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ARMA Processes with Discrete-Continuous
Excitation: Compressibility Beyond Sparsity
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Abstract—The Rényi Information Dimension (RID) is a fun-
damental measure for quantifying the compressibility of random
variables with singularities in their distributions, extending be-
yond classical notions of sparsity. At a high level, RID represents
the average number of bits required to encode i.i.d. samples of
a random variable with high precision. For stochastic processes,
two main extensions of RID exist: the information dimension rate
(IDR) and the block information dimension (BID). A more recent
approach to characterizing the compressibility of stochastic
processes is through ϵ-achievable compression rates, which treat
a random process as the limit of finite-dimensional random
vectors and leverage tools from compressed sensing. However, the
interplay between BID, IDR, and ϵ-achievable compression rates
remains poorly understood. Furthermore, explicit values of IDR
and BID are known only for a limited class of processes, such as
i.i.d. sequences (i.e., discrete-domain white noise) and moving-
average (MA) processes. This paper investigates the IDR and
BID of discrete-time Auto-Regressive Moving-Average (ARMA)
processes and their relationship with ϵ-achievable compression
rates when the excitation noise follows a discrete-continuous
distribution. Specifically, we show that the RID and ϵ-achievable
compression rates of such ARMA processes are equal to those of
their excitation noise. In other words, despite the fact that ARMA
process samples are not sparse, their compressibility matches
that of their sparse excitation noise. To establish this result,
we demonstrate that the singular components of the sample
distribution are supported on affine sets, with relative dimensions
that concentrate around the BID. Leveraging a known result
on typical affinely singular sources, we further prove that in
this setting, the RID coincides with ϵ-achievable compression
rates. The findings of this paper provide new insights into the
compressibility of locally correlated data with finite- or infinite-
memory, which are commonly modeled using ARMA processes.

Index Terms—ARMA processes, discrete-continuous random
variables, Rényi Information Dimension.

I. INTRODUCTION

Discrete-domain auto-regressive moving-average (ARMA)
processes are popular stochastic models for explaining data
with long-range dependencies; these models are used for es-
timation and classification purposes [1]. Data with long-range
dependencies occur in phenomena such as network traffic [2],
fading channels [3], fluid velocity [4], solar irradiance [5],
automotive traffic [6], and housing investments [7].

These processes consist of a shaping filter that acts on an
innovation process, also referred to as an excitation noise.
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The distribution of the ARMA model is determined by the
innovation process, whereas the dependency patterns among
samples of the ARMA process is controlled by the shaping
filter, which is in turn determined by a set of parameters
(AR/MA parameters). The main advantage of ARMA models
is that they allow for deriving optimal estimators in certain
settings. However, the distribution of a statistical model and
more specifically, its compressibility properties, is a key factor
in forming an effective model for realistic applications [8].

Despite the important role of ARMA processes, their com-
pressibility is investigated only in special cases, e.g., auto-
regressive processes with Gaussian innovations [9]. While
Gaussian models often lend themselves to analytical solutions
and closed-form expressions, they do not adequately capture
a significant portion of natural signals, including spectral,
seismic, and biological data. These data are better described
by sparsity inducing laws such as Bernoulli-Gaussian [10].
However, conventional approaches fail to measure the com-
pressibility of an ARMA processes with such sparsity inducing
laws, and alternative approaches have yet to emerge in the
literature.

In this paper, we evaluate the compressibility of ARMA
processes in a rather broad setting. Our main result is to show
that the information-theoretic compressibility of an ARMA
process is equal to that of its innovation process, and inde-
pendent of its AR/MA parameters. Furthermore, this value
coincides with the notion of smooth and robust compressibility
in [11] which extends some compressed sensing concepts to
stochastic processes. Our approach results are derived using
a technique that is recently developed in [12] and quantifies
the compressibility of random vectors with affinely singular
distributions. In simple words, the singular part (e.g. mass
probabilities) of the distribution of these vectors are supported
on affine subsets. By applying this technique, we show that
finite dimensional samples of ARMA processes with discrete-
continuous excitation noise are affinely singular random vec-
tors. In turn, this result enables us to quantify the smooth and
robust compressibility of such ARMA processes.

Relevant Literature

Information-theoretic compressibility of discrete-domain
stochastic processes is studied mainly in special cases. In [13]
it is shown that ARMA processes have the highest entropy
among all processes with a given auto-correlation matrix. In
[9], it is proved that the rate-distortion function (RDF) of an
autoregressive process with Gaussian excitation is equal to
that of its excitation noise. A similar result is shown for first-
order autoregressive processes, i.e., known as AR(1) processes,
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with discrete excitation. The results of [9] further implies that
information dimension rates of such processes are equal to that
of their excitation noise. The RDF of non-stationary Gaussian
autoregressive processes and vector Gaussian autoregressive
processes are studied in [14]–[15] and [16], respectively. The
RDF of the process obtained by applying an FIR filter to a
general wide-sense stationary Gaussian process is covered in
[17]. For this class of processes, the authors of [18] derive
the differential entropy rate. A learning-based compression
approach is introduced in [19] which achieves the block
information dimension on a class of stationary processes; we
note that this technique is applicable to some MA processes
studied in this paper.

Almost lossless compression rates, also referred to as ϵ-
achievable compression rates, are introduced in [11] and
studied for i.i.d. processes. In [20], fundamental bounds are
derived for worst ϵ-achievable compression-rates of bounded
processes. In [12], almost lossless compression rates of MA
processes are investigated; the considered processes are exam-
ples of processes with affinely singular sample distributions.

Several other measures of compressibility for stochastic
processes are proposed in the literature. An energy-based
measure of compressibility is introduced and studied for
continuous i.i.d. random variables in [21] and for ergodic
sequences in [22]. The non-asymptotic lossless compression
rates of a random vector has been studied in [23] via modifying
the Minkowski dimension of the support set of the vector.
For n-dimensional AR(1) processes with Gaussian excitation,
the compression rate is evaluated in terms of the Hausdorff
dimension in [24].

Continuous-domain ARMA processes in which the excita-
tion noise is a Lévy process are studied in [25]. The compress-
ibility of continuous-domain innovation processes and their
comparisons are provided in [26]; the compressibility measure
is based on the entropy rate of finely quantized samples. The
study of differential entropy of finely sampled Lévy process
with continuously distributed excitation noise is achieved in
[27].

Contributions

In this paper, we study the compressibility of ARMA
processes, in which the excitation noise is not limited to the
Gaussian or absolutely continuous probability measures, but a
larger class of discrete-continuous measures. Accordingly, we
study the information-theoretic measures of compressibility,
such as block-average information dimension (BID) and the
information dimension rate (IDR), originally introduced in
[28] and [29], respectively, and almost lossless compressibility
measures, which is introduced in compressed sensing literature
[11].

As we discuss in Section II-B, BID and IDR are similar
in definition, however, they induce two different approaches
towards compressibility. On one hand, the IDR, dI

(
{Xt}

)
, of

a process {Xt} quantifies the ratio of minimum number of bits
needed to encode the high-resolution (i.e., m → ∞) quantized
version

{
[Xt]m

}
of the process {Xt}, to the minimum number

of bits needed to encode the quantized version
{
[Yt]m

}
of

all encode-able processes {Yt}. On the other hand, the BID,
dB

(
{Xt}

)
calculates the average information dimension of

truncated samples of a process, for large number of samples.
Following above definitions, one can argue that the IDR

encodes the definition of compressibility in a more sensible
way. However, finding its value is theoretically more complex,
as calculating this measure incolves finding the entropy rate
of a quantized version of the stochastic process in a non-
asymptotic setting for quantization step-size.

To address this issue, there are some works that show the
equality of IDR and BID —where the latter is generally easier
to calculate —under some conditions on the process [30], [29].
One of the conditions that generally simplify the evaluation of
IDR is finiteness of mutual information among samples of the
process. As we will show by an example in Section III-A, this
is not the case for ARMA processes with discrete-continuous
excitation noise. Although this condition is violated for the
mentioned ARMA case, as a first contribution of this work,
we show that IDR and BID are still equal.

The classical information-theoretic measures of compress-
ibility (such as entropy and RID) search over all possible
functions that can encode the data. Oftentimes, the optimal
encoding function demonstrates irregular behavior in response
to the input data, making the compression scheme sensitive
to noise and non-idealities. This is in contrast with the
compressed sensing scenario [31] where by restricting the
encoder to linear functions, the effect of noise is kept under
control. Besides, under certain conditions (the encoder satisfies
the restricted isometry property with a suitable constant) the
standard decoder acts as a Lipschitz operator [32] (noise and
non-idealities could be linearly bounded in the output).

Drawing inspiration from the compressed sensing scenario,
in this paper we mainly study the latent dimension of the op-
timal linear/Borel and Borel/Lipschitz encoder/decoder pairs.
The minimum compression rate among all encoder/decoder
pairs such that the decoding error probability is at most
ϵ ∈ (0, 1) is called the minimum ϵ-achievable compression
rate (linear/Borel minimum ϵ-achievable and Borel/Lipschitz
minimum ϵ-achievable compression rates). As the second
contribution of this paper, we show that both minimum ϵ-
achievable rates for ARMA processes coincide with BID and
IDR (as BID and IDR are equal here). To elaborate, in the
settings similar to compressed sensing where the encoder is
a linear function and the decoder ensures the robustness with
respect to noise, the optimal rate of compression is equal to the
Rényi information dimension rate of the process. The equality
of ϵ-achievable compression rates and the IDR was previously
shown for an i.i.d. sequence of random variables in [11], and
for moving-average processes in [12]. The result in this paper
for ARMA processes extends both results.
Notations: In this study, we adopt to the following notation:
capitalized letters (e.g., X) represents random variables (RVs),
while lowercase letters (e.g., x) denote fixed scalars. Bold
capitalized letters (e.g., X) correspond to random vectors,
and bold lowercase letters (e.g., x) indicate fixed vectors. The
uniform quantization of a random vector with precision 1/m is
denoted as [Xn]m. A comprehensive summary of the notation
used throughout this work is provided in Appendix A.
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II. PRELIMINARIES

In this section, we present useful definitions of probabil-
ity measures, ARMA processes, affinely singular RVs, and
information-theoretic compressibility measures.

