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Motivation

As Dirac remarked, Maxwell’s equations of light, and the
relativistic wave equation, which he was too modest to call the
Dirac equation, govern most of physics, and all of chemistry
and biology. So in principle, we ought to be able to predict
human behavior, though I can’t say I have had much success
myself.
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Classical mechanics

Classical mechanics occur on phase space which consists of one
dimension (axe) for each coordinate and each momenta.

The state of a system is determined by a single point in phase
space.

Every property of the system, f, is a function of coordinate, r,
and momenta, p.

Hamiltonian, H: Total energy of the system.

Dynamics: ∂f
∂t = {f ,H}

Poisson bracket: {f , g} = ∂f
∂r

∂g
∂p −

∂f
∂p

∂g
∂r
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Introduction-Quantum mechanics

Quantum mechanics lives in the Hilbert spae where there is no
hole.

A vector, C, is denoted by a ket |C 〉. Complex conjugate of
such a vector, C †, is denoted by a bra 〈C |
bra * ket = bracket, 〈D|C 〉
ket * bra = operator, |C 〉〈D|
Operator acts on a vector to produce another vector
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Introduction-Quantum mechanics

Every observable is represented by an operator, Ê , X̂ , P̂

Density matrix, ρ̂, contains all information that can be known
about a system.

For a pure state, ρ = |ψ〉〈ψ|
Quantum Liouville equation ∂ρ̂(t)

∂t = i
~ [ρ̂(t), Ĥ]

{·, ·} ↔ i
~ [·, ·]
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Motivation

The computational power and memory of a classical computer
linearly scales with its size, while the complexity of a quantum
dynamical problem scales exponentially with the size of the
system. This point renders a quantum calculation very difficult
except for the smallest of systems.

Considering a number of degrees of freedom as quantum
mechanical and approximating the remainder of the system
with classical mechanics, seems a viable path for many
problems.
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Adiabatic (BO) approximation

The lightest nuclei is 1800 times heavier than electron.

Thus one might be justified to assume, Ψ(R, r) = φ(r ;R)χ(R)

It is common to assume classical nuclear degrees of freedom
under the effect of electronic potential εn(R)

This work addresses many cases where adiabatic approximation
fails. The most obvious examples are proton or electron
transfer reactions and excitation energy transfer among
chromophores.
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Partitioning

Define degrees of freedom to be dealt with quantum
mechanically as subsystem with a characteristic mass m. Those
to be dealt with classically as bath with a characteristic mass
M.
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Wigner transform

Mr. Wigner didn’t liked quantum mechanics in a bizarre
Hilbert space. So he invented a method to do quantum
mechanics in the phase space.

Wigner transformation

Aw (Q,P) =

∫
dZ 〈Q − Z

2
|Â|Q +

Z

2
〉e iPZ/~

relates every operator in the Hilbert space to a function in the
phase space and Weyl transformation do the reverse.

ρ̂ =
∑

i pi |ψi 〉〈ψi |
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QCLE

Liouville-von Neumann equation: ∂
∂t ρ̂(t) = − i

~
[
Ĥ, ρ̂

]
Taking a partial Wigner transform

∂

∂t
ρ̂W (X , t) = − i

~

[
(Ĥ ρ̂)W − (ρ̂Ĥ)W

]
Using

(ÂB̂)w = Awe
~Λ/2iBw

where

Λ =

←−
∂

∂p

−→
∂

∂q
−
←−
∂

∂q

−→
∂

∂p
= −{·, ·}

and some more manipulation of the Liouville equation in the
limit of µ = ( m

M )1/2 → 0 gives the quantum-classical Liouville
equation (QCLE).
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QCLE

∂

∂t
ρ̂W (X , t) = − i

~
[ĤW , ρ̂W ] +

1

2
({ĤW , ρ̂W } − {ρ̂W , ĤW })

Ĥw =
P2

2M
+ Vb(R) + V̂c(R, r̂) + ĥs(r̂ , p̂)

=
P2

2M
+ ĥ(R, r̂ , p̂),

where ĥs = p̂2

2m + V̂s .
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Solving QCLE

There have been various attempts for solving QCLE, e.g., in
subsystem,

ĥS |λ〉 = ελ|λ〉,

adiabatic,
ĥ(R)|λ;R〉 = ελ(R)|λ;R〉,

and force bases, but there always have been some difficulties,
partly due to the fact that the subsystem and bath degrees of
freedom are treated on different footings.
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Mapping

Mapping recipe for states,

|λ〉 → |mλ〉 = |01, ..., 1λ, ..., 0N〉,
〈q|mλ〉 = 〈q1, q2, ..., qN |01, ..., 1λ, ..., 0N〉

= φ0(q1)...φ0(qλ−1)φ1(qλ)...φ0(qN).

r
-

r r r r r
|4〉 −→ |0, 0, 0, 1, 0〉
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Mapping

Mapping recipe for operators

Â =
∑
λλ′

Aλλ
′ |λ〉〈λ′| → Âm =

∑
λλ′

Aλλ
′

m â†λâλ′

âλ =

√
1

2~
(q̂λ + i p̂λ), and â†λ =

√
1

2~
(q̂λ − ip̂λ).

