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Aim
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In statistical thermodynamics Il similar to statistical thermodynamics
I, we deduce macroscopic properties of the system using microscopic
properties of the constituent’s of the system.

In this course, we study equilibrium properties of dense systems as well
as properties of non-equilibrium systems.

Statistical Mechanics is about deducing macroscopic properties of a
system from microscopic properties of the constituents of that same
system (molecules).

Equilibrium statistical mechanics aims at calculating equilibrium
properties of the system, e.g., energy, entropy and free energy.

Non-equilibrium statistical mechanics aims at calculating
non-equilibrium (transport) properties of the system, e.g., chemical
reaction rate, electrical conduction, heat conduction, absorption
spectra and viscosity.



Note that

@ At the end of this semester, at least in principle, you should be able to
calculate both equilibrium and transport properties of any
thermodynamic system.

@ Raise your question and concern as it might be the question or
concern of your classmates.

@ Always remember that equations are the language of science but they
never do suffice.

o Please engage in meta-cognition.
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Course structure

°
Midterm exam 28 Ordibehesht 2 Ch. 1-10 Thermo 35%
PM
Final exam 6 Tir 9 am Ch 11 - 15 45%
Thermo, Ch.
13-14 Stat
Class presentation 25 Khordad 10 Tir 20%

o Office hours: Due to specific situation resulting from Covid make
appointment by email when you need to talk to me.
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@ Review of statistical thermodynamics I: the principle of a priori
probabilities, various ensembles and expression of thermodynamic
functions in terms of partition functions.

@ Quantum statistics: Derivation of an equation of state for Fermi-Dirac
ideal gas and for Bose-Einstein ideal gas, Blackbody radiation, density
matrix, Classical limit for Q.

@ Crystals: Einstein theory and Debye theory, Lattice dynamics,
phonons, point defects.

@ Real gases: Virial equation of state and quantum corrections to Virial
coefficients.

o Radial distribution functions: classic monotonic liquids
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Perturbation theory: Thermodynamic properties of liquids.
Debye-Huckel theory: Study of strong electrolyte solutions.
Kinetic theory of gases: Molecular collisions, Boltzmann equation.
Transport phenomena in dilute gases

Brownian motion: Modeling by differential equations

e 6 6 o6 o o

Time correlation functions: Linear response theory
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Information

@ In information theory, the entropy of a random variable is the average
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level of "information”, "surprise”, or "uncertainty” inherent in the
variable's possible outcomes.

Given a discrete random variable X, with possible outcomes xi, ..., x,,
which occur with probability P(x1), ..., P(xy), the entropy of X is
n

formally defined as: H(X) = — ZP(X,‘) log P(x;)

i=1
An equivalent definition of entropy is the expected value of the
self-information of a variable.
The information content (also called the surprisal) of an event E is a
function which decreases as the probability p(E) of an event increases,
defined by /(E) = — log,(p(E)) or equivalently /(E) = log,(1/p(E))
Entropy measures the expected (i.e., average) amount of information
conveyed by identifying the outcome of a random trial



Information
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The intuition behind quantifying information is the idea of measuring
how much surprise there is in an event. Those events that are rare
(low probability) are more surprising and therefore have more
information than those events that are common (high probability).

Shannon information, self-information, or simply the information, can
be calculated for a discrete event x as follows: information(x) = -log(
p(x) )

Calculating the information for a random variable is called information
entropy, Shannon entropy, or simply entropy.

The intuition for entropy is that it is the average number of bits
required to represent or transmit an event drawn from the probability
distribution for the random variable.



Information
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The information contained in a signal i, /; depends on the probability
of communicating that signal, p;. /;(p;) decreases as p; increases.

When independent signals i and j are communicated, p; = p;p; and
lj =1 +1;
Thus l; = —kIn p;.

The microscopic state of a thermodynamic system can be considered
as a signal.

—kIn p; is a piece of missing information in the system where p; is the
probability of the systems ith microstate.

Average missing information | = —kIn p; = —k >.ipilnp;.

Entropy of a system is equal to the average missing information
S=—kY;pilnp;



Quantum statistics

o All elementary particles with half-integral spin, e.g., electrons and
protons, obey Fermi-Dirac statistics and are called fermions.

@ Fermionic N-body wave-function changes sign upon the interchange of
any two particles coordinate.

@ Elementary particles with an integral spin obey Bose-Einstein statistics
and are called bosons. Their N-body wave-function is unchanged upon
the interchange of any two particles coordinate.

@ For compound particles when the binding energy is greater than any
other energy involved in the problem, an odd number of fermions give
rise to a fermion, e.g., 3He, while an even number of fermions give
rise to a boson, e.g., *He.

o =(V, T, )\) = My (1 £ Ae Px)FL where X = er/kT
o N = Zk HE)\E ;ék, upper sign (+) corresponds to the FD statistics.
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Quantum statistics
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— e~ -

n = m, lower sign (-) corresponds to the BE statistics.
Aeke Bek

E Zk 1+Ne Pek

pV = £kT >, In(1 £ Ae Fe)
Find an equation of state:

One should solve X in terms of N and (¢’s, i.e., deriving A as a
function of N, V and T. To derive thermodynamic variables
substituting such values of X into the corresponding thermodynamic
variables do the trick.

In the limit of small A FD and BE statistics both reduce to Boltzmann
statistics where A = N/q.

Magnitude of A is a measure of the systems quantum behavior.



Weakly degenerate ideal Fermi-Dirac gas

@ An ideal Fermi gas is a state of matter which is an ensemble of many
non-interacting fermions.

@ examples are the behavior of charge carriers in a metal, nucleons in an
atomic nucleus, neutrons in a neutron star, and electrons in a white
dwarf.

@ The total energy of the Fermi gas at absolute zero is larger than the
sum of the single-particle ground states because the Pauli principle
implies a sort of interaction or pressure that keeps fermions separated

and moving.

e Pek
o N= Zk 0 14 xeBek

o pV = kT > 3%, In(l+ Ae F)

2
® €nnyn, = g V2/3(n + n +n3) ne,ny,n, =123

— e P o 1 _ 1
° nk'_'1+Ae—5W f(e)-— 14+eBle—n) T 14eBule/n-1)

m oo 61/2 _/Be
N = [7°Q(e)f(e)de = (25 + 1)2m(38)3/2V [¥ 4550 d

13/1



Weakly degenerate ideal Fermi-Dirac gas

o pV = kT [;°Q(e) In(1 + AeF«)de =
(25 + 1)27rkT(2h'" )32V [57 €/2In(1 + Ne~F<)de

e Expanding denominator (logarithm) in terms of A\ and integration

: 1 oo (=D)AL
yields p = 753212 7
) ( 1 I+1)\/
° /\3 Z /5/2

° Rever5|on of the first series to derive A as a function of p and
substituting the result in the second series, one derives the equation of
state.

@ Assume: A = ag + aip + .;12/)2 + -
o Np=[(ao+ap+ap’+a3p’+--) — mm(a0 + a1p + ap® +
P+ galaotaptap+- )P+
2
552 =0 a3—;17§+33/2=o
A= p/\3 23/2 (p/\3) (% 33/2)(p/\3)

oDeriveaO:O aa=NMN a-—
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Weakly degenerate ideal Fermi-Dirac gas

3
ot B (N
e Virial expansion: & = p+ Bo(T)p? + B3(T)p* + - -

@ Positive value of By(T) increases pressure compared to its ideal gas

value.
¢
=0
(%51
(%51
@
la N
—— Fermi
classical
i ——— Bose
I
0 :
0 T

Te
° ~ temperature



Weakly degenerate ideal Fermi-Dirac gas

@ Quantum statistical effects decrease as the thermal De Broglie
2
wavelength A = (52 h™ —)1/2 decreases.

e ﬁﬁ:_-1+_fﬂ_+( 3W2XA3)
@ Thus (A3p) is a measure of quantum effects.

A o 3/2o—Be
o E= Y, foel — (25 +1)2n(38)*2V [ ded it =

€)3/2)\e—Be
(25 +1)2m(33)3/2V(KT)%2 [ d(Be) El 20 =

o) )+t
(25 + 1)3VKT & 3000, N — (05 4 1)3NKT(1+ A+ ---)
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Strongly degenerate ideal Fermi-Dirac gas.

e Pek _ 1 _ 1
1+ e Pek f(e)-— 1+eBle—n) = 14eBule/pn—1)

@ Ny =

e Consider the limits T — 0 (8 — o0) and T — oo (8 — 0).

1 <
@ When T < po/k, f(e) = { €=M s an step function.
0 e>puo

T - 9

1.0 o

[ X33 % Su=1000
1 — Bu=ts

€ in vnit of &
@ 0.3 1.0 ” 1.5 20 o
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Strongly degenerate ideal Fermi-Dirac gas.
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For electrons in an electron gas w(e)de = 47r(2h%)3/2 Vel2de.

In the electron sea of a metal, Considering
T =0, N =4n(23)2V [§° M2de = (28 2V (u0)*/2

. . 2
Fermi energy of the electron sea in a metal: pp = 2’;5(%)2/3(%)2/3

Use Vi na = 23.7cm3/mol, to derive Sodium electrons Fermi energy
and Fermi temperature, TF = %

Zero point energy,

E, = 47T(2m 3/2Vfuo 3/2de — 81(2m)3/2\/lu5/2 %Nuo- Thus
electrons do not contribute to the heat capacity of the metal.
Zero point pressure, pg = 47T/<T(2’")3/2 Ho e1/21n(1 4 ePlt—e))de
Degeneracy pressure: pp = 477(2’" 3/2 f”o €V2(pp — €)de =

4m () 212/3 — 2/5l00%/% = 2o/ V

Given pp, = 0.971gr/cm® and My, = 22.99gr/mol, find the zero
point pressure for Sodium.



