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Abstract

A key element in the performance of a compressed sensing (CS) setup is the so

called sensing matrix. It is known that the success of CS-based methods strongly

rely on the properties of the employed sensing matrix. Random matrices are the

widely-adopted choice due to their order-optimal performance and flexibility in

size. In real world applications, however, random structures are rarely feasible.

For this reason, the deterministic design of sensing matrices has been an ongoing

research topic. In this paper, we introduce new classes of deterministic complex-

valued sensing matrices based on algebraic curves. In particular, we design a

number of algebraic-geometric codes with large minimum distances specifically

for the construction of sensing matrices. Our approach is to find maximal curves

in the Galois field Fpm̃ , and transform them into Fp codes by a trace map.

Invoking the Riemann-Roch theorem, we demonstrate that the resulting code

has a large minimum distance compared to its length, which leads to a sensing

matrix with small coherence value. For general m×n matrices, the Welch bound

(≈ 1√
m

) sets a universal lower-bound on the coherence value, and the bound is

achievable only when n ≤ m2. In our designs, we are able to construct m × n

matrices with n ranging from around 8m to values larger than O(m2) by tuning

the parameters. Meanwhile, the coherence of the designed matrices differ from

the Welch bound by only an O(logm) factor. Simulation results indicate that

the performance of our matrices in recovering sparse vectors from compressed

Preprint submitted to Elsevier June 28, 2023



measurements is superior or equivalent to Gaussian random matrices.

Keywords: Algebraic-geometric code, coherence, compressed sensing, Galois

field, trace mapping.

1. Introduction

Compressed sensing is a technique for reconstructing sparse signals from

their projections onto low-dimensional subspaces [1, 2, 3, 4]. The result of the

projections is widely regarded as linear samples/measurements of the original

vector. Mathematically, if the sparse signal is represented via x ∈ RN that

has at most k non-zero elements, the result of the projection/sampling process

is found by y = Φx, where Φ has m rows (m < N) and is called the mea-

surement/sensing matrix. There are several methods proposed for recovering x

from y; the two main factors that determine the success of a recovery method

are the sparsity level of the original vector and the low-dimensional subspaces

generated by the columns of the sensing matrix. A widely studied property of

the sensing matrix known as the Restricted Isometry Property (RIP) [5] implies

that for every k-sparse vector x ∈ RN ,

(1− δk)‖x‖22≤ ‖Φx‖22≤ (1 + δk)‖x‖22.

It is known that the RIP of order 2k with small enough constant δ2k provides a

sufficient condition for stable recovery of all k-sparse vectors x even when mea-

surements are noisy [6]. Random m× n matrices with various probability laws

such as Gaussian and Bernoulli satisfy such RIP orders with high probability5

given that m ' O
(
k log(n/k)

)
[6]. Partial Fourier matrices obtained by random

row selection from the DFT matrix are another class of matrices that satisfy

RIP with high probability [6]. The story for deterministic matrices is completely

different: verifying that a given matrix satisfies an RIP order is computationally

NP-hard [7].10

The coherence of an m×N matrix Φ is defined as

µΦ := max
1≤i 6=j≤N

|< φi,φj >|
‖φi‖2 · ‖φj‖2

,
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where φi denotes the ith column of Φ. As the definition suggests, computing

the coherence value of an m×N matrix requires O(mN2) operations. Besides,

a matrix with unit-norm columns that has a coherence value µΦ satisfies RIP

of order k with constant δk as long as µΦ(k − 1) ≤ δk < 1 [6]. Therefore, it

is desirable to design matrices with small coherence values. The well-known

Welch bound introduces a universal lower bound on the coherence value: for

any m×N matrix Φ with m ≤ N we have that

µΦ ≥

√
N −m
m(N − 1)

.

In addition, the equality is not achievable for N > m2 [8]. One of the conse-

quences of this bound is that sparse recovery guarantees based on the coherence

value of the matrix are limited to k ≤ O
(√
m
)

which is much more limiting

than the RIP guarantees of random matrices. This fact is commonly referred

to as the square-root bottleneck1.15

Even with the above limitation, minimizing the coherence value is the most

common technique in deterministic design of sensing matrices. Indeed, the

explicit construction of fat matrices with small coherence is an active field of re-

search. The considered constrcutions mainly arise from structures in algebra or

combinatorics. DeVore was among the pioneers of deterministic matrix design;20

in [11] he introduced an explicit construction of binary matrices based on poly-

nomials of a given degree in a finite field. The same technique was later applied

to finite geometry and algebraic codes in [12, 13, 14]. Various types of error cor-

recting codes were considered in matrix design; the list includes BCH codes [15],

[16], Reed-Muller codes [17], Reed-Solomon codes [18], Delsarte-Goethals codes25

[19], Kerdock codes [19] and LDPC codes [20]. Authors in [21] used specific lin-

ear and nonlinear to construct a family of deterministic measurement matrix.