A. Types of Measures

The cornerstones of our work are discrete-continuous prob-
ability measures. To properly introduce such measures, we
start with two simpler definitions and review the well-known
Lebesgue-Radon-Nikodym theorem for characterizing generic
measures (see [33, p. 121]).

In the following, let Σ be a σ-field of Rn.
Definition 1 (Absolutely continuous measures): We refer to

the probability measure µ(·) on Σ as absolutely continuous,
if for every set S ∈ Σ with zero Lebesgue measure, we have
that µ(S) = 0.

Definition 2 (Singular measures): A measure µ(·) on Σ is
called singular, if there exists a subset S ⊂ Rn with zero
Lebesgue measure such that

µ(Rn \ S) = 0. (1)

If S is further countable, then, µ(·) is called discrete.
Theorem 1 (Lebesgue-Radon-Nikodym): Every probability

measure µ on Rn is associated with a unique singular measure
µs(·) and an absolutely continuous measure µc(·), such that
for a α ∈ [0, 1] we have

µ = αµc + (1− α)µs. (2)

We refer to α as the continuity chance of the measure µ(·).
If µs(·) is discrete and α ∈ (0, 1), i.e., α does not take
the endpoints of the interval, then, we call µ a α-discrete-
continuous probability measure.

B. Compressibility Measures

The classical notion of entropy is well-defined for discrete-
valued RVs. This notion is generalized for continuous-valued
RVs via the limiting entropy of the quantized RV. The uniform
quantization of a RV Xn with precision m is defined in (28)
as [Xn]m ∈ (N/m)n.

Definition 3 ([34]): The Rényi information dimension (RID)
for a RV Xn is

d(Xn) = lim
m→∞

H[Xn]m)
logm , (3)

if the limit exists, where H(·) is the Shannon entropy function.
Theorem 2 ([34]): For a random variable X with p-discrete-

continuous measure, we have d(X) = p.
Definition 4 ([28]): For a discrete-domain stationary

stochastic process {Xt}, the block-average information di-
mension (BID) is defined as

dB
(
{Xt}

)
= lim

n→∞
lim

m→∞

H
(
[Xn]m|[Xn−1]m

)
logm

, (4)

if the limit exists. If limm→∞ in (4) does not exist, dB
(
{Xt}

)
and dB

(
{Xt}

)
represent (4) when limm→∞ is replaced with

lim supm→∞ and lim infm→∞, respectively.

Theorem 3: [28, Lem. 3] For a discrete-domain stationary
stochastic process {Xt} the BID equals

dB
(
{Xt}

)
= lim

n→∞
lim

m→∞

H
(
[Xn]m

)
n logm

= lim
n→∞

1

n
d(Xn). (5)

Definition 5 ([29]): For a discrete-time stochastic process
{Xt}, information dimension rate (IDR) is defined as

dI
(
{Xt}

)
= lim

m→∞
lim
n→∞

H
(
[Xn]m

)
n logm

, (6)

if limm→∞ exists; otherwise, by replacing limm→∞ with
lim infm→∞ and lim supm→∞, we can define dI

(
{Xt}

)
and

dI
(
{Xt}

)
, respectively.

Theorem 4 (Thm. 14,[29]): For a discrete-domain stationary
stochastic process {Xt}, we have that

dI
(
{Xt}

)
≤ dB

(
{Xt}

)
. (7)

The smooth and robust compression/decompression meth-
ods are studied in [35] and [11]. For the following compress-
ibility measures, we use the notations introduced in [11] which
are inspired by similar notions in the field of compressed
sensing [36].

Definition 6: [[11]] Let {Xt} be a discrete-domain stochas-
tic process. For an integer n, we refer to fn : Rn → R⌊nRn⌋

and gn : R⌊nRn⌋ → Rn as an ϵ-encode/decode pair with rate
Rn (for the process), once we have

P
(
gn

(
fn(X

n)
)
̸= Xn

)
≤ ϵ. (8)

For a given ϵ > 0, we define the minimum ϵ-achievable
rate as lim infn→∞ Rn. Further, if we restrict the encoder
fn to be linear, we obtain the linear-encode ϵ-achievable rate
represented by R∗(ϵ). Alternatively, if we restrict the decoder
to be Lipschitz, then, we obtain the minimum Lipschitz-decode
ϵ-achievable rate denoted by R(ϵ).

C. Stochastic Processes

A stationary process is a stochastic process whose uncon-
ditional joint probability distribution does not change when
shifted in time.

Definition 7 (Stationary process): A stochastic process {Xt}
is “strictly stationary” if

µXi1+l,...,Xin+l
(·) = µXi1

,...,Xin
(·),

for every n ∈ N and l ∈ Z.
The class of Auto-Regressive Moving-Average (ARMA)

processes is defined as following:
Definition 8 (ARMA Process [37]): A (p, q)-ARMA process

with p, q ∈ N is defined by the recursive expression

Xt = ξt +
∑
i∈[q]

θiξt−i −
∑
i∈[p]

ϕiXt−i, (9)

for t ∈ Z and where the constants ϕii ∈ [p] and θii ∈ [q]
represent the autoregressive (AR) and moving-average (MA)
parameters, respectively. The sequence {ξi}i∈Z is defined as
the excitation process and is a sequence of i.i.d. RVs.
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Remark 1: A stationary ARMA process is an ARMA(p, q)
process that is strictly stationary. The sufficient and necessary
condition for an ARMA(p, q) process to be stationary is
provided in Appendix C.

When the excitation white noise in an ARMA process has
a discrete-continuous distribution, the vectors of ARMA sam-
ples might also have singular components in their distribution.
Due to the linear mixture of the white noise samples, these
components form affine subsets. The class of vectors with
singularities over affine sets was the topic of our previous
publication [38]. We refer to this class of vectors as Affinely
Singular Random Vectors (Affinely Singular Random Vectors
(ASRV)).

Definition 9 ([12]): A random vector Zn is an ASRV if there
exists a finite or countably infinite number of affine subsets
Ai ⊂ Rn of dimension 0 ≤ di ≤ n and absolutely continuous
1 di-dimensional measures µi over Ai such that

∀B ⊆ Rn : P
(
Zn ∈ B

)
=

∑
i

µi

(
B ∩ Ai

)
. (10)

We finally come to a definition of Discrete–Continuous Ex-
citation Autoregressive–Moving–Average (DCE-ARMA) pro-
cesses; a stationary ARMA process in which the excitation
noise is discrete-continuous, so that samples of the process
are ASRV.

Definition 10: A DCE-ARMA process is defined as the
(p, q)-ARMA processes in which the excitation process {ξt}
has a discrete-continuous distribution. Such a process is indi-
cated as (p, q)-DCE-ARMA process.
In the next section, we analyze the compressibility of
DCE-ARMA processes using the measures introduced in Sec.
II-B.

III. MAIN RESULTS

We begin our analysis by deriving information-theoretic
measures of compressibility for a DCE-ARMA process.

A. BID and IDR of a DCE-ARMA process

In this section, we use the calculus of information dimension
to study the BID and IDR of a DCE-ARMA process. In
particular, in the next theorem, we show that the BID of
all stationary ARMA processes, whether the excitation noise
is discrete-continuous or not, is equal to the information
dimension of their excitation noise.

Under mild conditions, we further establish that IDR, BID,
and RID of the excitation noise are identical.

Theorem 5: If d(ξ1) is well-defined for the i.i.d. excitation
process {ξt}, then, for the resulting stationary ARMA process
{Xt} we have

dB
(
{Xt}

)
= d(ξ1). (11)

1Here, we abused the notion of absolute continuity. In fact, if fi is the
affine transformation with which we can generate the set Ai, then, by the
absolute continuity over Ai we mean the absolute continuity with respect to
the pushforward measure ℓi(f

−1
i (·)), where ℓi is a di-dimensional Lebesgue

measure.

Further, if H
(
[ξ1]1

)
< ∞, then,

dI
(
{Xt}

)
= dB

(
{Xt}

)
= d(ξ1). (12)

While the full proof is provided in Appendix F, we present
a proof sketch of (11), which establishes the equality of the
BID and the RID of the excitation noise, to highlight the key
techniques used. Through this sketch, we use several properties
of information dimension, namely, Properties I through IV,
that were previously introduced in [39]. Firstly, due to the
recurrence relation of the ARMA process {Xt}, we prove that
a truncation Xm+p of this process, where m is an arbitrary
integer, and p is the number of poles of the process, can
be linearly obtained from the excitation noise ξm+p

1−q+p and a
smaller truncation Xp

1. Next, we use the following property
to show that in this case, the information dimension can only
increase d(Xm+p) ≤ d(ξm+p

1−q+p,X
p
1).

• Property I: A Lipschitz function increases the informa-
tion dimension of a variable.

Next, using the following properties, we can further upper-
bound the right-hand side of the inequality by d(ξm+p

1−q+p) +
d(Xp

1) ≤ (m+ q)d(ξ1) + p.
• Property II: The information dimension of a random

vector Xm is bounded above by m.
• Property III: For two independent random vectors Xm

and Yn, the joint information dimension is equal to
the sum of the information dimension of each, i.e.,
d(Xm,Yn) = d(Xm) + d(Yn).

Furthermore, once more due to the linear dependence of pro-
cess and the excitation noise, and as a result of the following
property, we can lower-bound the information dimension as
d(Xm+p) ≥ d(ξm+p

1+p ) = md(ξ1).
• Property IV: For two independent random vectors Xm

and Ym, the information dimension of the sum of random
vectors is bounded below by the information dimension
of each, i.e., d(Xm +Ym) ≥ max{d(Xm), d(Ym)}.