Strongly degenerate ideal Fermi-Dirac gas.
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Use G=Nu=E—-TS+pVie,K §= %{N“ to derive zero point
entropy, So = 0.

To find corrections to zero point thermodynamic quantities they can
be written as | = [* f(e)h(e)de. E.g.,

I h(e)
N 4r(22)32VT?
E 47T(2m)3/2 V63/2
p 477(2’")3/2 V61/2|n(1 + Ae™59)
f(€) is a step function with rounded edges, therefore f’(¢€) is zero
except around € = .
Part by part integration: | = — [ f'(¢)H(e)de where
eﬂ(s 7
fo dX and f/( ) ﬁ(1+eﬁ 6lu))2
H(6)= H(p) + (€ = 1) ()= + 3(e = (G em + -+
oo 2
== [ FIH() + (e = m)(F)emp + (e = ) (G )=y + -~ 1de




Strongly degenerate ideal Fermi-Dirac gas.

o | =H(u )Lo+(d6)e pli+3 (d2)6 ulo+ -+ where
Lj = — [y (e — pYf'(e)de

o Lop=1(0)—f(c0)=1

ox:ﬁ(e—,u) L_ijoo(l)i:x)ZdX j:071727"'

o Considering the parity of the integrand L; = 0 for odd values of j.

o [ (1+eX)2dX % Thus Ly = 72(kT)?/3

o | = H(p)+ T (KTPH (1) + -+

o N = [3° ke dm(22)3PVePde = — [ F/(e)H(e)de =
4m(2m)32v g [ e 2 /3632 de =

(1— eﬁ(s n))2
8?(2"’)3/2Vﬂ3/2[1+ S(Bu) 2 4]
°M0—M[1+ S(Bu) 2 PR =l 4 (B ]

@ ﬁ =1- ﬁ(ﬁﬂ)_
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Strongly degenerate ideal Fermi-Dirac gas

Defining 7 = (Bu)~! and substituting the value of x on the right
. 2

hand side p = po[l — 5(n)* + - -]

@ Thus p changes very slowly with temperature

o Similarly E = 85 ( )3/2 VpS/2[1 + 5 (5#) +-]=
Eo(££)%/2[1 + 55 (Bu) 2 + - -]
o E=FEo[l+ %02 +- ]

w2 NkT 2

o FD statistics is applied to electrons in metals, white dwarf stars and
nuclear gases.
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Ideal Bose-Einstein gas

de Bek
o N = Zk - ﬁek — Mk = 5 Fer

opV::—szhhﬁl—Aéﬂw)

@ For ny to be positive and finite, 0 < A = ef# < ef<

Beg —Bep
o N =28 =00 + Yo s v =

Ae—B<o +or 2m 3/2\/]‘00 Ael/2e _5€de

1-Xe 70 > 1 he—

@ While in two dimensions N = % 2”’”A f6>60 I\eAiedﬁ

o Setting =0 p = §f = 2m(23)%/2 f;’;’o%d + vy In
two dimension p = & = 22—2’" i 1)‘;[35 de + A(1 5

°o &= —27?(2'" 3/2 12 /2 1In(1 — e P¢)de — L In(1 = A) where
0<A<.

e For dilute systems \ < 1 thus the ¥ i/ term is negligible in the
thermodynamic limit.
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Weakly degenerate ideal Bose-Einstein gas

e In two dimensions 75 = — 22 [ In(1 — Ae #)de — % In(1 - A)

@ Evaluating integrals as power series in A,
p=2m(33)32 [T At Pe Py (A F) de =
27T(2m)3/2 ZOO )\l—l—lf 1/2 — (I—i—l)ede:

(F)3/2 ZIOOO /\l+1(5(l+1))3/22 fooo e gy —
(“P”Z © o N ()22 = g 2(N).
= B(I +1)e — de = %
Y
° gn()‘) =1 7\"
e In 2-D, p = 200 [ Xe Py (AeTF) de =

222177 )\/+1 e —B(H+1)ede — 27rm 37004 AL (Il+1) _
5 i =
° i = 2”(2'”)3/2 Jo € Y2y 0 (Ae(;f?)m de =
2r(0) Ty g 7 e 201 =
(2m)3/2 Z/ 0 IH( (/1+1 3/22f e dx = %g5/2(>\)
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Weakly degenerate ideal Bose-Einstein gas

@ Writing X in terms of p and substituting into the ;2% expression yields
the equation of state pkLT =1- 2/5\%[)4— e

@ A negative second virial coefficient implying an effective attraction
among ideal bosons.

20
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Strongly degenerate ideal Bose-Einstein gas

o E=3VKT kg5 p(A) = 3NKT(1— 2p+---)
@ Average number of particles in the ground state ng = L/\
@ Thus for bosons 0 < A\ < 1 while for fermions 0 < \ < oo
o p= %gs/z()\) + ﬁ
o In2-D: N=A—"E-A)
(1- /\)

= pg5/2()\) - V In(1— )
° g3n(1) =312 /3% = ((3/2) = 2.612 but its first derivative diverges.

e Riemann zeta function, {(n) = Y72, ,l,,

o ph\3 = g3/2(\) + A—\;ﬁ cannot be solved analytically for A and
should be solved graphically.
° A—\;ﬁ is negligible compared to g3/5(\) except when

A=1-0(1/V)=1-a/V.
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Strongly degenerate ideal Bose-Einstein gas

o A {1—\‘3 PN > g32(1)

root of gz3/5(\) = PN pA3 < 83/2(1)
/\3
PN —gs/5(1)

0 = ﬁ — ‘; A5 (p/\ —g3/2( )) when pA3 > 2.612

V(oA —g3/5(1)) —1_ gs3/2(1)
N3pV o3

o Define Ty via, pA3 = ,0(27”””0)3/2 = g3/2(1)
W _ 1-(£)¥? T<To
N 0 T>To.

@ Condensation of the molecules into their ground state around T = Ty
is called Bose-Einstein condensation.

@ a=

()
S

g
o N =

o Define pg at constant T such that pgA3 = g3/2(1).

_ l_PpO P>p07
0 p < po-

®
=3

26/1



Strongly degenerate ideal Bose-Einstein gas

o = 7s852(N) —  In(1—N)
Lg52(A)  p < po,

@ In the thermodynamic limit 2 = L g5/»(\) =
KT nes/ 238s5/2(1)  p> po.

° gn()‘) = loil ?71
° g5(1) = ¢(3) = 1.342
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Strongly degenerate ideal Bose-Einstein gas

o v

e Vapor pressure: po(T) = %gs/z(l) — (27”")3//7#)5/2&/2(1)
2 3/245/273/2

° % = %&/z(l) = 2%g52(1)

@ Compare to Clapeyron

dp _ AHeond _ AHeond . AHeondpne _ AHeonapo _ AHCO"dg3/2(1)

dT = TAVend ~ TVmne TNa - TNa - N3TNy
5 gS/z( )
e AH SkT
cond — 83/2( )
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Strongly degenerate ideal Bose-Einstein gas
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E=Y, 2Tk (2641)2m(23)32V [ dedlet — 3hTV g ())

1-)e 1-)e
E _ gy n(A) T > To,
N gk/\3 g5/2(1) T < To.
9 83/2(2)
% _ { 4 A3 g5/2( ) 4g3/2( T> T07

L ¥mgg 5(1) T < To.
Condensation due to the effective interaction through the symmetry
requirement of the N-body wavefunction of the system.

*He has a spin of zero and exhibits a lambda transition.



An ideal gas of photons: Black body radiation

o E(x,t) =sin[2%(x — ct)] = sin(kx — wt) is a traveling wave.
@ Describes a photon with energy ¢ = hv = hw = hck and
momentung = hk
@ ¢(x,t) = sin(kx — wt) + sin(kx + wt) = sin(kx) cos(wt) —
cos kx sinwt + sin(kx) cos(wt) + cos kx sin(wt) = 2sin kx cos wt
e Boundary condition - k=" neN
@ Harmonic wave traveling in the positive x-direction:
E(x,t) = eilkx—wt)
o Stationary wave: E(x,t) = e/(k—wt)  gillxtwt) — peikx cog(t
e In3-D, E(r, t) = 25ei(kT=wt) js 5 traveling wave in direction k.
@ Polarization vector ¢ is perpendicular to the wave vector k.
o For nodes to vanish at the boundaries of a cube k = %ﬁ,
¢ = hc|k| = hck and momentum = h|k| = hk.
° k= %(ni + n)2, + n?)
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An ideal gas of photons: Black body radiation

@ Number of wavevectors with wavenumber < k: (k) = %(%)3 = ‘6/—"23.
s

@ Number of wavevectors with wavenumber between k and k + dk:
2
w(k)dk = 92 dk = Y& dk.
@ There are two polarizations corresponding to each wavevector, thus
2
w(e)de = 71/2663‘;’3

o E({nk}) =>4 exnk =, hckny.