Many designs based on chirp signals are also studied [22, 10]. Partial Fourier

submatrices are also popular due to efficient matrix multiplication techniques

1There are few deterministic constructions which marginally break the square-root bottle-

neck, but with orders that are not considerably better than k ≤ O
(√

m
)
[9, 10].
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[23]. Expander graphs are also useful in error correcting codes and measurement30

matrix design [24]. Recently, designs in combinatorics have become popular for

matrix design [25, 26, 27, 28]. Binary measurement matrix design using unitary

geometry was proposed in [29].A deterministic construction of sparse sensing

matrices based on vector spaces over finite fields was provided in [30] . Authors

in [31] provide a flexible construction of measurement matrices with low storage35

space and low coherence. Sequences with low correlation are used to design low

coherence measurement matrix in [32]. Deterministic design of toeplitz matrices

with small coherence based on Weyl sums are proposed in [33].

1.1. Road-map

In this paper, we follow the approach of [16] to construct a sensing matrix40

based on an error correcting code. More specifically, we need to design a linear

p-ary code that includes the all-one codeword. Next, we partition the codewords

into subsets of size p using a specific rule. Finally, we pick a vector from each

subset (the choice is arbitrary) and apply an element-wise complex exponenti-

ation to generate the columns of the overall sensing matrix. Using a result in45

[16], we can bound the coherence value of the resulting matrix in terms of the

minimum distance of the code. To guarantee small coherence values, we need

to have codes with minimum distances comparable to their block size. This is

indeed a very restricting requirement on the code. In this work, we initially

design an algebraic geometry code with a guaranteed minimum distance pro-50

vided by the Riemann-Roch theorem. Unfortunately, the guaranteed minimum

distance is not large enough to result in a matrix with small coherence. Here,

we apply a trace mapping which increases the minimum distance by reducing

the number of codewords. Fortunately, the remaining codewords are enough to

form a fat sensing matrix suitable for compressed sensing purposes.55

1.2. Outline

In Section 2, we review the basics of algebraic curves, rational points, Reimann-

Roch space and extension curves. Further, we introduce algebraic geometry
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codes and the trace of a code. In Section 3, we present our general technique

to design codes with guaranteed minimum distances (Theorem 1–2). We fol-60

low the code design by the construction of the sensing matrix. Examples of

algebraic curves and codes that are produced by our technique are studied in

Section 3.1; the list includes curves of genus zero, elliptic curves, and norm-trace

curves (including Hermitian curves). With numerical simulations, we evaluate

the performance of our proposed matrices and compare them against Gaussian65

random matrices and an existing but different type of deterministic matrices

based on algebraic curves in Section 4.

2. Preliminaries

Let X be an algebraic curve associated with a bivariate polynomial φ(x, y)

over Fq and denote the genus of the curve by g. The degree of a point P ∈ X70

is said to be r if P ∈
(
Fqr
)2

. In particular, P ∈ X is called rational if r = 1.

For an algebraic curve X , the function field Fq(X ) on curve X is defined as

the set of all bivariate rational functions (polynomial divided by polynomial)

with coefficients in Fq such that the input domain is restricted to X . For each

P ∈ X and f ∈ Fq(X ), the valuation νP (f) is defined as the multiplicity of point75

P as a root of f : if P is a zero of f with multiplicity r ∈ N, then, νP (f) = r.

Similarly, if P is a pole of f with multiplicity r ∈ N, then, νP (f) = −r. When

P is neither a zero nor a pole of f , then, νP (f) = 0.

A divisor G of X is defined as G =
∑
P∈X nPP where np is an integer

number and only finite number of nP are nonzero. The support and degree80

of a divisor G are defined respectively by supp(G) = {P ∈ X |nP 6= 0} and

deg(G) =
∑
P∈X nP deg(P ). For a given divisor, the the Riemann-Roch space

L(G) is defined as

L(G) =
{
f ∈ Fq(X )

∣∣∣ nP + νP (f) ≥ 0
}
. (1)

L(G) is a finite dimensional vector space over Fq with dimension `(G). Accord-

ing to the Riemann-Roch Theorem [34], `(G) ≥ deg(G) + 1 − g and equality85

holds when deg(G) ≥ 2g − 1.
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Let P1, P2, · · ·Pñ ∈ X be some of the rational points on curve X and set D =

P1 +P2 + · · ·+Pñ. Choose G ∈ Div(X ) such that supp(G) ⊆ X \ {P1, . . . , Pñ}.

