1)

where k = 2π/λ is the wavenumber, s(x′, y′) is the
measured signal by RX at position (x′, y′) and r =√

(x− x′)2 + (y − y′)2 + z20 is the Euclidean distance between
the transceiver and the corresponding object point. A common
approach of image recovery is the generalized synthesis aperture
focusing technique (GSAFT) described in [5], which is summarized
as

f(x, y) = F−1{F{s(x′, y′)}ejkzz0} (2)

where kz =
√

4k2 − k2x − k2y and the operators F{·} and
F−1{·} represent the 2-D Fourier transform and its inverse, respec-
tively. We use GSAFT as a benchmark method in our experiments
for the purpose of comparison.

To model the imaging system in the discrete domain, let the
matrices SM×N and FP×Q represent the measured data and the
object plane, respectively. The discrete form of (1) is given by

S[m,n] =

P∑
p=1

Q∑
q=1

F[p, q]e−j2kr[m,n,p,q], (3)

where r[m,n, p, q] is the Euclidean distance between the
transceiver position [m,n] (where m and n stand for the grid
points on the x and y axes, respectively) and the object point [p, q]
(r[m,n, p, q] =

√
(m− p)2 + (n− q)2 + z20). The wideband

imaging model can be obtained by extending (3) to Nf frequencies
(fi, i = 1, · · · , Nf ) as follows

S[m,n, fi] =

P∑
p=1

Q∑
q=1

F[p, q]e−j2 2π
c
fir[m,n,p,q]. (4)

B. Focusing Problem

Consider S ∈ CM×N×Nf to be the exactly focused measure-
ments in the wideband system. In practice, S is corrupted by
multiplicative phase errors which ultimately defocus the measure-
ments. The phase error can be caused by either the range focusing
problem related to the range/distance between the transceiver and
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Fig. 2. Mono-static imaging system model. The TX antenna impinging
EM wave toward the object and the reflected wave is measured by the RX
antenna.

the object planes, or the non-accurate frequency generation in the
wideband imaging system. Mathematically, the defocused data can
be represented as

Ŝ[m,n, fi] = S[m,n, fi]e
jϕe[m,n,fi], (5)

where ϕe[m,n, fi] ∈ [0, 2π] is the phase error related to the
position [m,n] and the frequency fi. Using (4) and (5), a more
realistic model is given by

Ŝ[m,n, fi] =

P∑
p=1

Q∑
q=1

F[p, q]e−j2 2π
c
fir[m,n,p,q]ejϕe[m,n,fi]. (6)

The challenge is to recover a focused image F from the defo-
cused measurements Ŝ.

III. MAIN RESULTS

In this section, we first explore the focusing problem and theoret-
ically derive the bounds of defocusing variations for both categories
(range and frequency focusing problem). Then, to compensate the
defocusing effects, we propose an autofocusing algorithm based on
gradient estimation, which maximizes a defined sharpness metric.

A. Single Frequency Focusing

Consider the single frequency imaging system. Let the sys-
tem operate within the focus range of z1 (distance between
transceivers and object planes). According to (3) and the wave
propagation property, the defocus distance z0 with an additional
phase ϕ can generate the coherent data. By assuming a =√

(m− p)2 + (n− q)2, the following equations should be satis-
fied

e−2j
2π
λ

√
a2+z20 = e−2j

2π
λ

√
a2+z21 e−jϕ (7)

4π
λ

√
a2 + z20 = 4π

λ

√
a2 + z21 + ϕ (8)

z0 =

√
(
√
a2 + z21 + λ

4π
ϕ)2 − a2. (9)

By inserting the minimum and the maximum values of ϕ, the
defocus range is determined as

z1 ≤ z0 ≤
√

(
√
a2 + z21 + λ

2
)2 − a2, (10)

For the middle point where a = 0, the minimum defocus range
(z1 ≤ z0 ≤ z1 + λ

2
) is achieved. It is observed that, the defocusing

distance is bounded by an affine function of the wavelength. To
better illustrate this point, the next focus distance (upper bound of
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Fig. 3. (a) Focus distance for f = 30 GHz and area [−10cm × 10cm].
(b) ∆f for z = 15 cm and area of [−10cm× 10cm].

(10)) is depicted for all grid points in Fig. 3(a) for the operating
frequency of 30 GHz. Besides, the scanning area is 10cm× 10cm
covering the whole object and the original focusing distance is
z1 = 15 cm. This bound indicates that the amount of blur
on the reconstruction is limited. To achieve a high quality in
reconstruction, an accurate estimation of the range is required.
Due to the physical limitations of the system, this is an important
concern in practice. In fact, the system requires a mechanism to
control this effect automatically. Here, we shall control this by
introducing an autofocusing algorithm.