° QV.T) =10y e PE(n}) — > ine) e B2k ek

0 QV. T) = X0y Mele ™) = M Y, (e775)™ = Myt

e NQ(V,T)=—->,In(1—eP) = -1 [*eIn(l — e 7)de =
=l [T T e de = S 25 L = #‘gﬁ)_@g(@ where
¢(4) = 7*/90.

m2V(kT)*
[*] E: sz(aénTQ)v = 15((;,“:)3) .
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An ideal gas of photons: Black body radiation

@ Number of gas molecules striking a surface per unit area per unit time
= pv/4
e Energy incident per unit area per unit time on the wall = cE(T)/4V

@ Stefan-Boltzmann law: Energy radiated per unit time,

_ cE _ m(KT)* _ 4
R=14v = %omez =0T
Q(kT)4

4 T
o p=kT(%32)r = %“4) = 2(hc)®

2 3
o S =kinQ+ kT(2nQ), = mAED)

o Nyy=E — TS+ pV = 0 thus p = 0 for an ideal gas of photons.

@ When the number of particles is not conserved mA <> nA, in
equilibrium AG = mG — nG = (m —n)G =0. Thus A = 1.

0 InQ=-Y_In(1—e M) thus

—Bhw Vh
E= Zwl e~ ﬁfw:W OOO eﬁh“’ 1dw
e Noting £ v = fo T)dw derive the black-body distribution law
plw, T)dw = 7r2c3 e,szw 1dw
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Kinetic theory of gases.

@ Concentration of molecules: n = v' characteristic distance between

the molecules: ry = n~1/3,

@ Average number of collisions per unit time = volume of collision
cylinderx molecules/unit volume = mp?¢n.

Callision /

) S
.;____.-' h\"",\_\_\___\‘ _F'_'_,__-'-
— \
- Free path
@ Mean free path of a molecule? A = —5— = Assuming

TpcCn 7rp n’
p=0~3x10"8 cm, A ~ 107> cm explains poor diffusion and
thermal conduction in gases.
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“ (vt >
..... € 5 P (x miis/- §
collision hit | b F A"
diameter dlé \ I\,__.-/ '|l'\‘. II|
| e )
i :: hit ) II\—J/I r,/" i
\/.-"l o \‘ﬁ—-”"; | hit | ll'\__J. rmiss
collision cross  lmisel) o B

; ek
° section, o = ad

@ Velocity and speed distribution functions:
dN = NG(vy, vy, vz)dvidv,dv;.

e Normalization condition: [ [ ™ G(vy, vy, vz)dvcdv,dv, =1

o G only depends on speed v =, /v2 + v2 + v2

o Differential volume in spherical coordinate d3v = dv x vdf x vsin0d¢
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° d>:deVM—nfo vdv ﬂ/deSinecosﬁfozﬂd(ﬁ:n;
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dNy 9.6 = NG(v)v?dvdQ, where dQ2 = sin0dfd¢.

Number of molecules within a spherical shell

dN, = NG(v)4rv2dv = Nf(v)dv

Normalization: [ f(v)dv = 1. Also for a differential volume
element, dN, g s = Nf(v)dvi2.

Molecular flux: ¢ = 4%

dNpy 4 coming from direction ©, ¢ within solid angle d€2 around dS.

dNjy 4 molecules withing the slant cylinder with base dS and height
vcosfdt. dN, = ndSv cos 0dt

dNy 9.5 = dN,f(v)dv92 = ndSv cos 0dtf (v)dv="59092

dSdt 4



dN,,
e P= m f2mvcos€ d53t¢ =
2nm fo 2dv— fgr/ df sin  cos? 6f 3nmv2

e PV = 1/3va2 = NKkT — 1/3mv2 = kT
o Equipartition theorem

@ Heat capacity

° G(v) = G(y/vz +vi +v2) = g(w)g(vy)g(vz)
o dN,, = N[[ [* dv,dv.G(v)]dvi = Ng(vi)dv
G

o InG(v) =Ing(v)+Ing(vy)+Ing(v,) — ((; )g)‘fx = Glév)"—‘j = i,,((“//:))

1G6G(v) _ 18w _ 18M) _ 1g&(w)

v ¢ T v glvx) = v ogly) = vz g(v)
1G(v) 18 (w) _
ol év) = —2k, - gg(vvx) —2k

g(vy) = AL/3o—kvg
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(]
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f(v) = 4mv2Ae ™ [ f(v)dv =1 = 132 Ak=3/?
KT — V2 — [ f(v)v2dv = 32 Ak—5/2

k=g A= (2= ()"

Maxwell-Boltzmann distribution: f(v) = (L)3/247rv2e_m"2/2k7—

27kT
g(v) = (g )2 em /KT

Vims, V,  Vmp

Effusion, PAS

® = [dvd,, where &, = Zf(v)
Vef,mp>

Diffusion is the movement of a substance from a region of high
concentration to a region of low concentration without bulk motion.



Molecular diffusion

Figure: Molecular diffusion taken from https://en.wikipedia.org

@ Fick’s first law: the diffusion flux is proportional to the negative of the
concentration gradient: J=—-DVn, Ji= —Dg)’:_.
@ Transfer of a physical quantity N through a small area AS with

AN = (J,v) AS At.

normal v per time At,
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https://en.wikipedia.org

Molecular diffusion

. . . 2 — 2
Dimensional analysis: D(<Z~) oc A&(<7-)

The rate at which molecules cross a unit area in one direction is nc/4.

Average vertical distance of the crossing molecules from the surface

[ dvdfdgrcosBdN, g5 [ dvdOdecosOndSy cos Odtf (v)dy 6200
J dvdodgdN, ¢ 4 - fdvd@d¢nd5vcos€dtf(v)dv%

[ dvd0dg¢v cos? Odtf (v)dvsin 0dddp 2y

J dvdOdv cos Odtf (v)dvsin0dode ~— 3

A

o Number of molecules crossing from above £[n;(0) + %)\ﬁrg]. Number

. c 2y An;
of molecules crossing from below [n;(0) — SAZ%].
_ 1 —An,‘__ An; _ 1y =
o Net flux = —3Aczj = —DZ4. Thus D = 3Ac.
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Viscosity coefficient

[~ Moving Surface

d - Distance from Static Surface

- static Surface

Figure: Schematic for measuring viscosity courtesy of Hydraulic Institute
http://pumps.org
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http://pumps.org

Viscosity coefficient
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Dimensional analysis for viscosity coefficient: force/area = —n%.

Thus 1 (gr/s cm). Achieved by writing n o nmcA

Molecular origin of viscosity is transport of momentum among fluid
layers.

Average values of transported momentum two third mean free path
above and below the reference plane is, respectively, m(u + %/\%)

and m(u — 2\ 24).

Multiplying by n¢/4 one finds momentum transport in each direction.
momentum transport rate per unit area = —%nmf)\%
n= %nmf)\



@ To determine thermal conductivity we consider a reference plane
perpendicular to the temperature gradient. At this plane average
molecular energy is u=1¢, T.

o Average energies %)\ above and below the the reference plane is
respectively ut = ¢, (T + 2A%%) and u™ = ¢, (T — 30%L)

@ rate of energy transport per unit area =

né, — _nc 4+ _ _1,.= AT _ _ AT
g U aUT = —3nCc A\ xg = —Kag

@ K= %nfcv)\
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Density matrix
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A density matrix is a matrix that describes the statistical state of a
system in quantum mechanics. The density matrix is especially helpful
for dealing with mixed states, which consist of a statistical ensemble
of several different quantum systems.

State vectors, also called kets, describe only pure states, whereas a
density matrix can describe both pure and mixed states.

Describing a quantum state by its density matrix is a fully general
alternative formalism to describing a quantum state by its ket or by its
statistical ensemble of kets.

It is often most convenient to use density matrices for calculations
involving mixed states, and to use kets for calculations involving only
pure states.

The density matrix is the quantum-mechanical analogue to a
phase-space probability measure (probability distribution of position
and momentum).



Density matrix
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Mixed states arise in situations where the experimenter does not know
which particular states are being manipulated.

Examples include a system in thermal equilibrium at a temperature
above absolute zero, or a system with an uncertain or randomly
varying preparation history.

Also, if a quantum system has two or more subsystems that are
entangled, then each subsystem must be treated as a mixed state even
if the complete system is in a pure state. The density matrix is also a
crucial tool in quantum decoherence theory.

The density matrix is a representation of a linear operator called the
density operator. The density matrix is obtained from the density
operator by choice of basis in the underlying space.

Both matrix and operator are self-adjoint (or Hermitian), positive
semi-definite, of trace one, and may be infinite-dimensional.