Next, we consider the evaluation map T : L(G)→ (Fq)ñ:

T (f) =
(
f(P1), f(P2), · · · f(Pñ)

)
, f ∈ L(G). (2)

The range of this map forms a linear code known as the algebraic geometry90

(AG) code C(D,G) (in the rest of the paper, we simply write C). If ñ, k̃, dmin

represent the length, the dimension (alternatively, the uncoded length) and the

minimum distance of this code, respectively, we have that [34]

k̃ = `(G) ≥ deg(G)− g + 1 and dmin ≥ ñ− deg(G). (3)

We define the trace operator TrFqr/Fq : Fqr → Fq as the linear functional

TrFqr/Fq (α) = (α) + (α)q + (α)q
2

+ · · ·+ (α)q
r−1

. (4)

Let C be a code over the field Fqr with parameters [ñ, k̃, dmin]. We define the

trace of C by applying the trace mapping in (4) to the code-words in an element-

wise fashion:

Tr(C) =
{(

Tr(a1), ...,Tr(añ)
)
, ∀(a1, ..., añ) ∈ C

}
,

where Tr(.) := TrFqr/Fq (.). Oftentimes, the number of code-words in Tr(C)95

is less than in C, because some of the code-words of C are mapped into the

same code-word via Tr. The following theorem shows a connection between the

dimension of a code and its trace.

Theorem 1 ([35]). For any code C over the field Fqm̃ with parameters [ñ, k̃, dmin],

we have100

k̃ ≤ dim
(
Tr(C)

)
≤ m̃× k̃. (5)

2.1. Matrix Design

So far, we explained the code structure using algebraic geometry curves. Our

last step is to transform codes into deterministic compressed sensing matrices.
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Design 1. Suppose C is a linear code over Fp with parameters [ñ, k̃, dmin] which

contains the all-one code-word. We define the following equivalence relation:105

a, b ∈ C : a ≡ b ⇔ ∃ i ∈ Fp : a− b = (i, i, ..., i). (6)

From each of the pk̃−1 equivalence classes, we choose a code-word (arbitrary

choice) such as (c1,l, . . . , cñ,l) (l represents the index of the equivalence class)

and exponentiate it as (
ej

2π
p c1,l , ej

2π
p c2,l , · · · , ej

2π
p cñ,l

)
. (7)

Then, we normalize the code-words as vertical vectors and concatenate them to

form the final matrix Φ:110

Φ =
1√
ñ


ej

2π
p c1,1 ej

2π
p c1,2 · · · e

j 2πp c1,pk̃−1

ej
2π
p c2,1 ej

2π
p c2,2 · · · e

j 2πp c2,pk̃−1

...
...

...

ej
2π
p cñ,1 ej

2π
p cñ,2 · · · e

j 2πp cñ,pk̃−1

 . (8)

In the following theorem, we present a general bound for the coherence of

the constructed matrix based on code parameters.

Theorem 2. [16] The coherence of matrix Φ is bounded as

µΦ ≤
p(p− 1)ñ− p2dmin

2ñ
. (9)

Based on Theorem 2, for the coherence bound to become small, we need to

have p(p − 1)ñ ≈ p2dmin, or equivalently, dmin ≈ p−1
p ñ. This implies that the115

minimum distance of the code needs to be very large (comparable to the block

length), which is not the case for the known code structures.

3. Main Contribution

As mentioned earlier, our goal in this paper is to construct matrices with

small coherence. Our approach is to construct codes with large minimum dis-120

tances first.
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Theorem 3. Let X be an algebraic curve of genus g over the finite field Fpm̃ ,

and let P1, P2, . . . , Pñ ∈ X . Further, let D = P1 +P2 + · · ·+Pñ, G = rP∞, and

C(D,G) be the corresponding algebraic geometry code. Now, for the minimum

distance of the code Tr
(
C(D,G)

)
, we have that125

dmin

(
Tr
(
C(D,G)

))
≥ ñ− pm̃ + 1 + gαb2pm̃/2c

p
, (10)

where

gα = pg +
(p− 1)(r − 1)

2
. (11)

The special case of Theorem 3 for genus zero curves was already studied

in [35]. To facilitate reading of the paper, we have postponed the proof to

Appendix C.