As a result, the limit limm→∞
d(Xm+p)

m+p that quantifies the BID
is equal to d(ξ1). The upper- and lower-bound of this proof is
illustrated for an AR(2) process in Figure 1.

Here, we should mention that the technique that is used
in proving the equality of dI

(
{Xt}

)
= dB

(
{Xt}

)
and its

consequences vary from the ones investigated in [29] and
[30]. This literature establishes sufficient conditions on mutual
information among process samples for ensuring this equality;
however, these conditions do not necessarily hold in our
setting. In particular, [29] shows that the equality holds when
there exists a nonnegative integer n for which

I(Xk
1 ;X

−n
−∞) < ∞, k = 1, 2,∞. (13)

However, this condition is not necessarily satisfied in the case
of DCE-ARMA processes. To see this, let {Xt} be an AR(1)
process; using the Markovity of the process, we have that

I(Xk
1 ;X

−n
−∞) = I(X1;X−n). (14)

Moreover, we know

X1 =

1∑
k=−n+1

(−ϕ1)
1−kξk + (−ϕ1)

n+1X−n
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Fig. 1: Lower-bound and upper-bound of the average RID of
an AR(2) process with d(ξ1) = 0.5 that is derived in Theorem
5, and in terms of the number of samples of the process.

= U + (−ϕ1)
n+1X−n, (15)

where U is a discrete-continuous RV with d(U) = 1 −(
1 − d(ξ1)

)n
using [26, Lem. 11]. Equivalently, with prob-

ability
(
1 − d(ξ1)

)n
, U takes a value from a countable set.

Therefore, if we choose a member xd from that set2, then
P(U = xd) := p > 0, and the joint probability measure
µX1X−n(·) will have a nonzero probability p on the line
X1 − (−ϕ1)

n+1X−n = xd. As an instance, if ξ1 takes the
value 0 with probability 1 − d(ξ1), then U takes the value
0 with probability p =

(
1 − d(ξ1)

)n
, and therefore, the line

X1 − (−ϕ1)
n+1X−n = 0 will have a nonzero probability

p. As we show in Lemma 5, we know that X1 and X−n

both have absolutely continuous measures. Hence, the product
measure µX1 ×µX−n(·) is absolutely continuous. As a result,
µX1X−n

(·) has singularity w.r.t the measure µX1
× µX−n

(·)
which prevents the Radon-Nikodym derivative and the mutual
information from being well-defined (see Figure 2 for illustra-
tion). Following from the discussion above, we conclude that
Theorem 5 does not directly follow from the results in [29]
and [30].

B. Smooth and robust compressibility of a DCE-ARMA pro-
cess

In the previous section, we showed that the extent to which
an ARMA process can be compressed is directly connected
to the RID of each instance of its excitation noise. This com-
pressibility rate is determined by the Information Dimension
Rate (IDR), an extension of Shannon’s entropy. Similar to
entropy, IDR evaluates all potential compression functions for
the process. As an alternative to that approach, the compressed
sensing field focuses on such compression and decompression
pairs of functions. It assumes linearity in the former and
smoothness in the latter to make the system simple and robust
to noise.

2The subscript d indicates the discrete set of which xd is a member.

(a) (b)

Fig. 2: (a) Product measure of two samples of an AR(1)
process generated by Bernoulli Gaussian excitation noise with
the RID 0.5 and ϕ1 = 0.5, and (b) their joint measure.

In this section, we extend our results to the cases of
linear compression and smooth decompression and quan-
tify minimum ϵ-achievable rate R(ϵ) as in Definition 6 for
DCE-ARMA processes. To achieve that, we first need to
generalize Theorem 5 to further specify the probability distri-
bution of each truncation of an ARMA process. In particular,
Theorem 5 showed that the BID of the process is d(ξ1). In
case each truncation of the process has an affinely singular
probability distribution, then as shown in [38, Lemma 2] such
result is equivalent to the average dimension of the singular
components of probability measure converge to d(ξ1). In the
following theorem, we show that the dimensions of such
components further do not only have the average equal to
d(ξ1) but further is concentrated around that value.

Theorem 6: For a stationary (p, q)-DCE-ARMA process in
Definition 10, it holds that:

(i) if the excitation noise is absolutely continuous, then, the
vector of truncated samples Xn is also absolutely continuous,

(ii) if the excitation noise {ξi} is α-discrete-continuous,
then, the vector of truncated samples Xn is affinely singular
when n ≥ p+1. In addition, the affinely singular distribution
of Xn can be expressed as

Xn d
= SV [YV ; 0n−dV

] + eV , (16)

where Sis are unitary n× n matrices, V is a discrete RV on
N, and eis are fixed n-dimensional vectors. Furthermore, Yis
are di-dimensional absolutely continuous RV and

P(dV > k) ≥ 1− exp
(
− (n+ q − p)D

(
k+q−p
n+q−p∥α

))
, (17)

for k+q−p
n+q−p < α and

P(dV < k) ≥ 1− exp
(
− (n+ q − p)D

(
k−p
n−p∥α

))
, (18)

for k−p
n−p > α.

Proof: See Appendix E.

In the following example, we show that how such affinely
singular random vector is formed.

Example 1 (Affine Singularity): Assume that the ARMA
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Fig. 3: The distribution of (a) excitation noise, (b) a single sample, (c) two sequential samples, and (d) three sequential
samples from the AR(1) process that is discussed in Example 1

process defined recursively as

Xt = ξt +

∞∑
i=1

hiXt−i, (19)

where h1 = 1/3 and hi = 0 for all other values i ̸= 1. Assume
that the excitation noise is standard Bernoulli-Gaussian (i.e.,
ξt = btnt where bt ∼ Bern(1/2) and nt ∼ N (0, 1)). For this
excitation, as we show in Lemma 5, the probability distribution
of the sample X1 is absolutely continuous. To be more precise,
with a simple calculation, one can show that the distribution
of X1 is a uniform mixture of Gaussian distributions with
variance σ2 = t

9k
for limiting case of k → ∞ for t ∈ Tk

where Tk is a set of either powers of 9 or a sum of distinct
powers of 9 that are less than 9k. Furthermore, due to (19),
X3

2 can be obtained as a function of the tuple (X1, ξ2, ξ3) as

X2 =
X1

3
+ ξ2 (20a)

X3 =
X2

3
+ ξ3 =

X1

9
+

ξ2
3

+ ξ3. (20b)

These identities together with the definition of ξt illustrate
the underlying distribution of X3

1. In fact, in case of ξ2 = 0 and
when ξ3 takes values according to the Gaussian distribution,
that is an event with probability P(b2 = 0, b3 = 1) = 1/4,
we have X2 = X1/3. This event induces a plane on which
X3

1 is distributed. Similarly, the event ξ3 = 0 concludes in
plane X3 = X2/3 on which the random vector is distributed.
If we further assume the event ξ2 = ξ3 = 0, then we
conclude that the random vector is distributed along the line
X3 = X2/3 = X1/9. The manifestation of singularity in such
AR(1) processes is demonstrated in Figure 3. As we see, while
the marginal distribution of X1 is absolutely continuous, the
atomic singularity of ξ1 leads to the emergence of singularities
on lower-dimensional sub-spaces in joint probability measures
of µX1X2

and µX1X2X3
.

Remark 2: To explain the intuition behind the inequalities
(17) and (18), we recall the recurrence relation of the samples
of an ARMA process as stated in Definition 8. Using this
relation, we observe that the value of each truncation Xn

of the process can be obtained using (i) the value of the
first p samples Xp and (ii) the value of the excitation noise
ξnp−q+1. More concretely, the value of Xn is obtained by a
matrix multiplication on the concatenation of Xp and ξnp−q+1.
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Fig. 4: The concentration of normalized singularity dimensions
for a (2, 3)-DCE-ARMA process with d(ξ1) = 0.6 compared
with the concentration inequality (CI) of Corollary 1 with 80%
confidence

The applied matrix is block-diagonal and is composed of the
identity matrix Ip and a Hankel matrix H . In the proof of
Theorem 6, we show that if a binary vector s ∈ {0, 1}n−p+q

controls whether each component of the excitation variables
ξnp−q+1 takes value from the continuous part of its distribution,
then, the result of the matrix multiplication lies on an affine
set with dimension p + rank(H [s]). Here, H [s] is the matrix
formed by columns I ⊆ Z of the Hankel matrix where
si = 1 for each i ∈ I. Finally, the probability distribution
of rank(H [s]) where each component of s takes value from
a Bernoulli distribution Bern(α) is calculated in [38, Lemma
8], and is shown to take the form of (17) and (18).

The result of Theorem 6 can further be rephrased as an (ϵ, δ)
convergence criteria as in the following, showing that if the
width of the truncation is large enough, then with probability
at least 1 − ϵ, the dimensions of singular components are
concentrated within the interval

[
n(α− δ), n(α+ δ)

]
.

Corollary 1: For a (p, q)-DCE-ARMA process and given
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ϵ, δ > 0, set

n ≥ max

{
2
[
q(1+δ/2−α)−p

]
δ ,

− log ϵ
2

D(α−δ/2∥α) − q, 2p
δ

,
− log ϵ

2

D(α+δ/2∥α) − q

}
, (21)

and define k− = n(α − δ) and k+ = n(α + δ). Theorem 6
implies that P(di > k−) ≥ 1 − ϵ

2 and P(di < k+) ≥ 1 − ϵ
2 ,

which in turn shows that

P
(∣∣di

n − α
∣∣ < δ

)
≥ 1− ϵ. (22)

Figure 4 illustrates the concentration of measure described
in the above corollary.

To leverage such concentration property in our compress-
ibility analysis, we now review a result that connects the
BID of certain sources to their minimum ϵ-achievable and
Minkowski dimension compression rates.