Partition function in terms of Density matrix

o Hi; = Ejpj thus F/"qu = EM
o e My; = (Eioo Ay = Yooy SRR Ay =
E:iio(nu E"w =€ ﬂﬁﬂb
° wjfe_fBij = pre PEq; thus e P8 = [yre PHy;dr.
° Q= Zj e P = Ejf¢7e_BH¢de = Zj(e_ﬁH)jj = Tr(eFH)
If j =", ajn¥n then aj, = [Yho;dr
Zn JnaJ” =1
Also 1hs = 37, bsede where by = [ ¢i1)sdT = af; and 3°, b bjn = 1.
° fgbj’fe_ﬁqudeT =2 mn imain€ “PEn [t ppdT =
Zm,n afmaj"e_ﬂEn mn — Zn JnaJ”e PN

o Thus ZJ- fqu’fe_BHgbde =3 e PEr = Q, i.e., trace is independent
of the basis.
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Average value in terms of Density matrix

- > Me

o M= 72 ’

°o Y iMiePE =% e ﬁEfw*/vw dT_E fw*/\/le PEigpdT =
> [ Me~ ﬂ”wjdf—z (Me=BH); = Tr(NMe=5H)

W= Tr(Me—AH)

Tr(e=BH)
@ Define, p = Tr?jgﬁ) conclude M = Tr(Mp)
e Corresponds to M = L] dpdaM(p,q)e 77

f“.j‘dpdqefﬁH(nq)
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Another representation for delta

@ Assume {uk(x)} to constitute a complete basis.
( ) >k akuk(x ) where a; = f?,!) (x)dx
= 2k S () (x) e upe(x de’¢ )k vk (X ) ui(x))
° Zkuk( X uk(x )—5(X—X)
o Eg., _
uk(x) = e ™ §(x —x') = & [ dke k=) = L f dpe~ 7P(x=x")
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The classical limit of canonical partition function

e Q= ijqﬁ}ke_ﬂ""gbjdr
@ Should turn this expression into an integration over phase space.
e Consider eigenfunctions of the momentum operator, -iAV:

u(py--+ ) = e The P
(] —ihV,-u = pju
@ Neglecting the symmetry requirement of the wave-function

i N
dj(rr, o) = [ [Ai(pr,- -+, pi)en Zk=1Pelidpy - dpy
_isN

° A_](pla . 7PN) — Wffgbj(rla . ,rN)e th:lpk rkdrl .. .drN

=Y [ [6itn ot puye et ey -y

* _isyWN !
— ;,3/\//"‘/[25251(”1"" )G ry)]e LSNP,
J
X e*BI:Ie%‘L ZkN:I Pk-rkdpl .. drNdr{ . dr’/\[
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The classical limit of partition function

° Q= ﬁ [ e Lk Peetkg—BH o7 i Piclkdpy - - - dry

o Define e et TiaPinc — e=BH et SiaPetiy(py, -, 1y, B) =

F(pi, - ,rn, B)

Q= h3’V f fe FHw w(p1, -, rn, B)dpy - - dry

Notlng that H=U+K=U— S 21 V2

o e Plen Ticipr — (1— BA+ S A2 — M3 4. )en Diciper —

eh S — B(U - Y, zﬁ,Vz)ef Zicapen 4 B(U —

1 2m VO = oo V2)]eh St pere _ & []e%zﬁzlpm P

er Db U+ 5, ek THarn + Z(U- 5, £ VI(U+

ZI 2m,) et Tt P ] — %[]en SiaPere 4L =

e TPt — (H)eh i e %2["/2 ~ 1 2 LVIU-Y, 2eViU-

pet Stapen] - Bk Shhamen | (1 g4 B S
e S Pk (1 4 hW') = ePHek SN e n(1+ hW’)
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The classical limit of partition function

° gg = aﬁe —BH o Sy Prerk — a@(l —BH—I— B2h2 .)eézlkvzlpk-rk -
—AF
@ Bloch differential equation with the boundary condition
F(8 = 0) = ef Thapen
° W(p17 Tty rNaB) = Z(/)io th/(pla R rN?B)
o F(Pl, ey rN,B) = e—ﬁHeé Zzlzlpk'rkw(pl, e rN»ﬁ) =
e BH i Xila Pt o wi(pr, -+, v, B)
o 55 = —AF, thus %[efﬁ"’e% SR Penc S Rl (py, -, B)] =
—Ale P ei T P S Bl wy(py, -, B)]
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@ Normal coordinates allows us to treat a crystal as a system of
independent particles.

@ Consider a one dimensional lattice with the potential

U(é-lvgz"" 7€N).
o Ut 60 = U000+ S (0
2 Zld(ag,agj )05 g_] = U(O, p) + %ZIJ kuglf_[ +

@ Define mass weighted Cartesian coordinates as
= /mixi, G2 = \/miy1, g3 = \/mz, -+
(o)
qi0q;
o Diagonalizing this matrix the 3 smallest eigenvalues correspond to
translation, while 2 or 3 next lowest frequencies correspond to
rotation.

@ Define mass weighted Hessian Ky =

@ Remaining eigenvalues correspond to the force constants of the
molecule (crystal).
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Normal coordinate analysis (diagonalizing the Hessian) results in 3N-6
(3N-5) uncoupled force constant, k; and corresponding frequencies

v = g(u )1/2
Normal mjodes are concerted harmonic motion ohf alzlﬂ’_che atoms.
Q(p, T) = eV p)/kT|—|3N 6qwb1 _ |—|3N 6(1e: jh/y/ _)e=U:p)/kT
—InQ = U(Op) +Z [|n( —huj/kT)_i_% —
U(o; —hy
52 +f0 In(1 — o IAT) | 2 g (v)dv
fo v)dv = 3N
l/e—hu/kT v
E = U O,p Jrfo feer h ]g(l/)dl/

e—hv/KT

C, = kfooo(hy/kT)zmg(y)dV
Equipartition of energy predlcts a value of 3R for crystal heat capacity,
known as Dulong and Petit law.

T3 law, limr_o C, x T3.

Einstein assumed that g(v) = 3N§(v — vg)

C, = 3Nk(he)2 el — 3NK(9E)?

(l_e—huE/kT)

@E/T
(1— e_@E/T)2



Cp (cal/mole-deg) 3|

1 1 L 1 1 1 1 I
0 01 02 03 04 05 06 07 08 09 10

T/0g

Figure 11-4. Comparison of the experimental heat capacity of diamond with the prediction based on
o the Einstein theory with © = 1320°K. (From C. Kittel. Solid State Physics, 3rd ed.

o lim7_o C, = 3Nk(8E)?eOe/T

@ A law of corresponding states for heat capacity.
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Crystals: Debye theory

@ Debye introduced a model for the specific heat of a material that
extended Einsteins approach by formulating the lattice dynamics in
terms of sound waves

@ Debye theory assumes the crystal as a continuous vibrating medium.

@ Standing wave described by the imaginary part of
u(r,t) = 2Aek7 coswt.

@ For a cube of length L, the boundary condition in terms of the
wavevector (phase variation for a plane wave per unit length) would
be k = Tn

@ The magnitude of the wavevector is the wavenumber,

k? = (T )2(n2 + n + n2)

o ®(k)=T (Lk)3 Vi3

62

o w(k)dk = L2 dk = Yk
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Crystals: Debye theory

o Using k= 2F = 22 g(v)dv = ‘*’T‘/i\gl’zdy

v
@ Since two traverse and one longitudinal wave correspond to each
wavevector, g(v)dv = (5 + J5)4r Vv dv
t !

o Average velocity, % = % + % thus g(v)dv = 12‘%\/1/2d1/
0 t / 0

@ Since there are 3N vibrational modes, we introduce a cut off frequency

called Debye frequency vp,
b g(y)dl/ =3N= [)° 12”V1/2d1/ = 3VVD thus vp = (4 2N 3w

2()d Wl2dy 0<v<up
vV = D
0 vV >Vp

55/1



Crystals: Debye theory

OO o—hv /KT
CV:ka hV/kT) Wg(y)dl/—

7hu/kT

kf hV/kT m 3V2dV

Cv = INk(L)? [2o'T (e;%)zdx where x = hv/kT

Debye function, D(y) = 3y° [y (X&ydx, so Cy = 3NKD(T/©p)

o lim7 00 feD/T (e’§4el)2d = faD/T x%dx = 3(%)3 thus Cy — 3Nk
e lim_ faD/T e§4el fo ( X 1 X dx = 4n* /15 Thus

Cy — HT“Nk(T/@D)

@ A law of corresponding states for heat capacity.

56/1



Crystals: Debye theory

@ Elemental Debye temperature taken from Wikipedia:
Aluminium 428 K Beryllium 1440 K

Cadmium 209 K Caesium 38 K
Carbon 2230 K Chromium 630 K
Copper 343 K Germanium 374 K
Gold 170 K Iron 470 K
Lead 105 K Manganese 410 K
Nickel 450 K Platinum 240 K
Rubidium 56 K Sapphire 1047 K
Selenium 90 K Silicon 645 K
Silver 215 K Tantalum 240 K

Tin (white) 200 K Titanium 420 K
Tungsten 400 K Zinc 327 K
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Crystals: Debye theory

1.0
+
08k Debye curve
0.6
Cyl3R
04k a Al©®p =390°K
+ Cu®p =315°K
oo / o Pb @ = 88°K
A 1 1 ! I 1 I 1
0 0.4 0.8 1.2 1.6
7/0p
Figure 11-7. An illustration of the law of corresponding states predicted by the Debye theory. (From
[+ F. Mand|, Statistical Physics. New York: Wiley, 1971).
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Crystals: Lattice dynamics
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The subject of lattice dynamics is the study of the vibrations of the
atoms in a crystal.

The propagation of sound waves in crystals are a practical example of
the role of lattice dynamics, as also is the interaction of materials with
light.

Lattice dynamics also gives us properties such as thermodynamics,
superconductivity, phase transitions, thermal conductivity, and thermal
expansion.

atomic motions are frequently found to be adequately described as
harmonic traveling waves. Each wave can be fully characterized in
terms of its wavelength, A, angular frequency, w, amplitude and
direction of travel.

w is a function of both k and the forces between atoms, and the
amplitude of any wave is a function of k and temperature.

In 1912 Born and von Karman created the model for lattice dynamics
that introduced all the key components that are the foundation of the
modern theory of lattice dynamics



Crystals: Lattice dynamics
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it was shown that atomic vibrations had a significant effect on the
intensity of Bragg reflections in x-ray crystallography, which had
quickly become the established technique for deducing the atomic
structure of materials.

early 1960s saw the development and refinement of the use of neutron
scattering to measure vibrational frequencies, and in particular the
development of the triple-axis spectrometer as the primary piece of
instrumentation

the development of the computer and programming languages, which
on one hand made routine lattice dynamics calculations feasible, and
on the other hand enabled experiments to be automated.

Inelastic neutron scattering enabled the measurements of the
frequencies of lattice waves for any chosen wave vector, w(k).