Theorem 4. Let Tr
(
C(D,G)

)
be the code introduced in Theorem 3 with the130

extra assumption that r ≥ 2g − 1. If we construct matrix Φ via Design 1 based

on the code Tr
(
C(D,G)

)
, then, Φ has at least pr−g columns and

µ(Φ) ≤ pm̃+1 + p+ pgα · b2pm̃/2c − pñ
2ñ

. (12)

Proof. Since deg(G) = r ≥ 2g − 1, Riemann-Roch Theorem implies that

k̃ = `(G) = r − g + 1,

where k̃ stands for the dimension of the AG code C(D,G). On one hand,

Theorem 1 shows that the dimension of the code Tr
(
C(D,G)

)
is at least k̃. On

the other hand, the matrix Φ constructed in Design 1 has pk−1 columns, where135

k is the dimension of the employed code. Hence, Φ has at least pk̃−1 = pr−g

columns.

To prove the coherence bound, we invoke Theorem 2 by using the bound in

Theorem 3 for dmin:

µ(Φ) ≤ p(p− 1)ñ− p2dmin

2ñ
≤
p(p− 1)ñ− p2

(
ñ− pm̃+1+gαb2pm̃/2c

p

)
2ñ

=
pm̃+1 + p+ pgαb2pm̃/2c − pñ

2ñ
. (13)
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Remark 1. If

r > max
(
2g − 1 , m̃+ g + logp(11)

)
, (14)

then, the matrix Φ in Theorem 4 is guaranteed to be a fat matrix. In fact, the

Serre bound in Appendix A implies that140

ñ ≤ pm̃ + gb2pm̃/2c. (15)

It is now not difficult to check that

pm̃ + gb2pm̃/2c ≤ pm̃ + 2gpm̃/2 < max(2g−1 , 11pm̃)

≤ max(pg−1 , 11pm̃) = pmax(g−1 , m̃+logp(11)).

This proves that

pr−g > pm̃ + gb2pm̃/2c,

if r satisfies (14).

We should highlight that the use of algebraic curves for deterministic con-

struction of sensing matrices was previously investigated in [12, 14, 21]. How-

ever, the structure and type of the resulting matrices are very different from

those introduced in this work. In particular, the previously studied matrices145

were binary-valued (0–1), while in this work, we introduce complex-valued ma-

trices with no zero elements that provide more flexibility in selection of their

sizes.

3.1. Examples

In Theorem 3, we presented a general result regarding algebraic curves that150

could be used to construct compressed sensing matrices. In this section, we

apply this result to particular classes of algebraic curves and construct a number

of families of deterministic matrices.
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Genus Zero Curves

Example 1. Let φ(x, y) = x − y + 1. The associated curve has p2m̃ roots of155

the form (a, a + 1) in Fp2m̃ × Fp2m̃ (we use 2m̃ instead of m̃, to avoid
√
pm̃ in

the following expressions). We denote these points by P1, . . . , Pp2m̃ . We also

represent the point at infinity of the projective curve by P∞ = [1, 1, 0]. As

φ(x, y) is a linear polynomial, the associated curve X has g = 0.

For G = rP∞ with r ∈ N (later we use r > 2m̃), it is easy to see that L(G)160

consists solely of polynomials (the rational functions cannot have non-trivial

denominators) with degrees no more than r. According to Riemann-Roch The-

orem, `(G) = dim
(
L(G)

)
= r + 1. Indeed, one can verify that {1, x, x2, . . . , xr}

forms a basis for L(G). Now, if we define D = P1 + · · · + Pp2m̃ and follow

the aforementioned procedure to generate matrix Φ, we will obtain a p2m̃ × pt165

matrix with t ≥ r that satisfies

µΦ ≤
1 + pm̃(p− 1)(r − 1)

2p2m̃−1
. (16)

For r > 2m̃ the matrix is guaranteed to be fat. For large values of r, m̃, the

Welch bound µWelch for this matrix size is roughly equal to 1
pm̃

. This shows

that the upper-bound on the coherence of the above matrix is worse than the

Welch bound by a O(p2r) factor. However, we should mention that for r > 4m̃,170

the Welch bound is not achievable by any matrix. By increasing r in the above

construction, the number of columns in the matrix increases exponentially, while

the coherence bound increases linearly.

Elliptic Curves

The general family of elliptic curves is defined by bivariate polynomials that175

are of degree 2 in terms of one variable and degree 3 in terms of the other

variable. Below, we consider two examples of this family.