B. Wideband focusing

An important issue that appears in wideband imaging systems
is the effect of frequency perturbation, which impacts the overall
quality of image reconstruction. In a wideband imaging system that
scans a 2-D object, due to the periodicity of wave propagation,
increasing the frequency band beyond a threshold is redundant, as
coherent data will be repeated. Here, our goal is to theoretically
determine the interval between two consecutive focus frequencies
based on imaging model; this limits the perturbation range. In fact,
we investigate the extent to which the measured data is varied by
sweeping the wave frequency. With the same approach as the range
focusing analysis, the measured data associated with frequency f1
can be regenerated by another frequency f2 with additional phase
ϕ. Therefore, we get

e−j2 2π
c
f2

√
a2+z2 = e−j2 2π

c
f1

√
a2+z2e−jϕ (11)

4π
c
f2
√
a2 + z2 = 4π

c
f1
√
a2 + z2 + ϕ (12)

f2
√
a2 + z2 = f1

√
a2 + z2 + c

4π
ϕ (13)

f2 = f1 + c

4π
√
a2+z2

ϕ (14)

Now, by checking the extreme values of ϕ, we determine the
frequency range as

f1 ≤ f2 ≤ f1 +
c

2
√
a2 + z2

(15)

Interestingly, for the case of middle point (a = 0), we get the
maximum range 0 ≤ ∆f ≤ c

2z
where ∆f = f2−f1. Therefore, as

mentioned earlier, the range of effective wave frequencies for imag-
ing is limited and the captured data will be periodically repeated
by increasing the frequency value. For instance, if z = 15cm, then,
0 ≤ ∆f ≤ 1MHz. Further, the range of ∆f depends on the value
of a, (Fig. 3(b) shows ∆f range for z = 15cm and scan area of
[−10cm× 10cm]).

C. Sharpness metric

We express the autofocus issue as an optimization problem,
where the objective is to maximize the received power from a
desired object. The only information about the data is that the
measured signal at each frequency is corrupted by a phase error. By
observing Ŝ[m,n, fi] in (6), it is not possible to uniquely extract
mathematical expressions for both F and ϕe. However, if ϕe is
known, F can be derived from Ŝ[m,n, fi] by an inverse Fourier
transform. We define each point of the output focused image with
phase vector ϕpq = [ϕ1, ϕ2, · · · , ϕNf ] as follows

hpq(ϕ1, ϕ2, · · · , ϕNf ) =
Nf∑
i=1

M∑
m=1

N∑
n=1

Ŝ[m,n, fi]e
jϕ[p,q,i]ej2k[i]r[m,n,p,q]. (16)

The algorithm requires a metric to estimate the phases. Because
of the point-wise nature of MMW imaging model, image sharpness
is a proper indicator of the amount of focus. The aim of the
proposed algorithm is to determine the phase values in the search
space that maximize a sharpness metric; this metric is formed
by individual pixel contributions. More specifically, we define the
metric H(ϕ) =

∑
p

∑
q |hpq(ϕpq)|

2 by taking the intensity of
each pixel hpq(ϕpq) into account in form of:

argmax
ϕ

H(ϕ). (17)

D. Proposed Algorithm

We propose an iterative gradient method to estimate the phases.
Lets ϕ(n) = [ϕ1(n), ϕ2(n), · · · , ϕN (n)] denote the estimated
phases of N = P × Q × Nf points at iteration n. Using the
gradient estimation method, the new phase vector ϕ(n + 1) is
updated according to

ϕ(n+ 1) = ϕ(n) + 2µ∇ϕH(n) (18)

where µ is the step-size parameter of the algorithm, and ∇ϕH(n)
denotes the gradient of the metric with respect to ϕ. Since the
exact evaluation of ∇ϕH(n) is difficult, we replace it with an
approximate vector, such as [14]

∇ϕH(n) ≈ [ĝ1(n), ĝ2(n), · · · , ĝN (n)] (19)

where each component ĝk(n) is the approximate partial derivative
of H(n) w.r.t. ϕk(n). To estimate the gradient of a multi-variable
function, the sequential two-side approximation method is used. In
this approach, two perturbations with opposite signs are applied
to determine the centered finite-difference approximation of each
gradient component

ĝk(n) =
H(· · · , ϕk(n) + δ, · · · )−H(· · · , ϕk(n)− δ, · · · )

2δ
.