â†λâλ′ |mµ〉 = δλ′µ|mλ〉

Using this mapping formalism we transform discrete quantum
states to continuous mapping states. Putting all degrees of
freedom on the same footing.
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Mapping Expectation value

A(t) =Tr(Â(t)ρ̂)

=

∫
dXdxdx ′ Am(x ,X , t)f (x , x ′)ρm(x ′,X )

=

∫
dXdx Am(x ,X , t)ρ̃m(x ,X ),

where ρ̃m(x ,X ) =
∫
dx ′f (x , x ′)ρm(x ′,X ) and

f (x , x ′) =
1

(2π~)N

∑
λλ′

∫
dzdz ′〈mλ|r −

z

2
〉〈r +

z

2
|mλ′〉

× 〈mλ′ |r ′ −
z ′

2
〉〈r ′ + z ′

2
|mλ〉e−i(p·z+p′·z ′)/~

= (
2

π~
)N4
[
(r · r ′ + p · p′)2 + (r · p′ − r ′ · p)2

− 1

2
(x2 + x ′2) +

N

2

]
e−(x2+x ′2).
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Mapping QCLE

Casting the QCLE in the subsystem basis and performing the
mapping we end up with an equation which can be partially
Wigner transformed over the mapping degrees of freedom to
yield the mapping QCLE

∂

∂t
ρm(t) = −1

~
∑
λ,λ′

hλλ′

(
pλ′

∂

∂rλ
− rλ′

∂

∂pλ

)
ρm +

∂Hm

∂R

∂ρm
∂P

− P

M

∂ρm
∂R
− ~

8

∑
λ,λ′

[
∂hλλ′

∂R
(

∂2

∂rλ∂rλ′
+

∂2

∂pλ∂pλ′
)
∂ρm
∂P

]

=
{
Hm, ρm

}
X ,x
− ~

8

∑
λ,λ′

[
∂hλλ′

∂R
(

∂2

∂rλ∂rλ′
+

∂2

∂pλ∂pλ′
)
∂ρm
∂P

]
.
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Solution

Consider the continuity equation for the phase space density

∂

∂t
ρm(χ, t) = −∇ · j(χ, t)

where flux j = v · ρm
Comparing to MQCLE one has

vrλ = ṙλ =− hλ′λ
~

pλ′ , vpλ = ṗλ =
hλλ′

~
rλ′ , vR = Ṙ = − P

M

vP = Ṗ =
∂Hm

∂R
− ~

8ρm

∑
λ,λ′

[
∂hλλ′

∂R
(

∂2

∂rλ∂rλ′
+

∂2

∂pλ∂pλ′
)

]
ρm.
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Solution

Ensemble of trajectories

ρ(t) =
1

N

N∑
i

δ(χ− χi (t))

If one neglects the last term of the dynamics our PDE can be
transformed into a number of ODE’s

drλ(t)

dt
=
∑
λ′

hλλ′(R(t))pλ′(t),

dpλ(t)

dt
=−

∑
λ′

hλλ′(R(t))rλ′(t),

dR(t)

dt
=

P(t)

M
,

dP(t)

dt
= − ∂Hm

∂R(t)
.
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Back transformation

When is the last term of the dynamics negligible? What are we
missing by neglecting it and how its effect can be incorporated
into the dynamics.

Motivated by these questions we back transformed every term
of the mapping dynamics to the subsystem basis.

The last term is one forth of effect of the subsystem on the
bath dynamics.
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Spin-boson model

hW =

(
~γ(R) −~Ω
−~Ω −~γ(R)

)
,

and γ(R) = −
∑

cjRj . The energy gap of the isolated
two-state system is 2~Ω.
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Results
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Figure: Electronic population difference 〈σz(t)〉 as a function of t for two
dimensionless parameter sets: Ω = 0.4, ξ = 0.09, and β = 0.25 (a) or 12.5
(b). The solid points are exact results, the dashed lines are the
LAND-map results and the dotted lines are the LSC-IVR results.
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Figure: Electronic population difference 〈σz(t)〉 as a function of t for two
parameter sets: ξ = 2, β = 0.25, and Ω = 0.8 (a) or 1.2 (b). The solid
points are exact results, the dashed lines are the LAND-map results, the
dot-dashed lines are the TDSCF results and the dotted lines are the
LSC-IVR results.
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Result

In order to save in computational cost of quantum dynamic
problems, a semi-consistent quantum-classical dynamics can be
derived by approximating quantum dynamics. In this work,
using the mapping basis we construct a simulation algorithm to
solve quantum-classical Liouville dynamics without suffering
from the limitations of surface hoping trajectories.

Note that one assumes a knowledge of Hamiltonian in this
formalism, which is not obvious for any realistic system.
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