Theorem 7 ([12]): Let {Zt} be a discrete-domain stochastic
process such that each sequence of length n from its samples
has an affinely singular distribution (see Definition 9) with
finitely many affine subsets {Ai}kn

i=1 with dimensions {di}kn
i=1

and corresponding measures {µi}kn
i=1. Let Vn be a discrete

random variable that takes the values 1 ≤ i ≤ kn with
probability µi(Ai). If for all ϵ, δ ∈ R+, there exists a large
enough n such that

P
(∣∣∣dVn

n − dB
(
{Zt}

)∣∣∣ < δ

)
> 1− ϵ, (23)

then, for the process {Zt} (the typical source) we know that

R∗(ϵ) = RB(ϵ) = R(ϵ) = dB
(
{Zt}

)
, (24)

where RB(ϵ) is the Minkowski-dimension compression rate
defined in [11, Definition 10].

Based on Theorem 6 and Corollary 1, we know that (23)
holds for DCE-ARMA processes with finite discrete space.
Therefore, Theorem 7 implies that (24) is valid for such
processes:

Theorem 8: Let the DCE-ARMA process {Zt} as in Defi-
nition 10 be such that

ξi = νiXc,i + (1− νi)XD,i, (25)

where νis are i.i.d Bernoulli RVs with P(νi = 1) = α, Xc,is
are absolutely continuous i.i.d RVs, and XD,is are discrete
i.i.d RVs with XD,i ∈ D for a finite subset D of R. For the
process {Zt} we have

R∗(ϵ) = RB(ϵ) = R(ϵ) = d(ξ1) = α. (26)

Proof: See Appendix G.
It is important to note that when the excitation noise is

purely discrete (α = 0), the truncated process samples are no
longer affinely singular. However, Theorem 8 remains valid.

In the following, we provide an example of why such a
process does not generate affinely singular random vectors.

Example 2 (Self-similar Singularity): A widely-studied in-
stance of the singularity in ARMA processes occurs when the
process is AR(1) and the excitation noise is a Rademacher
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t

Fig. 5: The CDF of a Bernoulli convolution (a realization
of the AR(1) process Xt = ξt + aXt−1 with Rademacher
excitation noise) for a = 1/3 which coincides with a scaled
Cantor function.

process, i.e.,

ξk =

{
−1 1/2
+1 1/2

. (27)

As an instance, if the process is according to (19) and where
h1 = 1/3 and hi = 0 for all other values i ̸= 1, then,
XN corresponds to a Bernoulli convolution of order N , and
[40], [41] show that such convolution converges in limit
N → ∞ to a scaled version of a random variable with
Cantor’s distribution (see Fig. 5). Since Cantor’s set has 0
Lebesgue measure [42, Chapter 2, Section 5], and because
the probability on such set is 1, then the distribution is not
absolutely continuous as defined in Definition 2. Furthermore,
since such set is not countable [42, Corollary 62], then such
distribution is further not discrete. Therefore, such distribution
is not in form of the distribution of affinely singular random
vectors.

IV. DISCUSSION

The results in Section III-A and III-B support the claim
that an ARMA filter preserves the compressibility of the
underlying excitation noise, regardless of how compressible
is each component of the resulting process.

Firstly, Theorem 5 and 8 show that if the excitation noise
is purely discrete, then the distribution of truncated samples
of the resulting DCE-ARMA process contains a singularity
such that its compressibility measure of Section III-A and
III-B behave similarly to that of a purely discrete measure.
This means that asymptotically the necessary information
for reconstructing the discretized version of the process is
concentrated within a diminishing number of bits per sample,
as we increase the number of samples. At the same time, the
more samples of the process we want to linearly compress and
robustly recover, the less the ratio of the hidden variables that
we need.

Secondly, when the excitation process is purely continuous,
Theorem 6 shows that the truncated DCE-ARMA process has
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a continuous distribution. This means that theoretically, it is
impossible to compress this process with a non-trivial ratio.

Finally, the second part of Theorem 6 shows that when the
excitation process is discrete-continuous then, the truncated
DCE-ARMA process has affinely singular distribution where
the dimension of the underlying affine subsets concentrate
around the continuity chance of the excitation noise. This
concludes in Theorem 8 which expresses that the optimal
compressibility rates of the ARMA process are equal to the
continuity chance of the excitation noise.

V. CONCLUSION

In this paper, we studied the compressibility of a class
of ARMA processes from an information-theoretical perspec-
tive. More specifically, we considered the discrete-continuous
DCE-ARMA processes, the excitation process of which have
discrete-continuous distributions. We showed that the discrete
part of the excitation process induces certain types of singular-
ity in the distribution of the sample path of the ARMA process,
which greatly affects the overall compressibility. Besides eval-
uating various compressibility measures for these processes
such as sample RID of the excitation process, minimum ϵ-
achievable compression rates of the ARMA process, BID of
the ARMA process, and the IDR of the ARMA process, we
proved their equality in this special case.
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APPENDIX A
NOTATIONS

The following notations are adopted in this work.
• Random variables (RV) and distributions: the set of RVs
{Xm, . . . Xn} is abbreviated as {Xi}ni=m. For brevity, we
define {Xi} = {Xi}∞i=−∞. When this set of random variables
is used to construct a random vector, we employ the notation
Xn

m = [Xm, Xm+1, . . . , Xn] with n ≥ m. Again, when
m = 1, the subscript is omitted, i.e. Xn

1 = Xn. By abuse
of notation, for a binary vector s ∈ {0, 1}n, Xs denotes
a random vector formed by the elements Xi of Xn, where
si = 1. Equality in distribution is indicated as d

=. The
discrete/continuous part of the RV X is indicated as Xd/Xc,
respectively. The Bernoulli RV with success probability p is
indicated as Bern(p).

Shannon entropy function is shown by H(·), the differen-
tial entropy by H(·), the mutual information by I(·; ·) and
the Kullback-Leibler divergence by D(·||·). For the sake of
simplicity in expressing our results, we extend the notion of
random vectors to 0-dimensional random vector X or null,
and with an abuse of notation, we assume that in such case
H(X) = 0.
• Set theory: Set subtraction is shown as A\B = A∩Bc. For
an affine set A, dim(A) stands for its Euclidean dimension.
The sets {i, i+ 1, . . . , j} ⊆ N and {1, . . . , j} are abbreviated
as [i : j] and [j], respectively.
• Vectors and matrices: Given an m×n matrix A, we denote
the i-th column of A by A[i], for i ∈ [n]. In addition, for a
binary vector s ∈ {0, 1}n, A[s] denotes the sub-matrix of A
formed by columns A[i] of A for i ∈ [n], where si = 1. The
rank of a matrix A are represented by rank(A). The conjugate
transpose of the matrix A is indicated as A†. For vn ∈ {0, 1}n,
vn is the vector obtained by obtaining logical negation of all
the elements in v. The n-dimensional column vector of all
zeros/ones is indicated as 0n/1n. Similarly, the n × m all
zeros/ones matrix is indicated as 0n×m/1n×m.
• Other notations: For α ∈ [0, 1], define α = 1 − α. The
uniform quantization of the RV Xn with precision 1/m is
defined as

[Xn]m ≜
[
⌊mX1⌋

m , . . . , ⌊mXn⌋
m

]
, (28)

with [Xn]m ∈ (N/m)n and where ⌊x⌋ is the floor of x.

APPENDIX B
RATIONAL FUNCTIONS AND HANKEL MATRICES

Definition 11: The function R : C → C is rational, if there
exists h, g ∈ C[x] (the set of all polynomials with complex-
valued coefficients) with g ̸= 0 such that

R(z) =
h(z)

g(z)
. (29)

The function is further called “proper” if deg(g) ≥ deg(h).
The roots of g and h are commonly referred to as the poles
and zeros of R with their multiplicities. If p is simultaneously
a root of both g and h with multiplicities kg and kh where
kh ≥ kg , then p is called a removable pole.

Definition 12 (Zeros and Poles): We say +∞ (or −∞) is a
zero of R(·) if limz→+∞ g(z) = 0 (or limz→−∞ h(z) = 0).
A similar statement holds for the poles at infinity.

Remark 3: A rational function is proper, if and only if it
has no ±∞ poles.

Remark 4: The set of rational functions are closed under
multiplication and linear combination.

Lemma 1 ([43] Chapter V, Theorem 8 & Corollary in
p.245): Let H(z) be a proper rational function with p non-
removable poles (including multiplicities). If h[n] is such that∑∞

n=0 h[n]z
−n = H(z) (i.e., h[n]s are the Laurent series of

H(z) around z = 0, or the causal inverse z-transform of
H(z)), then, the Hankel matrix A =

[
h[i+ j]

]p−1

i,j=0
has non-

zero determinant.

APPENDIX C
STATIONARY ARMA PROCESSES

For any n ≥ p + 1, the process in (9) can be expressed
through the vector equality

Φ ·Xn = Θ · ξnp−q+1, (30)

where Φ ∈ R(n−p)×n and Θ ∈ Rn−p×(n+q−p) are Toeplitz
matrices defined as

Φ =

 ϕp ϕp−1 . . . ϕ1 1 . . . 0

. . .
. . . . . . . . . . . . . . . . . .

. . . 0 ϕp ϕp−1 . . . ϕ1 1

 , (31)

and

Θ =

 θq θq−1 . . . θ1 1 . . . 0

. . .
. . . . . . . . . . . . . . . . . .

. . . 0 θq θq−1 . . . θ1 1

 . (32)

An alternative representation of the ARMA process in
Definition 8 through the Z-transform as the filtered version
of the excitation process, through the filter

H(z) =
1 +

∑
i∈[q] θiz

−i

1 +
∑

i∈[p] ϕiz−i
, (33)

where H(z) stands for the Z-transform of the filter’s impulse
response.