In the harmonic approximation Hamiltonian for a 1-D lattice consisting
of a single type of oscillator, H = Zszl 22+ Zszz L& — &-1)?
where ¢ is deviation from equilibrium position.



Crystals: Lattice dynamics
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harmonic approximation is effectively the only model for lattice
dynamics that has an exact solution. it gives us many features that
survive addition of higher-order terms. These include the link between
vibrational frequencies, wave vector and interatomic forces and
thermodynamic properties of materials.

the harmonic model is easily adapted to incorporate quantum
mechanics.

not explained by the harmonic model include properties such as
thermal expansion and thermal conductivity, and behavior such as
phase transitions.

méj = f(§jr1 + -1 — 2§))

Assuming &;(t) = e'“!y;, where y is the amplitude of lattice
vibrations, gives difference equation —mw?y; = f(yj+1 + yj—1 — 2Y;)
Assuming y; = A/ and A = €/ results in

—mw? = f(e'® + e/ —2) = f(2cos ¢ — 2) or w? = % sin?(¢/2)

w = Wmax| sin(¢/2)

&(t) = e@tH%) which repeats after &j = 27 /¢



Crystals: 1-D Lattice dynamics

® \=adj =2ma/¢ thus ¢ = 2wa/\ = ka

° gj(t) _ ei(wt-i—jka)

@ Dispersion curve is frequency vs. wavevector w = wWmax| sin(ka/2)| in
the limit of very long wavelength w = wmaxka/2, i.e.,
% = A\ = wmaxa/2 = constant velocity.

o In general, phase velocity, A\v = & = “22x|sin(ka/2)
the cause of light dispersion by a prism.

@ Non-repetitive angular frequency is derived from —2 < k < 7 since
there is no difference between k and k + 27n/a.

e Periodic boundary condition &;(t) = & n(t) — e =1 — k =
2mj/Na — j = +1,42, -+, £N/2

= c(k), this is

. N/2 hwj  _ pNJ/2 Tw; . Na pm/a hw(k)dk
°o E= Z_j:—N/2 Phwi 1 7 Jj=—N/2 eﬁhwj_ld-j — r Jo eBhw(k) _1
_ dr2an-1r w _ 2dw
° dk - dw[a sin (Wmax )]dw - a(wfznaxfwz)l/2
_ % Wmax hwdw
° Thus £=50Jo™ @omijiut,, —o772

hl/e—hu/kT

e Comparing with E = fooo[w + Bg(v)dv
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Crystals: 1-D Lattice dynamics

° 8W) =0 o

e dv/dk is group velocity of the wave and represents the rate of energy
transmission of the wave.

@ For a continuum group velocity and phase velocity are equal and
constant.

@ 1 D lattice with aIternating masses my and mo.

u u

\ ]r! 7:! \HH

JJJJJJ

° = Zj:l[%gzj %ézj_ﬂ +3 Zj:l[(&j - ‘521'—1) (‘521'-&-1 - 521)2]
- 2 _ f . 2_ 2 4mymysin® ¢\1/2
° Defmmg wh = 4, one derives w* = w1 & (1 - W) /2]
@ High frequency branch is called the optical branch while low frequency
branch is called acoustical branch.
@ Lattice vibrations of a salt produce a vibrating dipole moment which

631 In turn produces an infrared absorption band.




Crystals: Phonons

hv;
E({nj}) = z}fl hv(nj+ 1) = Z | hujn; + Z3N hy _
2132’1 hyjnj + Eo

@ Interpret as the sum of independent particle energies.

@ Occupation numbers {n;} completely specify the state of the system.
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Treat vibrations of the lattice, quasi-particles known as phonons, as an
ideal Bose-Einstein gas.

Phonons are quanta of lattice vibrations as photons are quanta of
electromagnetic vibrations.

ﬁ‘_ )\eiﬁej . 1
ST e P T A1Ph

When the number of particles is not conserved mA <> nA, in
equilibrium AG = my — npp = (m — n)p = 0. Thus A = 1.
ﬁ‘ = )\eiﬁej = 1 = 1

I 1ae Y /\fleﬁef 1 P9 1

Cy =



Crystals: Point defects

(]
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Conductivity, color, mechanical and elastic properties of crystals and
diffusion in crystals depend on crystal defects.

A missing atom or ion is called a Schottky defect.

€s is the energy required to bring an atom from interior to the surface.
A=E —TS =nes — kT In n,(N ol

(g—’s)r =0 — n~ Ne /KT

Frenkel defect is displacement of an atom from a lattice to an
interstitial position, call energy cost ¢;.

If N is the number of lattice sites and N’ the number of interstitial
sites A(n) = ne; — kTIn[n, N n), n,(,C’,/ln ,

(22)7 =0 — n =~ (NN')Y/2e=<1/2kT

Schottky most common in Alkali halides, while Frenkel in silver
halides.

Schottky defects lower the density.




Crystals: Point defects

o Defects change conductivity.
@ Probability per unit time that an atom pass over a barrier is
p A Ve—e/kT

@ Two parallel planes of impurity atoms separated by lattice constant a.
C impurity atoms on one plane and c+a(dc/dx) on other

pa(dc/dx) crossing between these planes. where c=na
0 j=—p(3)
o Fick's law j = —D( "), thus D = pa? ~ va?e /KT

@ Color center
o F-Center
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Liquids: A hole theory, theory of significant structures

@ In 1930's Eyring considered a liquid as a solid with many vacant sites.

@ Partition function is assumed a product of a gas like and a solid like
partition functions.

@ V is liquid volume while V5 is solid volume.

e N(V — V5)/V is number of gas like molecules while NV;/V is the
number of solid like molecules.

° Qg = [(2#;,”4)3/2 Ve]Ye /N ! =

I( 27rhm2kT)3/2(V . VS)]N(Vst)/V[N(VV*Vs) !]fl

@ |l.e., molecules beside holes behave as gas while molecules surrounded
by other molecules behave as solid.

e/kT

o Positional degeneracy causes 1 + npe™ positions to be available to

each solid like molecule.
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Liquids: A hole theory, theory of significant structures

(]
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Use Einstein approximation for the solid like atoms
_ o= U(0,p)/kT[_e=®E/2T 13N,
Qs = e~ V02V [m]

U(0, p) = Ns¢o/2

_ (e 90)/2KT g=30g /2T 1 py eEs /KT N,
QS - [ (1—e*eE/T)3 ] - [(1—e*9E/T)3]
_ Es/kT —e/kTYINVs/V
Qsl — [(1_2_95/7)3(1 + npe €/ )] s/

eEs/kT

Q= [m(l + nhe_€/"T)]NVs/V[(27rzv#)3/2(V _
Vs)]N(V_VS)/V[M!]_l



Liquids: A cell theory, Lennard-Jones Devonshire theory
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Lennard-Jones Devonshire (LJD) cell theory is a lattice approximation
to the liquid state.

Historically LJD was the prototype microscopic model to predict the
location of the liquid-vapor critical point of a simple fluid and, as
such, is widely employed as an introduction to mean field theory in a
number of standard texts and papers.

particles are considered to be localized in singly occupied cells,
centered on the sites of a fully occupied lattice (of some prescribed
symmetry), within which they move independently.

Consider liquid as a set of molecules each moving in its own cage.



Liquids: A cell theory, Lennard Jones-Devonshire theory

] Vf = f e_[¢(r)_¢(0)]/k7—dr

0 g= (27rka)3/2V

0 Q= N0O /QI‘T[(ZW’"’(TP/2 V¢]N similar to Einstein partition
function Q = e~ N¢(0 /2kT[( )3V

@ Assuming
00 —fr2 s
( ) (Z)(O) 2r Vi = fO Arrle /2de — (2 ;<T)3/2

o a= (TP = () where v = &

e For an ideal gas S = Nk + N/<In[(2’”"k7—)3/2 ve¥/ ] f each atom
where confined to a volume V/N, Q = (2”’"”) ( )V and
S = NklIn[(2mRT )32 V),

@ Communal entropy of a gas is Nk.

@ Partition function is multiplied by e" to introduce communal entropy.
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Liquids: A cell theory, Lennard-Jones Devonshire theory

e Q= e—N¢(0)/2kT[( 27rhm2kT)3/2 er]N

@ Assume all C nearest neighbors to spread uniformly around the center
of the cage in a distance a determined by number density, e.g., for an
FCC lattice C=12 and a3 = ﬂ%

Figure: Taken from arXiv:cond-mat/0111240v1
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Liquids: A cell theory, Lennard-Jones Devonshire theory

C 2ra’sin0do __

47a2

== C sinfdo

° u(R)§ sin0d0 where R? = r? 4 2> — 2ar cos
=5 J5 u(R)sin6do

° Lennard—Jones potential u(R) = (‘5 )12 — 2¢(

_ C
fo V r2-i-a2 2ar cosG)

ﬁ sin 6d6 _ %6 [T sin 6d6
Ce[ 2 fO (r2—|—a2—2;arc059)6 rr fO (r2+a2—2arc056)3]

— 2arcos @ and dx = 2arsin 0d0,
_ Ce *6[1 72|(r+a
2X

@ Assu

cb()

0

° ¢(0) =

75’ r+a 2]

ming x = r*> + a°

Cezar[r*12 f(r"‘a dx _ %6 f(r+a)2 dx

r—a)? x%
Ce *6

4ar

12 26(

(r—a)? x3
r*6

1
[(r+a (r—a)* 5

e d :a/r and r’:r/r*

° ¢(r') =

72/1

%)6 where € is the
potential well depth and r* is the equilibrium distance of molecules.