(20)
We further update µ automatically for fast convergence of the
algorithm. Throughout the iterations, as the estimations approach
the maximizer of the metric, we need to decrease the step-size µ
to control the ripples. For this goal, we update µ as µn = µ0e−kn

(where k is a decay factor) in an iteration whenever the sum of
the object points of the image is increased. As we do not know
the exact boundary of the true object points, we roughly estimate
it by applying a fast and simple inverse propagation technique and
select the points with intensities larger than 90% of the maximum
value.
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Fig. 4. Recovery of a cross shape: (a) the original shape, (b) perfectly
focused recovery, (c) nonfocused recovery with SSIM= 0.4419, (d) auto-
focused recovery using the proposed algorithm with SSIM = 0.9371

Fig. 5. The practical imaging system setup. The transceiver moves along
the scan plane and measures the reflected waves from the object.

IV. SIMULATION AND MEASUREMENT RESULTS

In this section, we evaluate the proposed autofocusing method.
Different scenarios including synthetic and measured data with
variety of shapes are considered. The parameter δ of the proposed
algorithm is set to 10−4. We evaluate the image reconstruction
quality by the structural similarity index measure (SSIM) metric
[16].

In the first scenario, the distance between the transceiver and
object planes is set as 30cm, and the discretized object plane has
20× 58 points (Fig. 2). The synthetic object is shown in Fig. 4(a).
The reconstructed shape using the GSAFT algorithm is depicted in
Fig. 4(b). We now add a random phase noise to the data and directly
recover it as shown in Fig. 4(c), where the SSIM is 0.4419. By
applying the proposed algorithm, the phase noise is compensated
in Fig. 4(d) and the SSIM is increased to 0.9371.

For the rest of the experiments, we evaluate the proposed method
on a practical imaging system, which is depicted in Fig. 5. The
imaging system consists of two horn antennas with 20dB gain
at Ka-band (26GHz-40GHz) used as TX and RX antennas, an
RF amplifier with 18dB gain and a mechanical scanning system,
which moves the antennas for scanning the object in Cartesian
plane. The TX and RX antennas are connected to a HP8722ES
network analyzer, which transmits and receives millimeter-wave
signals. The whole system is placed inside an anechoic chamber,
where undesired reflections are absorbed.

For the second scenario, we use the measured data of an
aluminium cross with the same settings as in the first scenario. A
sample of the recorded data is shown in Fig. 6(a). The recovered
images based on the nonfocused and autofocused data are depicted
in Figs. 6(a2) and 6(a3), respectively. The results indicate that the
proposed algorithm focuses the data successfully and the recovered
shape boundary is sharp.

For the next experiments, we measure the data of an “F” shape
metal object and a real knife in different imaging settings. Here,
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Fig. 6. Recovery of a “cross”, the shape “F”, and a “knife” from the
real measurements. (a), (b), and (c) are the optical images. (a1), (b1), and
(c1) display the samples of the measured data. (a2), (b2), and (c2) are the
recovered images using GSAFT based on nonfocused data. (a3), (b3), and
(c3) show the recovered images using the proposed autofocusing algorithm.
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Fig. 7. Defocused phase estimation curve versus iteration for 200 points
of measured data using proposed algorithm.

the objects are placed 16 cm away from the receiver. For scanning
the “F” shape object, the wave frequency is swept from 28.5GHz
to 31GHz with the step of 6.25MHz. Also, the dimensions of the
measured data is 50 × 50 points. In the case of the real knife,
the scanned area is 93× 104 points and the system operates at 11
different frequencies within the range of 26GHz to 35GHz with the
step of 900MHz. Here, the object-transceiver distance is set to 45
cm. The results of these experiments are also depicted in Fig. 6. The
results confirm the success of the proposed autofocusing method,
which compensates the phase noise and increases the reconstruction
quality. To show the convergence of the proposed algorithm, we
randomly select 200 points of the measured data of the “F” shape
and draw the estimated phases per iteration in Fig. 7. It is observed
that after 8 iterations, the estimated phases almost match those used
for generating Fig. 6(c3).

We evaluate the execution time of the proposed algorithm for
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an image size of 55 × 55 pixels and 201 different frequencies.
On average, the phase estimation per point takes 2.8 microsecond.
Overall, the algorithm takes 14.33 s to converge at all the points
within 40 iterations. This evaluation is implemented in MATLAB
2019b on a workstation with Intel(R) Core(TM) i7− 4930K CPU
@3.40GHz (12 CPUs) and 16GB RAM.