One can also rewrite this rational function in the canonical
form as

H(z) =
Πnn

i=1(riz
−1 − 1)si

Πnd
i=1(aiz

−1 − 1)pi
, (34)



10

where the pairs ai/ri describe the filter poles/zeros while pi/si
are their multiplicity.

Remark 5: It is shown in [44] that an ARMA(p, q) process
with the excitation noise {ξi} is stationary if and only if one
of the below conditions hold:

1) all poles of H(z) on C is removable (see Appendix B
for the definition of a removable pole),

2) all poles of H(z) on the unit circle |z| = 1 are removable,
and

E
[
max

{
0, log

(
|ξ1|

)}]
< ∞. (35)

APPENDIX D
CONTINUITY OF ARMA SAMPLES

We first state the following lemma due to the clarity of our
proofs.

Lemma 2: For an absolutely continuous RV Xn and an
arbitrary RV Yn, the sum Zn = Xn + Yn is an absolutely
continuous RV.

Proof: See [45, Theorem 2 and 4, Chapter V.4].
Corollary 2: Let X1 and X2 be independent n-dimensional

RVs with continuity chances (defined in Theorem 1) α1, α2,
respectively. The continuity chance β of Z = X1+X2 satisfies

β ≥ 1− (1− α1)(1− α2) ≥ max{α1, α2}. (36)

Proof: According to Lemma 2, we have that

P
(
Z ∈ continuous

part
)
≥ P

((
X1 ∈ continuous

part
)

or
(
X2 ∈ continuous

part
))

≥ 1− P
(
X1 ̸∈ continuous

part
)︸ ︷︷ ︸

1−α1

P
(
X2 ̸∈ continuous

part
)︸ ︷︷ ︸

1−α2

= 1− (1− α1)(1− α2) ≥ max{α1, α2},
(37)

where we used the independence of X1 and X2 to obtain the
product of the probabilities.

Lemma 3: Let Xk1 and Zk2 be absolutely continuous
random vectors and Yk1 be a given random vector, and not
necessarily absolutely continuous. Further, let V be a random
variable over N such that given V = i, Xk1 is independent of
Zk2 and Yk1 . Then, for S ⊆ Rk1+k2 , the probability measure

µ(S) = P
(
[Xk1 +Yk1 ;Zk2 ] ∈ S

∣∣V = i
)

is absolutely continuous for every i ∈ N.
Remark 6: If Xk1 is independent of Yk1 , Zk2 and V = 0

with probability 1, Lemma 3 implies that [Xk1 +Yk1 ;Zk2 ],
and therefore Xk1 + Yk1 , are absolutely continuous. This
shows that Lemma 2 is a special case of Lemma 3. Another
special case is when Xk1 , Zk2 are independent, Yk1 ≡ 0
and V = 0 with probability 1; in this case, Lemma 3 shows
that concatenation of two independent absolutely continuous
random vectors is again absolutely continuous.

Proof: We prove this lemma in two steps: (i) we show that
the joint probability on a (k1×k2)-dimensional box (cartesian
product of closed intervals) can be rewritten in an integration
form of a function g(a,b) : Rk1 × Rk2 → R, and (ii) we
show that for any zero Lebesgue-measure set S, the probability
P
(
[Xk1 +Yk1 ;Zk2 ] ∈ S

∣∣V = i) is zero.

• Step (i): Since for two sets Rk1 and Rk2 in Rk1 and Rk2 ,
we have

P([Xk1 +Yk1 ;Zk2 ] ∈ Rk1 ×Rk2 |V = i)

≤ P(Zk2 ∈ Rk2 |V = i), (38)

we can see that the LHS in (38) is absolutely continuous w.r.t.
the RHS (See [45, Chapter V, 10.3]). Hence, using Radon-
Nikodym theorem, we can rewrite the LHS as

P([Xk1 +Yk1 ;Zk2 ] ∈ Rk1 ×Rk2 |V = i)

=

∫
z∈Rk2

g(Rk1 , z)P(dz|V = i), (39)

where g(Rk1 , z) is defined as

g(Rk1 , z) = lim
h→0

P(Xk1 +Yk1 ∈ Rk1 |Zk2 ∈ Iz
h, V = i),

(40)

in which Iz
h = [z1, z1+h]×. . .×[zk2 , zk2+h]. This probability

measure always exists (See [45, Chapter V, 9.4]).

Next, we rewrite the RHS of (40) as follows

P(Xk1 +Yk1 ∈ Rk1 |Zk2 ∈ Iz
h, V = i)

=

∫
y∈Rk1

P(Xk1 ∈ Rk1 − y|Zk2 ∈ Iz
h, V = i)

× P(Yk1 ∈ dy|Zk2 ∈ Iz
h, V = i)

(a)
=

∫
y∈Rk1

P(Xk1 ∈ Rk1 − y|V = i)

× P(Yk1 ∈ dy|Zk2 ∈ Iz
h, V = i), (41)

where (a) is due to conditional independence of Xk1 and Zk2 .
Let m(A) stand for the Lebesgue measure of the Borel set A.
If P(X ∈ ·|V = i) is an absolutely continuous measure, [46,
Prop. 15.5] implies that for every ϵ > 0 there exists δϵ > 0
such that P(X ∈ A|V = i) ≤ ϵ for every Borel set A ⊂ Rk1

with m(A) < δϵ. Further, using [47, Theorem 12.1] we know
that m(A) = m(A− y) for every y ∈ Rk1 . Hence, for every
choice of y we have P(X ∈ A − y|V = i) ≤ ϵ. Thus, using
(41) we have that

P(Xk1 +Yk1 ∈ A|Zk2 ∈ Iz
h, V = i)

≤ ϵ

∫
y∈Rk1

P(Yk1 ∈ dy|Zk2 ∈ Iz
h, V = i) ≤ ϵ. (42)

This means that for every ϵ > 0, there exists δϵ > 0 such that
if m(A) < δϵ we can bound g(A, z) as

g(A, z) = lim
h→0

P(Xk1 +Yk1 ∈ A|Zk2 ∈ Iz
h, V = i) ≤ ϵ.

(43)

Recall [46, Prop. 15.5] , (43) shows that g(A, z) is an
absolutely continuous measure.

Now, the Radon-Nikdoym theorem in conjunction with (39)
reveals the existence of functions q(u, z) and q′(z) such that

P([Xk1 +Yk1 ;Zk2 ] ∈ Rk1 ×Rk2 |V = i)

(a)
=

∫
z∈Rk2

∫
u∈Rk1

q(u, z)duP(dz|V = i)
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(b)
=

∫
z∈Rk2

∫
u∈Rk1

q(u, z)q′(z)dudz,

where (a) is because of the absolute continuity of g(·, z) and
(b) holds due to the absolute continuity of P(Zk2 ∈ ·|V = i).

• Step (ii): Let {Rk}∞k=1 be an arbitrary countable set of
(possibly intersecting) boxes. If we define Fi = Ri\

⋃i−1
k=1 Ri,

we know that Fis are disjoint:

m
(
∪i Ri

)
= m

(
∪i Fi

)
=

∑
i

m(Fi). (44)

Besides, each Fi can be decomposed into finitely-many
almost-disjoint boxes {R̃i,j}j :

∃ {R̃i,j}ni
j=1 :


m
(
R̃i,j1 ∩ R̃i,j2

)
= 0, j1 ̸= j2,

Fi ⊆ ∪ni
j=1R̃i,j ,

m
((

∪ni
j=1 R̃i,j

)
\ Fi

)
= 0.

(45)

Note that R̃i,js are closed boxes and can overlap only at their
boundaries, i.e., m

(
R̃i,j1 ∩ R̃i,j2

)
= 0. Similarly, Fi and

∪ni
j=1R̃i,j might differ only at parts of the borders of some

of R̃i,js. Overall, we have that(
∪i Ri

)
=

(
∪i Fi

)
⊆

(
∪i,j R̃i,j

)
, (46)

and

m
((

∪i,j R̃i,j

)
\
(
∪i Ri

))
= 0. (47)

In simple words, we showed that the union of an arbitrary
countable set of boxes can be effectively decomposed into a
union of countable set of almost-disjoint boxes.

As a result, for every set of boxes {Ri}∞i=1 we rewrite

P([Xk1 +Yk1 ;Zk2 ] ∈ ∪∞
k=1Rk|V = i)

(a)

≤ P([Xk1 +Yk1 ;Zk2 ] ∈ ∪i,jR̃i,j |V = i)

(b)
=

∑
i,j

∫
(u,z)∈R̃i,j

q(u, z)q′(z)dudz

(c)
=

∫
(u,z)∈∪i,jR̃i,j

q(u, z)q′(z)dudz

(d)
=

∫
(u,z)∈∪∞

k=1Rk

q(u, z)q′(z)dudz. (48)

Here, (a) and (d) are due to (46) and (47), respectively.
Further, (b) is followed by Step (i), and (c) is correct because
R̃js are almost-disjoint sets as (45) specifies.

Now, we recall a result from [48, Prop. 2.5.8] that for every
L1-measurable function f(·) and constant ϵ > 0, there exists
δϵ > 0 such that for every measurable set A with m(A) < δϵ,
we have

∫
A |f(x)|dx < ϵ. If we let f(u, z) = q(u, z)q′(z),

one asserts that f is an L1 measurable function. The rea-
son is that

∫
Rk1+k2

f(u, z)dudz = P
(
[Xk1 + Yk1 ;Zk2 ] ∈

Rk1+k2 |V = i
)
= 1 < ∞.