*

V'r24+a2—2arcos )

Zar
1

(r+a)io

1

4a r’ [(r '+a’)*

_ 1 _l( 1
(r/_a/)4 5 (r/+a/)10

- (r/_a/)m

6] sin 0df =

(r—a)?

a0

)



Liquids: A cell theory, Lennard-Jones Devonshire theory

4a'd(r')/Ce
500000} |
400000F
300000F |
200000F II
/

100000f .
y
i

02 04 0.6 08

Figure: Cage potential deduced from a 12-6 potential

o Vr=

r* fo e [W[(r/+a/)4 (,/,a

Jo e lot)- ¢(o>1/krd,_

/)4 5(r+a

- (,/7::/)10 )]]/der/
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A molecule in an Electric field

o dw=NYmde=NY,m(53)dV = —N Y mpdV = —pdV
o 1z = —(9&)v and dw; = —puj.dE,

@ The electric dipole moment is a measure of the separation of positive
and negative electrical charges within a system i, = Zj T bjz
Oe;j —
o Jw = Zj Wj(a—z-’z)vdE = —ji,dE,
o dw = —Nji,dE, = —M,dE,

@ An object with an electric dipole moment is subject to a torque 7
when placed in an external electric field. The torque tends to align the
dipole with the field. 7= (i x E

o ug=—ji- E and Hind = aE,
° up,= fo u,,,ddE’ —9E?
° u(E) E— %E2
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A molecule in an Electric field

@ For a molecule in an external electric field use perturbation theory.
(H—j-E)Yp=ep— (H— - E)p = extfx.

° w/((o) and 65{0) are respectively wave-functions and energy levels of
molecule in the absence of external electric field.

° W|thout Ioss of generallty assume electric field to be in the z direction
Ve =v0) + o VE + oD E2 +

° ekzei)—i-eg()Ez—i—eS()Ezz-i-

o (A—pE)(wf) +wk”E +YIER ) =
( (0) (1)E + 6(2) E2 )(1/}(0) + 1/1(1)E + wl(f)E2 4o )

° Hw(l)Ez —u, E, /(< ) _ (0)¢k E, + (1)E (0)

o [dry Ay — [ dryy] uzw“”
fd ¢(O)* (O)wk +fd 77/}(0)* (0)
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A molecule in an Electric field

— [ drul p) = [ drp e u — V) =
—fdw O = = < klilk >
o [dryi®™ Ay — [ druf *azw”)
[ dr ¢jg0)* (0)% + [dr ¢<0)* 1) ©)
o & [dryl®” fd qp P =€ [ drpl ) -
(e~ (0 fd Y =< j|fizlk >.

, . _ ) o <jlhe|k>
o le., wk = Zj;ék Ck_/wj , where Ckj = (6(0)7620))
J

° H'(/)(2) E22 ~ Ez27w[)/(<l) — (0)¢(2) Ez2 (1)¢/(<1)Ez2 + 622)EZ2¢I(<0)
° fdwi"’*Hw(” J dryf *ﬁzw“)
[ dr e + [ dry P Dol + [ drpl D v
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A molecule in an Electric field

° _fd ¢O)*Azwk (1)fd 1/1120)*1/}/(}) _'_65(2)

S( dew(O)*ﬂ ¢k1) (1) dew/((O)* (1)

o ) = =% uley [ dTuf *ﬂzﬂ)( ij < klpzlk > [ drp o]
(2
€k

2|k 0)* A 2|k
° = _ J¢k[<1|u| > [dr 1/1() zw _ <.J|#| >) < Klpzlk > 64
o P = _3v w
k ik (D0

@ Assume the molecule in its ground electronic state, 1. Define

L A . |<v|fz|i>|?
=< 1/]|:U’|1/} >and o =2 Zjeexcited electronic states (5)

€.
J
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Ideal gas in an electric field

o Q(N,V, T, E7) = ALTEN
@ E* is the local electric field around each molecule.

@ For a linear molecule

. PX+Py+Pz 5 ”¢
q(V,T,E") q"’bh5 KT @ 2IkT 21 sin2 OkT

BE* cos® «E

X e KT eWdpxdpydpzdxdydzdpgdp¢d9d¢

E*z/szV(47T IkT) e~ ®vi/2T  sinh(uE*/kT)
A3 h2 I = e=©ui/T" (uE*/KT)

o M= Njiand dU = TdS — pdV — M- dE* thus
dA = —SdT — pdV — M - dE*
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Ideal gas in an electric field

Average moment of the system,
M = _(885\*)’\11\/77— = kT(aall'l'*Q)N,V,T =kTVe«InQ
o p=—(§0)=—kT(°%52)  pV = NkT

,—\
u
x |3
x
-

o M= Nji= N(aE* + uL(uE*/kT)) where Langevin function

L(y) = coth(y) — ;

jgre“E*C“e/chosesh10d9 .

@ E = :U’COSH =p foﬂ eHE* cos0/kT gin 0d6 - 'ME(ME*/kT)

i—0 < E*>0
1D =3.336 x 1073°Cm
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Matter in an electric field

80/1

A parallel plate capacitor with charge densities +0 and —o.

' - [LE.dai=24
Gauss's law: [ E - d& = o
O

Eo—a.

H _ Q _ oA _ €A
Capacitance Cp = 7 = Ei=Y
After introducing a dielectric material C = ¢,Cy, E = Ep/e,.

Polarization density or electric polarization is the vector field that
expresses the density of permanent or induced electric dipole moments
in a dielectric material.

When a dielectric is placed in an external electric field, its molecules
gain electric dipole moment and the dielectric is said to be polarized.

The electric dipole moment induced per unit volume of the dielectric
material is called the electric polarization of the dielectric, P.



Matter in an electric field

Charge

+Q -Q
Electric Plate
field E area A

e St
° Plate separation d
Figure: Taken from en.wikipedia.org/wiki/Dielectric

o Electric displacement field D = ¢gE + P = €E
@ The displacement field satisfies Gauss's law in a dielectric:
V-D=p—pp=ps
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en.wikipedia.org/wiki/Dielectric

Matter in an electric field
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The flux lines of D must begin and end on the free charges. In
contrast py, is the density of all those charges that are part of a dipole,
each of which is neutral.

In a linear, homogeneous, isotropic dielectric with instantaneous
response to changes in the electric field, P depends linearly on the
electric field, P = ggxE, where the constant of proportionality x is
called the electric susceptibility of the material.

Thus D = £o(1 + x)E = €E where € = €ge, is the permittivity, and
€, = 1 4 x the relative permittivity of the material.

P, = % =eo(e, — 1)E;

The net charge appearing as a result of polarization is called bound
charge

Polarization only gives rise to surface bound charge density.

op = Aoyt - P



Matter in an electric field

M = N(a + £2)E*

@ For an ideal gas E* =

=¢E

i)

e—1 _ p 1]
@ Thus ===~ (a+ 73kT)

2
° ¢ —1=L(a+ §7)

E _ E(0) 2
iy =59 (g + 4 )E

@ According to classical electrostatics P = ep(e, — 1)E
Nii 2\
o P= =pla+ 54F)E
@ Local field problem: determination of the relation between E* and E.

@ Semi-molecular theory: nearby molecules are considered as molecules
while the rest of the dielectric is treated as a continuum.

e E*=FK+E+E+E
e Fp=2 Elz%;’/,and Ey + E1 =

€’
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Matter in an electric field

to' -g

Q

iy

thd bbbt @

[
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R R T T

NS TR e T

1

Figure: From Statistical Thermodynamics by D.A. McQuarrie

@ Charge density at the spherical surface: P cosf and area of the
spherical ring is 2ma? sin 6d6
o dq = (P cosf)(2ma?sin 0dh)
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Matter in an electric field

o db, = 47}60 Z? cosf = 2 cos? 95|n 0d0 and
E = 5 fo cos? 0 sin 0d9 = %

@ The field due to molecules inside the sphere Ej is zero for simple cubic,
body centered cubic and face centered cubic crystals. Also E3 = 0 for

an ideal gas.Thus it is hoped that E3 = 0 for a dense gas or liquid.
o E* = E + 5 is called the Lorentz-Lorenz field.

o E*=E+ ) p - ai2p

2

H . e—1 _ p M
o Clausius-Mossotti equation: &5 = 3£-(a + 3;7)
@ lim, 0, =1and lim, 1 E* =E

o Clausius-Mossotti equation is not applicable to polar liquids.
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Magnetic dipole moment

Magnetic moment is a quantity that represents the magnetic strength
and orientation of a magnet.

Loops of electric current (such as electromagnets), permanent
magnets, elementary particles (such as electrons), various molecules,
and many astronomical objects poses magnetic dipole moment.

The magnetic dipole moment of an object is readily defined in terms
of the torque that object experiences in a given magnetic field.
T=mxB

The direction of the magnetic moment points from the south to north

pole of the magnet (inside the magnet).
9 annt v 8Uint e~ annt

e m=—X%s ~YoB, ~— %08,
@ A magnetic moment in an externally produced magnetic field has a

86/1

potential energy U = —m - B.
m=1/S, m= NIS.

m:;///rxjdv,
v



Atom in a magnetic field

e 6 6 6 o o
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Since the particles creating the current (by rotating around the loop)
have charge and mass, both the magnetic moment and the angular
momentum increase with the rate of rotation. The ratio of the two is
called the gyromagnetic ratio or v so that: m = ~L

Magnetic dipole moment for a molecule in the j state: pj = —Vpg«¢;
owj = —pj - dB*

fi =73 ;mjuj and w = —3 . m;Vgsej- dB* = —[i - dB
ow=—-Np-dB*=—-M - dB*

Electric current due to circular motion of a charge i = qv/27r
Dipole moment due to this charge motion

m=iS = (qv/2xr)(nr?) = qur/2.