Example 2. Let φ(x, y) = y2 + y− x3− x be the generating polynomial of the

elliptic curve defined over fields with characteristic p = 2. This polynomial is

irreducible and non-singular. Further, the genus of the resulting curve is given180
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by g = 1. The number Nm̃(X ) of (x, y) roots of φ(x, y) in F2m̃ × F2m̃ is known

to be [34]

Nm̃(X ) = 2m̃ − 2
m̃
2 +1 cos

(
3
4π m̃

)
. (17)

Similar to the previous example, we use all the above points for the code con-

struction, i.e., ñ = Nm̃(X ). The point at infinity of this curve is P∞ = [0, 1, 0].

For G = rP∞ with r ∈ N (we use r > m̃+ 4), the Riemann-Roch space L(G) is185

formed by

span
{
xiyj

∣∣ 0 6 i, 0 6 j 6 1, 2i+ 3j 6 r
}
, (18)

where {xiyj}i,j with 2i + 3j 6 r acts as a basis for this space. Riemann-Roch

Theorem implies that `(G) = dim
(
L(G)

)
= r. Hence, the associated matrix Φ

shall have ñ = Nm̃(X ) rows and at least 2r−1 columns. The coherence of this

matrix could be bounded via190

µ(Φ) ≤
(2m̃ + 1− ñ) + r+3

2 b2
m̃
2 +1c

ñ
. (19)

As a special case, if m̃ ≡ 2, 6 (mod 8), then,

µ(Φ) ≤ 1 + 2
m̃
2 (r + 3)

2m̃ + 1
≈ r + 3

2
m̃
2

. (20)

Finally, we set r > m̃ + 4 based on Remark 1 to guarantee that Φ is a fat

matrix. We should highlight that due to the construction based on F2, the

resulting matrix is real-valued with ± 1√
ñ

elements.

Example 3. The elliptic curve associated with φ(x, y) = y2 − x3 − 2x − 1 is195

known to be maximal over F3. Similar to all elliptic curves, the genus of the

resulting curve is g = 1. The number Nm̃(X ) of roots of φ(x, y) in F3m̃ × F3m̃

is given by [34]

Nm̃(X ) = 3m̃ − 2× 3m̃/2 cos( 5π
6 m̃). (21)

It turns out that for m̃ ≡ 6 (mod 12), the curve is maximal. For the code

construction, we use all the points on the curve (ñ = Nm̃(X )) and set G = rP∞200

with r ∈ N (we use r > m̃+3), where P∞ = [0, 1, 0] is again the point at infinity

of the curve. The Riemann-Roch space L(G) is formed by

span
{
xiyj |0 6 i, 0 6 j 6 1, 2i+ 3j 6 r

}
. (22)
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Since `(G) = dim
(
L(G)

)
= r, the resulting sensing matrix Φ shall have ñ =

Nm̃(X ) rows and at least 3r−1 columns. The coherence of this matrix could be

bounded via205

µ(Φ) ≤ 3

2

(3m̃ + 1− ñ) + (r + 2)b2× 3
m̃
2 c

ñ
. (23)

For the maximal curve of m̃ ≡ 6 (mod 12), this bound simplifies to

µ(Φ) ≤ 3
1 + 3

m̃
2 (r + 3)

3m̃ + 2× 3
m̃
2

≈ 3(r + 3)

3
m̃
2

. (24)

The condition r > m̃+ 3 guarantees that Φ is a fat matrix (Remark 1). Unlike

the previous example regarding elliptic curves, the elements of this matrix are

complex-valued.

Hermitian Curves210

Example 4. The Hermitian curves is an algebraic curve with generating poly-

nomial φ(x, y) = yp+y−xp+1 over Fp2 . This curve has g = p2−p
2 and p3 rational

points. As the number of rational points matches the Serre’s upper-bound, this

curve is called maximal. The number of roots of φ(x, y) in Fp2m̃ × Fp2m̃ is

known to be N2m̃ = p2m̃ + pm̃+2 − pm̃+1 (for m̃ = 1, we have N1 = p3) [36].

Interestingly, N2m̃ also matches the Serre’s upper-bound. We base our code

construction in the field Fp2m̃ rather than Fp2 ; for this purpose, we use all the

N2m̃ points on the curve and set G = rP∞ where P∞ = [0, 1, 0] is the point at

infinity of the curve and r ∈ N is such that

r > max
(
p2 − p− 1 , 2m̃+ p2−p

2 + 4
)
.