Let S be a zero Lebesgue-measure set. We choose ϵ > 0
arbitrarily small; according to [48, Prop. 2.5.8] and (48), there
exists δϵ such that if m

(
∪∞
k=1 Rk

)
< δϵ, then, P([Xk1 +

Yk1 ;Zk2 ] ∈ ∪∞
k=1Rk|V = i) < ϵ. Since (see [42, pp. 385,

389])

m(S)︸ ︷︷ ︸
=0

≜ inf
{∑

k

m(Ok) : Ok = open
box , S ⊆ ∪kRk

}
, (49)

we shall have a set of open boxes {Ok}k with
∑

k m(Ok) <
δϵ such that S ⊆ ∪kOk. If we set Rk = Ok (the closure of
Ok), we have

m
(
∪k Rk

)
≤

∑
k

m(Rk) =
∑
k

m(Ok) < δϵ. (50)

In addition,

S ⊆ ∪kOk ⊆ ∪kRk. (51)

If we summarize the above results, we achieve

P([Xk1 +Yk1 ;Zk2 ] ∈ S|V = i)

≤ P([Xk1 +Yk1 ;Zk2 ] ∈ ∪∞
k=1Rk|V = i) < ϵ. (52)

Since the choice of ϵ > 0 is arbitrary, we shall have P([Xk1 +
Yk1 ;Zk2 ] ∈ S|V = i) = 0.

Lemma 4: Let h[·] be the causal inverse z-transform of a
stationary ARMA filter H(z) with p+p′ non-removable poles
(see (34) for the definition of non-removable) from which p
are non-zero poles. If for i ≥ ⌈p′+1

p ⌉+ 1 we define

H(i) =
[
h[ip− p− 1 + j + k]

]p−1

j,k=0
, (53)

then, H(i) is full-rank.
Proof: Let us define

h̃i[n] =

{
h[ip− p− 1 + n], n ≥ 0,
0, n < 0.

(54)

We first show that h̃i[·] is the impulse response of a causal
ARMA process with p non-zero and non-removable poles:

H̃i(z) =

∞∑
n=0

h̃i[n]z
−n = zip−p−1

∞∑
n=ip−p−1

h[n]z−n

= zip−p−1H(z)−
ip−p−2∑
n=0

h[n]zip−p−1−n. (55)

Note that the last term of (55) is polynomial in terms of z.
Since i ≥ ⌈p′+1

p ⌉+1 , we know that ip−p−1 ≥ p′; therefore,
zip−p−1H(z) has no zero poles. This confirms that H̃i(z) has
exactly p non-removable poles all of which are non-zero. Thus,
we can conclude the claim by recalling Lemma 1.

We should highlight that since H̃i(z) =
∑∞

n=0 h̃i[n]z
−n,

we know that H̃i(z) is bounded as z → ∞. Therefore, H̃i(z)
is a proper rational function.

Lemma 5: Let {Xt} be a D/C-ARMA process (see Defini-
tion 10) with excitation noise {ξt} and the corresponding RID
of d(ξ1) ̸= 0. We know that a truncation ξS = {ξi : i ∈ S} of
the excitation noise is affinely singular with a set of absolutely
continuous RVs {ξ̃i} laid on affine sets and a selection variable
VS . The measure P([Xp

1; ξ̃i] ∈ ·|VS = i) is absolutely
continuous for all i ∈ Z.
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Proof: One could write Xp
1 as

Xp
1 =

∞∑
i=0

H(i)ξp−ip
1−ip︸ ︷︷ ︸

Yi

, (56)

where H(i) =
[
h[ip − p − 1 + j + k]

]p
j,k=1

, and h[·] is the

causal inverse Z-transform of transfer function H(z) of the
D/C-ARMA process. Next, we rewrite Xp

1 as

Xp
1 =

io−1∑
i=0

Yi︸ ︷︷ ︸
R

+

∞∑
i=i0

Yi︸ ︷︷ ︸
U

, (57)

where i0 = max
{
1 + ⌊ 1−minS

p ⌋, 1 + ⌊ (q−p)++1
p ⌋

}
.

To prove the theorem, we follow three steps: (i) we prove
that U is independent of R and ξ̃i given VS = i, (ii) we show
that U is an absolutely continuous RV, and (iii) we use Lemma
3 and the properties that are shown in the two previous steps
to prove absolute continuity of P

(
[R+U; ξ̃i] ∈ ·|VS = i

)
.

• Step (i): Firstly, using [49, Lemma 3 ], we know that

I(VS ; ξS) = H(VS), (58)

or equivalently,

H(VS |ξS) = 0. (59)

As a result, for an arbitrary random variable T , and all sets
S ′ that contain S we have

I(VS ;T |ξS′) ≤ H(VS |ξS′) ≤ H(VS |ξS) = 0. (60)

As a result, by assuming S ′′ being mutually exclusive with
S ′, we have

I(ξS′′ ; ξS′ |VS) ≤ I(ξS′′ ; ξS′ , VS) (61)
= I(ξS′′ ; ξS′) + I(ξS′′ ;VS |ξS′) = 0, (62)

where the last equality holds because of (60), and mutually
exclusiveness S ′ and S ′′, and that {ξ̃t} are drawn indepen-
dently.

Moreover, because of chain rule we have

I(ξS′′ ; ξS′ |VS) =
∑
i

P(VS = i)I(ξS′′ ; ξS′ |VS = i) = 0,

(63)

and since all the terms in RHS are non-negative, then for all
i such that P(VS = i) is non-zero, we have

I(ξS′′ ; ξS′ |VS = i) = 0. (64)

Moreover, we know that given VS = i, ξ̃i is merely a
projection of ξS on an ei-dimensional space where ei ≤ |S|.
As a result, given VS = i, ξ̃i is a function of ξS . Hence, using
data processing inequality we have

0 ≤ I(U ;R, ξ̃i|VS = i) ≤ I(U ;R, ξS |VS = i)

(a)

≤ I(ξp−i0p
−∞ ;R, ξS |VS = i)

(b)

≤ I(ξp−i0p
−∞ ; ξpp−i0p+1, ξS |VS = i)

(c)

≤ I(ξp−i0p
−∞ ; ξ

max |S|
p−i0p+1|VS = i)

(d)
= 0,

where (a) holds because U is a function of ξp−i0p
−∞ and because

of data processing inequality, and (b) holds because R is
a function of ξpp−i0p+1 and as a result of data processing
inequality. Moreover, (c) is followed by i0 ≥ 1 +

⌊
1−minS

p

⌋
and as a result minS ≥ p−i0p+1. Finally (d) is followed by
(64). This proves that U and R are independent given VS = i.
• Step (ii): Firstly, since d(ξ1) = d > 0 and as a result of

Lemma 5, the continuity chance of ξp−ip
1−ip is dp. On the other

hand, using Lemma 4, H(i) is a p × p full-rank matrix for
i ≥ 3. Further, it is shown in [12, Lemma 6] that the any full
column-rank linear transformation of absolutely continuous
random vectors is absolutely continuous. Hence, the continuity
chance of Yi is at least dp for every i ≥ 3. Next, using
the independence of Yis, and Corollary 2, the continuity
chance of Ut :=

∑t
i=i0

Yi and also U is lower bounded
by 1 − (1 − dp)t−i0 . Finally, by arbitrariness of t, one can
prove this claim. • Step (iii): We know by definition that ξ̃i
is an absolutely continuous random vector, and the absolute
continuity of U is a result of Step (ii). Therefore, by making
use of independence of U and R, ξ̃i given VS = i, and using
Lemma 3 we conclude that P

(
[R +U; ξ̃i] ∈ ·|VS = i

)
is an

absolutely continuous measure that completes the proof.

APPENDIX E
PROOF OF THEOREM 6

Proof: We prove this theorem using the following steps:
(i) we show that a truncation ξnp−q+1 of the excitation noise has
an affinely singular probability distribution, (ii) using step (i)
we show that the joint random vector [Xp; ξnp−q+1] of a trun-
cation of the ARMA process and its excitation noise is affinely
singular, (iii) using the previous steps and linear recursive
relation in ARMA processes we show that each truncation Xn

of the ARMA process has affinely singular distribution, (iv)
we show that if the excitation noise is absolutely continuous,
then the truncation Xn is absolutely continuous, and (v) we
use Lemma [38, Lemma 7] and Hankel property of the linear
recursion of the ARMA process to show that the singularity
dimensions of the truncation Xn concentrates around nd(ξi)
for large n.
• Step (i): We first should note that a truncation of discrete-

continuous excitation noise {ξt} of the DCE-ARMA process
has orthogonally singular probability measure that is defined
in [38, Definition 2], which is known to be an affinely singular
measure with singular components along the axes of the
Euclidean space. To formalize this notion, assume that νt is
a Bernoulli random variable that denotes whether ξt takes its
discrete (νt = 0) or continuous values (νt = 1). Using this
choice of notation, [38, Lemma 3] shows that the truncation
ξnp−q+1 of the excitation noise has a probability distribution
equivalent to

ξnp−q+1
d
= UV [ξ̃V ; 0dO

] + bV , (65)
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where V denotes the singular component on which the drawn
instance of the random vector ξnp−q+1 is laid. Further, UV

denotes a (n + q − p) × (n + q − p) permutation matrix
that maps the first dV components of a vector to the indices
of the components of ξnp−q+1 that take continuous values,
i.e., UV =

[
I
[ν]
n+q−p, I

[ν]
n+q−p

]
, where ν is, with an abuse of

notation, defined as

ν := νn
p−q+1. (66)

Moreover, ξ̃V quantifies the distribution of the random vector
ξnp−q+1 on its singular component with index V , dV is the
Euclidean dimension of that singular component, and dO is the
difference between the Euclidean dimension of that component
and the encompassing space dO = n+q−p−dV . Furthermore,
bV is a fixed vector that determines the bias of the singular
component from the origin.