More generally, m = 3(r x v) = 5/

For a magnetic field in the z direction,
U=-m-B*=—5(xy —yx)B;



Atom in a magnetic field
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L(X y,z X y,Z) = m(X2 +y2 +Z2) - U(X,y,Z) - %(Xy _yX)B:
B B;
px—gi—mx—i—ey Py %—my—ex2z
H= ZJ‘ piq; — L=
2(,2 2 B*Q
o (P2 + P2+ P2) + Ulx, v, 2) + S (xpy — ypi) + U2
Perturbation Hamiltonian 2forza one 2eIectron atom or molecule,
B x B
H' = %5 (xpy — yps) + U2
E(B*) =€ — p- B*+ $B*?
xeyB}
= — [ 055 (xpy — ypx)thodT
For paramagnetic material which are of most interest to us u, # 0.
— = [ TpodT
For a one electron atom without spin ;2
and p; = _/BOmJ
Bohr magneton Bo = 5
Generally 2 = g2ﬂ(2)J(J +1) and p, = —gpoM,

I+ 1) = B3I(I + 1)

h



Noninteracting paramagnetic atoms

@ Lande g factor to within the Russel-Saunders approximation is
=1+ J(J+1)+S5(5+1)—L(L+1)
= 2J(J+1)
e For a monatomic gas: q(V, T, B*) = (2Z51)3/2Vg e (T, B*)
o em, = ghoBIM;  —J<M;<J
® Geiec(T,B") = ZX/IJ:—J e8PBIM/KT — Sinhs[i(nzhj(;}%)y/z] where
y = gBoB;/kT
o dA=—-5dT — pdV — M - dB*
@ For non-interacting magnetic moments
M= Np=kTVgInQ = NkTVgIn geec

Bz _ A _ 2J+1 (2J+l)y 1 Y which Mo
° & =2k = 2 coth 3 5 coth 5 which is called the Brillouin
function.

2132
@ Expanding the Brillouin function i = %(TJH)B = %B
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Noninteracting paramagnetic atoms

@ Magnetic susceptibility, x = "B”—zz can be measured from the force
exerted in a non-uniform magnetic field.

_ Np? _ Ng?BiJ(J+1)
X= 37 = 3kT

@ Proportionality of the paramagnetic contribution to x with 1/T is
known as Curie's law.
o Lattice of N equivalent noninteracting magnetic dipoles:
Q(N7 T, Bz) = [qint(T)qelec(T7 Bz)]N
@ Noninteracting dipoles pointing in one of two possible directions,
€e=pPomB, m=+1
o E(Ny, N_) = Bo(Ny — N-)Bz = Bo(2Ny — N)B;
N ! - —N)B, _
QN T, B2) = aly Yo, —o m-yre M BT =
[qint(eﬁOBZ/kT + e_ﬁOBZ/kT)]N
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@ High molecular-weight molecules made of repeated addition of a
fundamental unit (monomer)

@ Random flight

o Consider a 1-D random walk with p=1/2.

o After N steps position can range from -N to +N

e W(m,N) =

@ (N-+m)/2 steps in the positive direction and (N-m)/2 in the negative
direction.

N and m must have the same parity.

W(m, N) = qsmyaio=myan (2)"

m=0
In W~ NinN =N - (%57) In(%5m) + (%57) — (%57) In(%5) +
(Nom)—NIn2 = Nin N—(NEm) in(Nkm) _(Nomyjp(Nomy _pjn2 =
’V'"’V—%(H%)'n[g(ﬂr%)l—*(1—*)|n[ (1-f)]—-Nin2=
S+ F) - Zn(@+ ) - F @1 -8+ FIn(1-F)
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o InW(m,N) =~ —% or W(m,N)~ e 2

o Define ¢ = mh then W(() o e ¢*/2NM* the probability the system is a
distance ¢ from the origin after N displacements of length h.

o W(() = We—@/Zth

e With steps of different sizes W(() =
02 =2

For the z component of a random flight ( = z and h = /cos#f
02 =/cos?f = I/3

z-component of a random flight W(z)dz = (

Z‘Ew

—¢2/2No?
(2WN02)1/2 e where

1/2 7322 2NI?
27 N/2) / / dz

Probability of a flight of Iength r is given by W(x y, z)dxdydz =
W(x)W (y)W(z)dxdydz = (5-377)3/2e 3" 12NF dxdydz

@ End to end dlstr|but|on in a freely jointed polymer chain

W(r) = ( )3/2 —3r?/2NP 4,

27 N/2
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_ 2
= (e

r2 = [;° W(r)4rrtdr = NI?

Root mean squared Iength (r2)1/2 = N1/2)

W(r)arridr = ar(535)3/2e 37127 2dr

I; is the vector depicting j's bond, the chain vector is = ZJN:l /7

= (T h) - (0 ) = S

If 0 is the angle between two successive bonds /7 /7+1 = l;l;y1cos60 = 0
Only nonzero terms in r2 are those which has i =J.

r = Z, 1 /,2 ngv

For carbon chains / = 1.54A and 6 = 180° — 109°29’ = 70°32/
r_z—Z, L+ 23500 ViR 2T Fa e+

252 Il fyno+ 2k -y =

/\//2+2(/\/—1)/1 BA2N=2)11 - et - A2(N—(N—=2))R - Iy_1+2hk - Iy




Figure: From Statistical Thermodynamics by D.A. McQuarrie

o h-h=1cos h-lz=1cos?0 and I - ln;1 = > cos" 0

o r2 =P [N+2(N—1)cosf+2(N —2)cos? +2(N —3) cos3 6 + - - - +
2 costN-1) 4]

o r2~ 2N(1+42cosf +2cos? 0 +2cos + - --) = [2Nitcosd

1—cosf
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For polyethylene cosf = 1/3 and r2 = 2N/

Taking into account the dihedral rotation potential
D2 1+cos 6 \/ 1+cos ¢
= l N(l—COSQ)(l_CosQS)
fo27T cos e~ P/ kT gg
JoT e u)/ kT dg

cos p =
r2 = 32N

Flexible chains restricted by rotation may be treated as freely jointed
chains with a bond length 5 instead of I.

For a carbon-carbon chain with free dihedral rotations 3// = v/2

r2 can be deduced from dipole moment measurement.

ﬁ:zj'ﬁj

p2 = Nu2, where py is the effective dipole moment of the repeating
unit.
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Radius of gyration or gyradius of a body about an axis of rotation is
the radial distance of a point from the axis of rotation at which, if
whole mass of the body is assumed to be concentrated, its moment of
inertia about the given axis would be the same as with its actual
distribution of mass.

The radius of gyration is the root mean square distance of the object’s
parts from either its center of mass or a given axis, depending on the
relevant application.

R¢ is the perpendicular distance from point mass to the axis of
rotation.

N
R2 — Tame
N .
2oje1m
2 _ 1N p
For equal masses R¢ = 3 =1 dj
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Radius of gyration can be determined experimentally with static light
scattering as well as with small angle neutron and x-ray scattering.

Center of mass coordinate d; = FJ’ — & where Center of mass
> _ 1 N 7
=N j—l

N — — — —
RG*N d dJ*N jzl(rj—a)-(rj—a):
A —2a Yy 7+ No?|
1 N 1 N - -
R2:N jzlrjz_mzl',j:lri‘rj
2

_ 2,2 - L2 2 _ 6z o
rij—ri+rj—2r,rjc050,1—r,-+rj 2r; - 1

2 _ 1N 2 1 N 2 2 1 N2
RG_N j=1"] T 22 Zi,j:l(ri +r —rU) N2 Zi,j:l rij for a
fixed configuration.

For a flexible chain RZ = i, Z,,'\,Ij:1 r,.?

= 22
=3l — il



° Ré:%z,{\gzﬂf—i’

o S li—il =i =N+ Sl =)=~ —i(i+1)/2+
N(N+1)/2—i(i+1)/2—i(N—i)=i>—i(N+1)+N(N+1)/2

o >, i2 =n(n+1)(2n+1)/6

2

> N+1 JN+1)  N(N+1)? | N2(N+1)y BN _ F
@ For a uniform sphere
f r dm 1 R T R5 3
RQZSP”L:— dr [, db dorPresing = 2 =3R?
G fsphere M fO fO f ¢ I 5M >

@ Uniform cylinder of radius R and length L, Ré = R; + %
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Light scattering by Polymers

@ jure 144 Tha canmns.
Figure: From Statistical Thermodynamics by D.A. McQuarrie

N single scatterers connected by bonds or links freely jointed.
Each single scatterer scatters spherically.

Incident radiation in direction iy and scattered radiation in direction i7.

P(@) __ scattered intensity from a collection of scatterers __

- initial intensity -
scattered intensity thorough an angle § __ 1(6)
scattered intensity through an angle 6—0 — /(0)
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Light scattering by Polymers

@ a=r;-l0ypand b= —r;- 0. Thus extra distance a+ b = rj - (lg — )
o |dg — a| = [u§ + u? — 20 - 0]/? = [2 — 2cos A]*/? = 25in(0/2)

e (o — 0 =2Asin(6/2). Thus a+ b= rj-2Asin(6/2)

¢j = (a+b)/\ =7 - AZsin(6/2)

Electric field at B due to scattering by j ¢; = Acos[2m(vt — ¢;)]

e =Y, Acos2m(vt — ¢))]

Intensity is derived by averaging €2 over one period.