The corresponding Riemann-Roch space L(G) is formed by

span
{
xiyj |0 6 i, 0 6 j 6 p− 1, ip+ j(p+ 1) 6 r

}
. (25)

The resulting sensing matrix has N2m̃ = p2m̃ + pm̃+2 − pm̃+1 rows and at least

pr−g columns. The coherence of this matrix satisfies

µΦ ≤
p3 + (p− 1)(r − 1)− p2 + p−m̃−1

2(pm̃−1 + p− 1)
≈ p2(p2 + r)

2pm̃
. (26)
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Table 1: Matrix Design 3

Curve Field Size Matrix Size Coherence Bound welch Bound

x− y + 1 p2m̃ p2m̃ × 2t , t ≥ r̃ 1 + pm̃(p− 1)(r − 1)

2p2m̃−1
≈ p−m̃

y2 + y − x3 − x 2m̃ , m̃
8≡ 4

(
2m̃ + 2m̃/2+1

)
× 2r−1 , r ≥ m̃+ 3

r × 2m̃/2 + 1

2m̃ + 2m̃/2+1
≈ 2−m̃/2

y2 − x3 − ax− b pm̃
(
pm̃ − 2p

m̃
2 cos

(
m̃θ
))
× pr−1 , r : eq (14) ≈ p(pr + 2 cos(m̃θ))

2(p
m̃
2 − cos(m̃θ))

≈ p−m̃/2

yp + y − xp+1 p2m̃ , m̃
2≡ 0 , m̃ < g/2

(
p2m̃ + pm̃+2 − pm̃

)
× pg ≈ 2p2(p2 − p)

pm̃ + 2g
≈ p−m̃

4. Simulation Results

In this section, we numerically examine the performance of some of the215

matrices based on the algebraic geometry codes in recovering sparse vectors

using MATLAB.

In each experiment, we first construct deterministic and random sensing ma-

trices of size m×n. Then, we generate random k-sparse vectors x of dimension

n; the support of the vector (non-zero locations) is chosen randomly among(
n
k

)
possibilities with equal probability. The value of non-zero elements are also

determined by i.i.d. realizations of a standard normal distribution. Next, we

compute ym×1 = Φm×nxn×1 for each sensing matrix Φ, and try to recover

xn×1 from ym×1. We employ both LASSO and OMP as the recovery methods

to achieve an estimate x̂n×1 of xn×1; we use the Lagrangian form of the LASSO

x̂n×1 = argmin
zn×1

‖y −Φz‖22 + λ‖z‖1, (27)

where λ is numerically optimized to yield the best solution. If the reconstruction

SNR defined as

SNRrec = 20× log

(
‖x‖2
‖x− x̂‖2

)
(28)

exceeds 100dB, we consider the recovery procedure as successful. For each value

of k, we repeat this procedure 8000 times (random generation of x followed by

the recovery procedure), and evaluate the percentage of perfect recovery. By220

varying the value of k, we can obtain the curve of the perfect recovery percentage

in terms of k (obviously, as k increases, this percentage decreases).
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Gaussian ensembles are the most-studied choices of sensing matrices in the

literature. Therefore, in each experiment, we compare the recovery percentage

curve of the AGC-based deterministic matrix with that of a Gaussian ensemble225

of the same size. Whenever possible, we also include other deterministic designs

in our comparisons. The main challenge in comparing deterministic matrices

is the restriction on the available matrix sizes; on one hand, it is often very

difficult to find matching matrices in terms of the number of rows and columns

(equal or almost equal number of rows and columns). On the other hand,230

when the size of two deterministic sensing matrices do not match, it is not

clear whether the difference in their performance reflects the size mismatch or

superiority/inferiority of the design technique.

For constructing the AGC-based sensing matrices, we use Galois fields with

p = 2, 3, 5. As explained earlier, p = 2 results in real-valued (bipolar) matrices,235

while p > 2 leads to complex-valued matrices. To make the comparisons fair, we

use the same structure for the Gaussian ensemble; i.e., we consider real-valued

random Gaussian matrices when p = 2, and complex-valued random Gaussian

matrices when p > 2.

In our first experiment, we consider the genus zero curve introduced in Ex-240

ample 1. We set p = 2, m̃ = 2 and r = 5 to achieve a bipolar sensing matrix

of the size 16× 32. Figure 1 shows the performance of this matrix compared to

the real-valued Gaussian random matrix of the same size. The recovery in this

experiment is via the OMP method. We observe that the performance of this

bipolar matrix is superior to the Gaussian ensemble.245

To study complex-valued matrices, we set p = 3, m̃ = 4 and r = 5 for the

same genus zero curve (Example 1). The resulting matrix is of size 81× 243. In

Figures 2 and 3 we plot the recovery percentage of this matrix using LASSO and

OMP recovery methods, respectively. While both curves confirm superiority of

the deterministic matrix (compared to the Gaussian ensemble), it is counter-250

intuitive that OMP works better than LASSO for both the deterministic and

random matrices.