• Step (ii): If we concatenate the truncation Xp of the
process and the truncation ξnp−q+1 of the excitation noise, then
by taking the first dV columns of UV and the p-dimensional
identity matrix Ip we can generate the tall matrix

ŨV =

[
Ip 0p×dV

0(n+q−p)×p I
[ν]
n+q−p

]
, (67)

using which the concatenation can be rewritten as

[Xp; ξnp−q+1] = ŨV [X
p; ξ̃V ] + bV . (68)

Furthermore, Lemma 5 shows that the concatenation
Zp+dV := [Xp; ξ̃V ] in RHS of the above identity is absolutely
continuous for each choice of V = i. Therefore, if we
complete the matrix ŨV by adding extra orthogonal columns,
we can show that [Xp; ξnp−q+1] takes the form of an affinely
singular random vector.

• Step (iii): In this step we use the concatenation
[Xp; ξnp−q+1] that is shown to be affinely singular in previous
step to specify the distribution of each truncation Xn of the
ARMA process. To that end, we refer the reader to the proof
of Theorem 5, and particularly (92) where we show that Xn

for n ≥ p can be written in form of

Xn = Φ̂−1Θ̂
[
Xp; ξnp−q+1

]
, (69)

where Φ̂ and Θ̂ are defined in (91) and (93), respectively.
Using (68), the above identity can be rewritten as

Xn = Φ̂−1Θ̂ŨV [X
p; ξ̃V ] + b′

V , (70)

where b′
V = Φ̂−1Θ̂ is a fixed vector for each choice of

V . Therefore, in order to show that Xn has an affinely
singular distribution, we need to rewrite the first term of
RHS of (70) as a rotation of a low-dimensional absolutely
continuous random vector. To that end, we first rewrite the
matrix Φ̂−1Θ̂ŨV using the method of singular value decom-
position (SVD) as Φ̂−1Θ̂ŨV = QV ΣV P

†
V , where QV and

PV are unitary matrices and ΣV is a diagonal matrix with
rank(Φ̂−1Θ̂ŨV ) non-zero terms. Next, we use [38, Lemma
10] that shows that the result of a multiplication of a full-
row rank matrix and an absolutely continuous RV is another
absolutely continuous RV. In fact, ΣV P

†
V is a concatenation

of a full-row rank matrix and null rows. Therefore, using
absolute continuity of

[
Xp; ξnp−q+1

]
in Step (ii), we conclude

that ΣV P
†
V

[
Xp; ξnp−q+1

]
is a concatenation of an absolutely

continuous RV with dimension rank(Φ̂−1Θ̂ŨV ) and zero
components. This, together with the SVD form shows that Xn

is an affinely singular RV in which the singular components
have dimension dV = rank(Φ̂−1Θ̂ŨV ).

By definition of Φ̂ in (91), we know that it is a full-rank
square matrix. Therefore, we have

rank(Φ̂−1Θ̂ŨV ) = rank(Θ̂ŨV ). (71)

Moreover, by definition of θ̂ in (93), we can show that

Θ̂ŨV =

[
Ip 0p×dV

0n−p×p Θ[ν]

]
, (72)

that has the rank of p+rank(Θ[ν]). Therefore, using the above
two identities, we have

dV = p+ rank(Θ[ν]). (73)

• Step (iv): In case of absolute continuity of the excitation
noise, and the definition of ν in Step (i) assures that ν is an
all-one vector. Therefore, dV in (73) can be obtained as

dV = p+ rank(Θ), (74)

and since Θ is a full-row rank matrix with n − p rows (see
the definition of Θ in (32)), therefore we have

dV = n, (75)

that is equivalent to say Xn is a mixture of absolutely con-
tinuous RVs, and therefore itself is an absolutely continuous
RV.
• Step (v): In case that the excitation noise is discrete-

continuous with continuity chance of α, then the random
vector ν is distributed as n− p+ q− 1 i.i.d Bernoulli random
variables with each components having P(νi = 1) = α. As
a result, the matrix Θ[ν] is a random choice of columns of a
Hankel matrix with probability α. For such random choice,
[38, Lemma 8] shows that the rank function is distributed as

P
(
rank(Θ[ν]) > k

)
≥ 1− exp

(
− (n+ q − p)D

(
k+q

n+q−p∥α
))

, (76)

for k+q
n+q−p < α and

P
(
rank(Θ[ν]) < k

)
≥ 1− exp

(
− (n+ q − p)D

(
k

n−p∥α
))

,

(77)

for k
m > α.

Inequalities (76) and (77) together with (73) conclude in
(16), (17), (18), and accordingly complete the proof.

APPENDIX F
PROOF OF THEOREM 5

Before delving into the details of the proof, we introduce
the following lemma to bound the entropy of quantized shifted
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version of a RV.

Lemma 6: For a RV X , if we have H
(
[X]1

)
< m, then, we

can bound H
(
[X + ϵ]1

)
as

H
(
[X + ϵ]1

)
≤ 4m+C, (78)

for every ϵ ∈ (−1, 1), where C is a fixed value that dependent
on the distribution of X , and not ϵ.

Proof: We define Y = X + ϵ, and study the entropy

H
(
[Y ]1

)
= −

∞∑
i=−∞

pYi log pYi , (79)

where pYi is defined as

pYi = P(i ≤ Y < i+ 1). (80)

Let c ∈ N be a large enough integer such that P(|X| > c) <
1/4. We now decompose H

(
[Y ]1

)
as

H
(
[Y ]1

)
=−

∑
i∈[−c−1:c]

pYi log pYi

−
∑

i≥c+1,i≤−c−2

pYi log pYi . (81)

By defining

A =
∑

i∈[−c−1:c]

pYi = P(−c− 1 ≤ Y < c+ 1)

≥ P(|X| < c) ≥ 3
4 , (82)

we can write

−
∑

i∈[−c−1:c]

pYi log pYi = −A
∑

i∈[−c−1:c]

pYi
A︸︷︷︸
p̃i

log
pYi
A

A (83)

= −A
∑

i∈[−c−1:c]

p̃i log p̃i −A logA (84)

(a)

≤ A(−
∑

i∈[−c−1:c]

p̃i log p̃i) +
1
3 (85)

(b)

≤ log
(
2(c+ 1)

)
+ 1

3 , (86)

where (a) is followed by A ∈ [ 34 , 1], and (b) is because the
entropy of any discrete RV with 2(c + 1) symbols is upper-
bounded by log

(
2(c+ 1)

)
Let sϵ = 1 if ϵ ∈ [0, 1), and sϵ = −1 if ϵ ∈ (−1, 0). We

know that for all i ≥ c+ 1, i ≤ −c− 2

pYi ≤ pXi + pXi+sϵ ≤
∑

k≥c+1,k≤−c−2

pXk ≤ 1
4 . (87)

Since −x log x is an increasing function for x ≤ 1
2 , we

conclude that

−pYi log pYi ≤ −(pXi + pXi+sϵ) log(p
X
i + pXi+sϵ)

≤ −2max{pXi , pXi+sϵ} log
(
2max{pXi , pXi+sϵ}

)
(a)

≤ −2pXi log
(
2pXi

)
− 2pXi+sϵ log

(
2pXi+sϵ

)
≤ −2pXi log pXi − 2pXi+sϵ log p

X
i+sϵ − 2(pXi + pXi+sϵ)

(88)

where (a) is followed by positiveness of function −x log x for
x ≤ 1 coupled with the fact that pXi , pXi+1 ≤ 1

4 .

Finally, using (81), (86), and (88) we have

H
(
[Y ]1

)
≤ log(c+ 1) +

4

3
+ 4H

(
[X]1

)
− 4 (89)

≤ 4m+ log(c+ 1)− 8
3︸ ︷︷ ︸

C

. (90)

Proof of Theorem 5: Consider the ARMA process at time
t > 0 and the corresponding Φ and Θ matrices as in (31) and
(32). We first modify Φ to make it invertible:

Φ̂ =

[
Ip 0p×m

Φm×(m+p)

]
. (91)

We can now rewrite (30) as

Φ̂ ·Xm+p = Θ̂

[
Xp

ξm+p
1−q+p

]
︸ ︷︷ ︸

Q̂

= Θ̂Q̂, (92)

where

Θ̂ =

[
Ip 0p×(m+q)

0m×p Θm×(m+q)

]
. (93)

From the fact that det(Φ̂) = 1 and [39, Thm. 2], it follows
that

d(Xm+p
1 ) = d(Θ̂Q̂). (94)

The remainder of the proof relies on the following steps: (i)
we show that [Xp, ξp1−q+p] is independent of ξp+m

p+1 , (ii) we
find lower- and upper-bounds for d(Xm+p) and determine
dB

(
{Xt}

)
, and finally, (iii) we prove that dB

(
{Xt}

)
is a

lower-bound for dI
(
{Xt}

)
. The latter bound together with

the result in Theorem 4 completes the proof.

• Step (i): Using the recurrence relationship in (9), we know
that Xp is a function of excitation noise samples ξp−∞. Since
{ξt} is an i.i.d. process, it is straightforward to check that
[Xp, ξp1−q+p] is again a function of ξp−∞ and independent of
ξp+m
p+1 .