V. CONCLUSION

In this paper, the problem of 2-D image recovery in wideband
imaging systems is addressed. We showed that based on periodicity
of the phase term in wideband imaging, the measured data points
are repeated at different frequencies and the bound of frequency
variations is extracted. By combining the data on the coherent
points, a significant improvement in the image reconstruction
was observed. Moreover, we proposed a practical autofocusing
algorithm based on the defined sharpness metric to determine and
compensate for the phase perturbation at different frequencies. The
proposed algorithm was applied to both synthetic and measured
data to evaluate its performance. The quality of the image recovery
was improved and our algorithm outperformed the state-of-the-art
algorithms.

REFERENCES

[1] V. M. Patel, J. N. Mait, D. W. Prather, and A. S. Hedden, “Computa-
tional millimeter wave imaging: Problems, progress, and prospects,”
IEEE Signal Processing Magazine, vol. 33, no. 5, pp. 109–118, 2016.

[2] A. Elboushi and A. Sebak, “MMW Sensor for Hidden Targets De-
tection and Warning Based on Reflection/Scattering Approach,” IEEE
Trans. Antennas Propag., vol. 62, no. 9, pp. 4890–4894, 2014.

[3] H. Zamani and M. Fakharzadeh, “1.5-d sparse array for millimeter-
wave imaging based on compressive sensing techniques,” IEEE Trans-
actions on Antennas and Propagation, vol. 66, no. 4, pp. 2008–2015,
April 2018.

[4] M. C. Kemp, “Millimetre wave and terahertz technology for detection
of concealed threats - a review,” in 15th Int. Conf.Terahertz Electron-
ics, Sept 2007, pp. 647–648.

[5] D. M. Sheen, D. L. McMakin, and T. E. Hall, “Three-dimensional
millimeter-wave imaging for concealed weapon detection,” IEEE
Trans. Microw. Theory Tech., vol. 49, no. 9, pp. 1581–1592, 2001.

[6] R. L. Morrison, M. N. Do, and D. C. Munson, “Mca: A multichannel
approach to sar autofocus,” IEEE transactions on image processing,
vol. 18, no. 4, pp. 840–853, 2009.

[7] H. Cheng, S. Li, H. Zheng, H. Jing, and H. Sun, “A w-band auto-focus
holographic imaging system for security screening,” IEICE Electronic
Express, vol. 14, no. 11, p. 20170347, 2017.

[8] N. O. Onhon and M. Cetin, “A sparsity-driven approach for joint sar
imaging and phase error correction,” IEEE Transactions on Image
Processing, vol. 21, no. 4, pp. 2075–2088, 2012.

[9] S. Li, G. Zhao, H. Sun, and M. Amin, “Compressive sensing imaging
of 3-d object by a holographic algorithm,” IEEE Transactions on
Antennas and Propagation, vol. 66, no. 12, pp. 7295–7304, 2018.

[10] M. D. Buhari, G. Y. Tian, and R. Tiwari, “Microwave-based sar
technique for pipeline inspection using autofocus range-doppler al-
gorithm,” IEEE Sensors Journal, vol. 19, no. 5, pp. 1777–1787, 2019.

[11] H. Cheng, J. Gu, Y. Cheng, S. Li, and H. Sun, “Multi-section auto-
focus millimeter-wave holography,” in 2016 IEEE MTT-S Interna-
tional Microwave Symposium (IMS), 2016, pp. 1–3.

[12] M. Rezaei, H. Zamani, M. Fakharzadeh, and M. Memarian, “Quality
improvement of millimeter-wave imaging systems using optimized
dual polarized arrays,” IEEE Transactions on Antennas and Propa-
gation, pp. 1–1, 2021.

[13] M. Fakharzadeh, S. Safavi-Naeini, S. H. Jamali, and P. Mousavi,
“Zero-knowledge beamforming of phased array antennas based on
simultaneous perturbation gradient approximation,” in 2006 IEEE
Antennas and Propagation Society International Symposium, 2006,
pp. 537–540.

[14] P. Mousavi, M. Fakharzadeh, S. H. Jamali, K. Narimani, M. Hossu,
H. Bolandhemmat, G. Rafi, and S. Safavi-Naeini, “A low-cost ultra
low profile phased array system for mobile satellite reception using
zero-knowledge beamforming algorithm,” IEEE Transactions on An-
tennas and Propagation, vol. 56, no. 12, pp. 3667–3679, 2008.

[15] M. Fakharzadeh, S. H. Jamali, P. Mousavi, and S. Safavi-Naeini,
“Fast beamforming for mobile satellite receiver phased arrays: Theory
and experiment,” IEEE Transactions on Antennas and Propagation,
vol. 57, no. 6, pp. 1645–1654, 2009.

[16] Zhou Wang et al., “Image quality assessment: from error visibility to
structural similarity,” IEEE Transactions on Image Processing, vol. 13,
no. 4, pp. 600–612, April 2004.