For comparing our matrices with previous constructions using algebraic
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Figure 1: Perfect recovery percentage of a bipolar AGC-based matrix with g = 0 and size

16 × 32, as well as a random (real-valued) Gaussian matrix of the same size. The recovery

method is OMP.
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Figure 2: Perfect recovery percentage of a complex-valued AGC-based matrix with g = 0 and

size 81 × 243, as well as a random (complex-valued) Gaussian matrix of the same size. The

recovery method is LASSO.

curves, we focus on the binary matrices in [12]. With this binary design and

using the elliptic curve in Example 2 (φ(x, y) = y2 + y − x3 − x), we can con-255

struct (|ρ| × pm̃) × prm̃ matrices where |ρ| is the number of selected points on

the curve. We set p = 2, m̃ = 4, r = 2 and |ρ| = 4 to achieve a 0/1-valued

matrix of size 64×256; similarly, we set p = 2, m̃ = 6 and r = 9 in our design to

obtain a bipolar (±1-valued) matrix of the same size. We also include a similar

size Gaussian random matrix in our comparison. The curves in Figure 4 are260
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Figure 3: Perfect recovery percentage of a complex-valued AGC-based matrix with g = 0 and

size 81 × 243, as well as a random (complex-valued) Gaussian matrix of the same size. The

recovery method is OMP.

achieved by the LASSO method. The results reveal that the Gaussian random

matrix in this setting slightly outperforms the proposed bipolar matrix, while

both matrices perform substantially better than the binary matrix in [12]. The

elliptic curve φ(x, y) = y2 − x3 − x − 2 is maximal over F53 . With this curve

and by setting m̃ = 3 and r = 5, we obtain a 147× 625 complex-valued matrix.265

The recovery curve of this matrix shown in Figure 5 using the LASSO method

demonstrates significant improvement compared to the Gaussian random ma-

trix of the same size. We further employ this matrix for recovering an image

from low-dimensional linear projections using the OMP algorithm. For this pur-

pose, we divide the 225 × 225-pixel image I of the Baboon (Figure 6-(a)) into270

81 non-overlapping sub-images Ii,j = I(25(i− 1) + 1, 25(j− 1) + 1), 1 ≤ i, j ≤ 9

with size 25 × 25. Since images are often sparse in the DCT domain, we take

the DCT of each Ii,j and keep 8% of the largest entries to obtain Ĩi,j (sparsi-

fying the images). Next, we reshape Ĩi,j to a column vector vi,j . Finally, we

compute ui,j = Φ147×625 × vi,j and try to recovery vi,j form ui,j via the OMP275

algorithm. We repeat the same scenario by using a Gaussian ensemble instead

of the designed sensing matrix. Figure 6 shows the results.

As a representative of Hermitian curves, we consider Example 4 with p = 3
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Figure 4: Perfect recovery percentage of binary ([12]) and bipolar (proposed matrices) matrices

of size 64 × 256 formed by the elliptic curve y2 + y − x3 − x. The results also include the

random Gaussian matrix of the same size, and are achieved by the LASSO method.
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Figure 5: Perfect recovery percentage of a random Gaussian matrix and that of a matrix

formed by elliptic curve y2−x3−x− 2 (g = 1) with the size 147× 625. The recovery method

is LASSO.

which simplifies to the curve y3 + y − x4 with genus g = 3. Using m̃ = 4 and

r = 7, we can generate a 27× 81 matrix based on this curve. The performance280

curve of this matrix shown in Figure 7 using the OMP technique is again better

than that of a Gaussian matrix. To examine the performance of sensing matrices

based on AG codes with large genus values, we use Example 4 with p = 5 (the

curve y5 + y − x6); this curve has g = 10. By setting m̃ = 4 and r = 20,

we construct a complex-valued 125 × 510 matrix based on this curve. Due to285
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(a) (b) (c)

Figure 6: (a) Orginal image. (b) Recovered image based on the proposed matrix formed by

an elliptic curve; PSNR is 26.6990. (c) Recovered image based on a random Gaussian matrix;

PSNR is 26.6323
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Figure 7: Perfect recovery percentage of a complex-valued matrix based on a Hermitian curve

with g = 3 and size 27 × 81, as well as a random (complex-valued) Gaussian matrix of the

same size. The recovery method is OMP.

computational complexity issues, we truncate this matrix by keeping only the

first 500 columns, and depict the performance of this 125×500 matrix in Figure

8 using the OMP method.