• Step (ii): As Θ̂ in (94) forms a linear, and therefore
Lipschitz, transform, we know from [39, Thm. 2] that

d(Xm+p) = d(Θ̂Q̂) ≤ d(Xp, ξp1−q+p, ξ
p+m
p+1 )

= d(Xp, ξp1−q+p) + d(ξp+m
p+1 ) (95a)

≤ p+ q +mα, (95b)

where (95a) is due to the independence of (Xp, ξp1−q+p) and
ξp+m
p+1 followed by [39, Eqn. 2.22], while (95b) is due to [39,

Eq. 2.11] because of the independence of the elements of {ξt}.
Besides, we can partition Θ̂Q̂ as follows,

Θ̂Q̂ =
[
Θ̂1 Θ̂2 Θ̂3

]
·

 Xp

ξp1−q+p

ξm+p
p+1

 , (96)

so that we can define

U1 = Θ̂1X
p + Θ̂2ξ

p
1−q+p, (97a)
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U2 = Θ̂3ξ
m+p
p+1 . (97b)

Since ξp+m
p+1 is independent of Xp and ξp1−q+p jointly, we

conclude that U1 and U2 are also independent. Therefore,
using [39, Eqn. 20.20], we have that

d(Θ̂Q̂) = d(U1 + U2) ≥ d(U2). (98)

We recall that Θ̂3 is a lower-triangular square matrix with all
the diagonal elements being 1. Hence (based on [39, Thm. 2]),

d(U2) = d
(
Θ̂3ξ

m+p
p+1

)
= d

(
ξm+p
p+1

)
= mα. (99)

Overall, this implies that

d(Xp+m) = d(Θ̂Q̂) ≥ mα. (100)

Combining (95) and (100), we can write

mα

m+ p
≤ d(Xp+m)

m+ p
≤ p+ q +mα

m+ p
, (101)

which proves that

dB
(
{Xm}

)
= lim

m→∞

d(Xp+m)

m+ p
= α. (102)

• Step (iii): Using [29, Eqn. 16, 73], we write that

dI
(
{Xt}

)
≥ d(Xp+1|Xp

−∞, ξp1−q+p). (103)

According to the definition of RID, we know

d(Xp+1|Xp
−∞, ξp1−q+p) = lim

k→∞

H
(
[Xp+1]k|Xp

−∞, ξp1−q+p

)
log k

(a)
= lim

k→∞

H
(
[Xp+1]k|Xp, ξp1−q+p

)
log k

= lim
k→∞

∫
Rp×Rq

Hk(x
p, τ p

1−q+p)

log k
dµ(xp, τ p

1−q+p),

(104)

where (a) is because of (9), µ(·, ·) is the joint probability
measure on (Xp, ξp1−q+p) and

Hk(x
p, τ p

1−q+p) = H
(
[Xp+1]k|Xp = xp, ξp1−q+p = τ p

1−q+p

)
.

(105)

Combining (9) and (104) we have that

Hk(x
p, τ p

1−q+p) = H
(
[ξp+1 + c]k

)
, (106)

where

c =

q∑
i=1

θiτp+1−i +

p∑
i=1

ϕixp+1−i. (107)

To further simplify (106)

H
(
[ξp+1 + c]k

)
= H

([
ξp+1 + c− [c]k

]
k

)
(a)

≤ H
([
ξp+1 + c− [c]k

]
1

)
+ log(k), (108)

where (a) is valid because of [34, Eqn. 11]. Consequently, for
k ≥ 2, we have

H
(
[ξp+1 + c]k

)
log k

≤
H
([

ξp+1 + c− [c]k
]
1

)
log k

+ 1. (109)

Since c−[c]k ∈ [0, 1) and H
(
[ξp+1]1

)
≤ m < ∞, we can apply

Lemma 6 to conclude H
(
[ξp+1+ c− [c]k]1

)
< 4m+C, where

C is a fixed value and merely dependents on the distribution
of ξp+1. As a result, we have that

H
(
[ξp+1 + c]k

)
log k

≤ 4m+C

log k
+ 1. (110)

By plugging in the latter result and (106) in (104), we get∫
Rp×Rq

Hk(x
p, τ p

1−q+p)

log k
dµ(xp, τ p

1−q+p)

≤
(4m+C

log k
+ 1

)∫
Rp×Rq

dµ(xp, τ p
1−q+p)︸ ︷︷ ︸

1

≤ 4m+C

log 2
+ 1.

(111)

This allows us to apply the dominant convergence theorem to
achieve

d(Xp+1|Xp
−∞, ξp1−q+p)

=

∫
Rp×Rq

(
lim
k→∞

Hk(x
p, τ p

1−q+p)

log k

)
dµ(xp, τ p

1−q+p)

=

∫
Rp×Rq

d
(
ξp+1 +

q∑
i=1

θiτp+1−i +

p∑
i=1

ϕixp+1−i

)
× dµ(xp, τ p

1−q+p). (112)

[39, Lem. 3] implies that

d
(
ξp+1 +

q∑
i=1

θiτp+1−i +

p∑
i=1

ϕixp+1−i

)
= d(ξp+1) = α,

(113)

which means

d(Xp+1|Xp
−∞, ξp) = α. (114)

Using this identity and (103) one can see that

dI
(
{Xt}

)
≥ α. (115)

We recall from Theorem 4 that dI({Xt}) ≤ dB({Xt}).
However, (102) states that dB({Xt}) = α. Now, (115) shows
that dI({Xt}) = dB({Xt}) = α.

APPENDIX G
PROOF OF THEOREM 8

Proof: We consider the three cases of discrete, continu-
ous, and discrete-continuous excitation noise separately.
• Discrete excitation (P(νi = 1) = 0): In this case, we

are dealing with infinite mixtures of purely discrete RVs;
therefore, we no longer have affinely singular random vari-
ables (there is no absolutely continuous component even on
lower dimensional subspaces). In this case, we show that ϵ-
achievable rates are zero. This together with the fact that
d(ξi) = 0 for a discrete random variable ξi (see Theorem
2), proves the theorem.

Using the definition of ARMA process in (9), we know that

Xt +

p∑
i=1

ϕiXt−i = ξt +

q∑
i=1

θiξt−i. (116)
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Since besides the excitation noise, each Xt depends on its p
previous samples, the recursive equation is solvable by having
p boundary conditions (the the realization of the excitation
noise). As a result, Xn could be expressed as a linear function
of Xp and ξn1−q for each n. Since ξi takes value from a finite
or countably infinite set, then we can find a finite set Ai such
that

P(ξi ∈ Ai) ≥ 1− δ

2i+q
, (117)

for all i ∈ {1 − q, . . .}, where δ ∈ (0, 1). Therefore, the
probability of ξn1−q taking a value from Bn = Ai⊗ . . .⊗Aq+n

is lower-bounded as

P(ξn1−q ∈ Bn) ≥
n+q∏
i=1

(
1− δ

2i
)
≥ 1− δ

n+q∑
i=1

1

2i
≥ 1− δ.

(118)

Next, given ξn1−q ∈ Bn, since Xn is obtained via a linear
function Xn = f(Xp, ξn1−q) of the excitation noise and
previous samples, and because of finiteness of Bn we can
cover the support of Xn with a finite set of linear functions
of Xp. More formally, if we define a random vector Yn that
is distributed as

P(Yn = yn) = P(Xn = yn|ξn1−q ∈ An
m), (119)

then there exists a set of functions fi : Rp → Rn for
i ∈ [1 : |Bn|] such that supp(Yn) ⊆ ∪n

i=1supp
(
fi(X

p)
)
.

A set with such property (i.e., covered by a finite number of
Lipschitz images of Rp) is called p-rectifiable. We observe
that rectifiability is further satisfied for all higher values of
p, i.e. we can cover the support of Yn by adding dummy
dimensions to Xp. As stated in [11, Lemma 12], if supp(Yn)
is ⌊Rn⌋-rectifiable for all sufficiently large ns, then the
minimum ϵ-achievable rate for {Yi} is bounded above by
R. Hence, this property is met for Yn, and R = p

m and all
n ∈ {m,m+ 1, . . .}. As a result, R{Yi}(ϵ) ≤

p
m .

Next, to find an upper-bound for minimum ϵ-achievable rate
for {Xi} by R′, one needs to find a set of (n, ⌊R′n⌋)-encoder-
decoder pair gi, hi such that

P(gn(hn(X
n)) ̸= Xn) ≤ ϵ. (120)

Here, if we choose the same pair of encoders and decoders as
of {Yi}, we have

P(gn(hn(X
n)) ̸= Xn)

= P(gn(hn(X
n)) ̸= Xn|ξn1−q ∈ An

m)P(ξn1−q ∈ An
m)

+ P(gn(hn(X
n)) ̸= Xn|ξn1−q /∈ An

m)P(ξn1−q /∈ An
m),

(121)

that coupled with (118) and (119) concludes in

P(gn(hn(X
n)) ̸= Xn) ≤ P(gn(hn(Y

n)) ̸= Yn) +
1

m
(122)

≤ ϵ′ + δ. (123)

By having large enough n such that ϵ′ ≤ ϵ
2 and by setting δ ∈

(0, ϵ
2 ), we have R(ϵ) ≤ p

m . Since we could fix m arbitrarily

large, and by positiveness of R(ϵ), we can prove that

R(ϵ) = 0. (124)

The above identity together with the inequality

R∗(ϵ) ≤ RB(ϵ) ≤ R(ϵ), (125)

in [11, Eq. 75] proves that all above values of R ∗
(ϵ), RB(ϵ), R(ϵ) are equal to 0.
• Continuous excitation (P(νi = 1) = 1): In this case,

the first part of Theorem 6 shows that for all n, Xn is
also absolutely continuous. Now, Theorem 2 implies that
d(Xn) = n. Besides, Theorem 3 reveals that dB

(
{Xt}

)
=

limn→∞
d(Xn)

n = 1.
Due to absolute continuity of Xn, it can be thought of as

an affinely singular random variable Vn = 1 and d1 = n. As
a result, one can see that

∣∣∣d1

n − dB
(
{Zt}

)∣∣∣ = 0. Equivalently,
we have

PVn

(
i :

∣∣∣di

n − dB
(
{Zt}

)∣∣∣ < δ

)
= 1 > 1− ϵ, (126)

for every pair of (δ, ϵ). Finally, using Theorem 7, we conclude
that

R∗(ϵ) = RB(ϵ) = R(ϵ) = dB
(
{Zt}

)
= d(ξ1) = 1, (127)

where the last equality holds because of Theorem 2.
• Mixed discrete-continuous excitation (P(νi = 1) ∈

(0, 1)): Recalling Corollary 1 and Theorem 7, we know that
a D/C-ARMA process with finite discrete space is a typical
source, and

R∗(ϵ) = RB(ϵ) = R(ϵ) = dB
(
{Zt}

)
= d(ξ1) = α, (128)

where the last equality holds because of Theorem 2.
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