5. Conclusion

The explicit construction of sensing matrices is desired in many applications290

of compressed sensing. In this paper, we presented a deterministic matrix design

with small coherence based on algebraic geometry codes with large minimum

distances (minimum distance comparable to the block size). The entries of the
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Figure 8: Perfect recovery percentage of a complex-valued based on a Hermitian curve with

g = 10 and size 125×500, as well as a random (complex-valued) Gaussian matrix of the same

size. The recovery method is OMP.

constructed m × n fat matrices take values on the complex unit circle; with

this choice, the result ranges from binary-valued (±1) matrices to more general295

complex-valued matrices. Besides the flexibility in the size of the matrix, the

design technique allows for extremely fat matrices beyond n > O(m2) for which

the Welch bound on the coherence is no longer attainable. Interestingly, the

coherence of the resulting matrices exceed the (possibly unachievable) Welch

lower-bound only by an O(logm) factor. Numerical experiments indicate that300

the constructed matrices perform equivalently or even better than the Gaussian

matrices of the same size in recovering sparse vectors.

Appendix A. Number of Rational Points

Theorem 5 (Serre Bound). [34] Let X be an algebraic curve over Fq with genus

g. Then, the number of rational points on X satisfies305

|N(X )− q − 1| ≤ g b2q1/2c (A.1)

The useful point in the Serre bound is that it simultaneously provides lower

and upper-bounds on the number of rational points. If the equality in the Serre

bound holds for a given curve, it is called a maximal curve.
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Appendix B. Extension Curves

Let X be an algebraic curve associated with φ(x, y) = 0. The set of all310

triplets (x, y, z) that satisfy the following set of equations is called an extension

curve:

XT =
{

(x, y, z)
∣∣Ψ(x, y, z) = φ(x, y) = 0

}
, (B.1)

where Ψ(x, y, z) is a nonsingular and irreducible polynomial over Fq (which char-

acteristic p). In particular, XT is called the Artin-Schreier curve if Ψ(x, y, z) = zp − z − f(x, y).

The genus of the Artin-Schreier curve is given by [37]:

g(XT,f ) = p g(X )− p+ 1 +
p− 1

2

∑
P : rational
νP (f)<0

(
1− νP (f)

)
.

Appendix C. Proof of Theorem 3

Consider f ∈ L(G). Since the supports of D and G are disjoint, for ev-

ery point Pi in the support of D we have νPi(f) ≥ 0. Besides, the polynomial315

Ψ(x, y, z) = zp − z − f is irreducible over Fpm̃ , hence we can assume the exten-

sion curve XT,f , whose equation is

XT,f =

 zp − z = f(x, y),

φ(x, y) = 0.
(C.1)

This extension is an Artin- Schreier extension(see Appendix B), therefore, using

Arthur-Schreier theorem we have:

g(XT,f ) = p g(X )− p+ 1 +
p− 1

2

∑
P : rational
νP (f)<0

(
1− νP (f)

)
.

Now since G = rP∞, obviously f has only a pole at P∞ of order at most r.

Therefore ∑
P :νP (f)<0

deg(P )
(
1− νP (f)

)
− 2 ≤ r − 1, (C.2)

and as a result

g(XT,f ) ≤ gα = p g(X ) +
(p− 1)(r − 1)

2
. (C.3)
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We shall compute a lower bound for the weight of the word320 (
Tr
(
f(P1)

)
,Tr
(
f(P2)

)
, ...Tr

(
f(Pn)

))
. If Tr(f(Pi)) = 0, the equation has p

simple roots, and the point Pi is ramified to exactly p rational points in XT,f .

If Tr(f(Pi)) 6= 0, the equation

Ψ(x, y, z) = zp − z − f(Pi) = 0, (C.4)

is irreducible; and, the point Pi is unramified in XT,f . If we denote the number

of rational points in XT,f by N and the weight of a codeword by w, we have325

N ≥ p(ñ− w), (C.5)

hence

w ≥ ñ− N

p
. (C.6)

Using Serre’s bound

N ≤ pm̃ + 1 + g(XT,f )b2pm̃/2c

≤ pm̃ + 1 + gαb2pm̃/2c. (C.7)

Therefore

d
(

Tr
(
C(D,G)

))
≥ ñ− pm̃ + 1 + gαb2pm̃/2c

p
. (C.8)

And the proof is complete.
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