16) = 1/;“ = vA? [} de(3 N cosaz)?

(Zszl cosq;)? = Z,’-Y,-Zl COS (vj COS (vj =

ZlNJ_l[cos(a; — aj) + cos(aj + ;)] /2

e /(0) = ”A2 1/V dt Z,’\S 1{cos[2m(¢i — ¢j)] + cos[2m(2vt — (p; +
O} = 5 o7y cos[2m(¢; — )]
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Light scattering by Polymers
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limg_,0 ¢; = O in this limit /() — A2N?/2
P(6) = iz ori—1 cos[2m(¢i — 6))] = iz Y1y cos[sh - (7 — 7)]
where s = 4; sin g

Take the z axis along r; — rj, denote the angle between /i and the z
axis by « and the other spherical coordinate angle by 5.

cos[sh - (7)] = 2 [ 7 cos(sr;j cos @) sin adadf = 2

srij
1 N sin srj;

For small angles

2 2 4.4
1 N ST sry
P(H)ZWZiJfl(l_ilJ‘}' 5[1 )_ 3|NZZI,J 1 U
1672RZ . o ¢
(9)_1 3'N22’>J1U =1- 3/\2Gsm §+-"
. 1672 RG 20
Ay = 1+ g osin? g+
Thus small angle scattering can measure radius of gyration directly



Light scattering by Polymers

e P(0) for larger values of 6 depends on the molecular structure.
1 N sin srj;

o P(0)= mZi,jzl sr,-jj

o N+1 scattering elements in a straight line.

N in ski
P(0) = k=0 2(N + 1 — k)=55¢ — (N}i-l)

(N+1)2
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Imperfect gases

° Q =
e J - [ e PSPl p e 2t UGy el gy gpydr - - diry
°o Q= /\1/|(27rhm2kT)3N/ZZN where

Zy = [--- [ e BlUCayianldr - .- dry

@ Virial equation of state proposed by Thiesen and developed by
Kamerlingh-Onnes, 5 = p+ By(T)p? + B3(T)p> + - -

o Z(V, T u) =R QN V, TIAV =14+ 375, Qu(V, T)AV

o pV=kTIn=

o N=kT(%=)rv = M%53)Tv

o limy_o N =Ilimy o N(Z5E)7 v = AQ:

@ limy_0p = AQ1/V, Define activity z = AQ1/V

© S(V, Top) = 1+ LRy (U5)2" = 14+ 5, (5 7) 2" where
Zn(V, T) = NI(Z)VQw.
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Imperfect gases

o p=kT > 2, bz

P ePV/kT _ eVZjool b-zj _
1+VZ lbzf—i-(VZOO sz) /2+...:1+Z<I>\IO:1(ZN(A\I/!,T))ZN
e b = (1'\/) 121 = 1, b, = (2!V)_1(22 _212)’ b3 — (3!\/)—1(23 .

32,21+273), by = (V) NZy—4Z321 —323+122,72 —6Z¢) - - -

N-body problem is reduced to a series of few body problems.

= = ap 0
p=v =y v = G5y = F(E) v = X b7

@ Assume z = ajp + app? + azp> + - - thus
p= al(Zf.iﬂbjzj) + 32(Zf.i1fbjzj)2 + 33(Zf.i1fbjzj)3 +--
@ a1 = 1 dp = —2b2, a3z = —3b3 + 8b§,
ﬁ =p+ By(T)p? + B3(T)p3 + - where
By(T)=—by=—(2WV) Y2 — Z2), Bs3(T)=4b3 —2b3 =
[ ( 3 — 371 + 223) 3(22 — 212)2]

(]

;
3v2
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Virial coefficients
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Qn = N|Z/\N3N = ﬁ(%)NZN
Zi=[dn=V
Z> = ffe*UZ‘/derldrg
73 = fffe_U3/der1dr2dr3
BQ( ) ff[e—u(rlg)/kT — 1]dr1dr2 =
—5% fdrl f[e u(r2)/kT _1)drp = —2m [° f(r)r?dr
Mayer f-function is defined as f; = f(r;) = f(r) = e u(n2)/kT _1
Us(r, r2, 13) = u(r2) + u(rz) + u(rez) + A(riz, n3, r23) =
uip + 3 + Uz + A3 = u(r12) + u(r13) + u(r23)
Zy= [ [ [(1+ f2)(1 + fi3)(1 + h3)drdrndr =
[ [ [(f2fishos + fiofiz + fiofos + fishs + fio + fi3 + fo3 + 1)dridrdrs
Z1Z, =V [ [(1+ fi2)dndr = [ [ [(1+ fi2)dridrdrs =
[ [ [(1+ fiz)dndrdrs = [ [ [(1+ f3)drndrndrs
23— 3212, = [ [ [(fA2fizhs + fiofi3 + fiafaz + fi3fas — 2)dridradrs



Virial coefficients

6Vbs = [ [ [(fiafisfas + fiafis + fiafos + fizfas)drdradry
B3(T) = —3y(6Vbs — 12Vb3)
by = 3 [ fiadro
4b3 = [ [ fiodrio]? = [[ fi2dno)[ [ fizdris]
4Vb% = fdrlff12dr12ff13dr13 = ffff12f13dr1dr2dr3
Bs(T)=—3v | | [ fizhsfosdrdrdrs
In general Bj11 = fTJ;LBj
5= o [ St jyadndra - dian
51’27_”7#1 is the sum of all products of f-functions that connect
molecules 1,2, ..., j4+1 such that the removal of any point together
with all lines associated with it result in a connected graph.
Perturbation result u(r) — —Cgr=°
@ Well known analytic expression with adjustable parameters
u(r) = %(g)ﬁ/(”_@[(%)" — (2)°] where u(o) = 0 and e is the depth
of the well.
@ n is usually between 9 and 15 but 12 is the most popular value.

e 6 6 6 6 6 6 o o

(]
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Virial coefficients

e 6 o6 o
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oo r<o

Hard sphere potential u(r) = {
0 r>0o

By(T)=—3 Ooo[e_“(r)/kT — 1)4nr?dr = -1 [7 —4nr?dr = 2o’

2 Jo 3
o r<o
Square well potential: u(r) =< - oc<r<\o
0 r>0o

A is usually between 1.5 and 2.

By(T) = —%[foa —47nridr + fa)‘g(ee/kT — 1)4rrdr + f;; 0dr] =

210’ _op(efe — 1)X0= — po[1 — (A3 — 1)(e’ — 1)] where

by = 2703/3

Square well potential fits the experimental data very well.

For LJ potential By(T) = —3 [, [exp{—2£[(2)'? — (2)°]} — 1]anr?dr
B3 (T*) = =3 [, [exp{— = (x 712 — x7%)} — 1]x%dx

B3(T*) is a well tabulated function.



Virial coefficients
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To deduce LJ parameters use trial and error to solve
Bz(T2)| B3 (kTa/€)
Bx(Th) experm — B*(le/e)

Solve 22(11). _ —2”3" for o

for e.

By (Ty)
: _A_G_G
Other potentials are used as well, e.g., u(r) = 5 — & — 3
u(r) _ 6+2v/doyn _ n—y(n—=8)/ds\6 do\8
= e () Tame (7)) =)

Bs(T) = —3v [ | [ fizfishsdridrdrs = —3 [ [ fiafisfsdriadris
B;(T*) = — 32 | | fizfisfosdriydris
By = —3 [ [ f(lo2l)f(Ip3)f (lp3 — p2l)dp2dp3
1(8) = (|8 = (2m) /2 [ F(|al)e7dj =
( ™)~ 3/2ffff (|pl)e~Pteest p2dpsin 9d0d¢—
(271.) 1/2f f 2d e—f_pitpc:se |0 _ \/2/7f0 sm pt)pdp




Virial coefficients

o f(p) = (2m) 732 [ y(t)e™PdE =
(27)73/2 [ y(t)etPos0t2dt sin OdOdp =

(2m) Y2 [y (1)t 0 E = /2] 57 t)s'“ P) ¢t

-1 0<p<1
e For hard spheres, f(p) = { P
0 p>1
< in(o J ot
o 7() = (D) — T = o R
o f(lp3 — /)2|) = (271' 3/21‘7 el tP3—itp2 g
o B3 (271' fff’y p3) ’tﬁ3_iFﬁzdﬁ2dﬁ3dF:

vy 3/ T J g
_(2 )3 f (t )3dt (2 9f4 t2[ 3/2()9;2)] dt
o U=73" ulry) =22 6¢(;)
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Virial coefficients

O—3Nf...fefe/kTEf,ﬂﬁ(#)d(g)...d(iv) = 3NF(T*, %, N)
o r=—-4Q=—FIn A =—%In%" +3InA
1 In Z",’ is a function of v and T only
(] In ZN - U f(T*70.37N):0-3N[g(T*707v3)]N
o2g(T*, Y%
o Q. v, T) = [“E

o p=KT(AIT = KT Ey T = Sy

v v ( Olng
% = (8(v/cf3))
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Distribution functions in liquids

@ Radius of convergence of the virial equation might have to do with
the onset of liquid state.

@ Truncated power series of a function is an unsatisfactory method of
approximating it.

@ Instead one might use the Pade approximants, consider
f(x) =ao + aix + - + apx" + O(x"*1)

cot+cax+-+cey_1x
1+dix+-+dpy_1xM—1

o E.g., Ree and Hoover used 6 hard-sphere virial coefficients to
1+0.063507 by p+0.017329h2 p?
P1- 0.561493 b p+0.239465h2 p2

o P(N)(rl, ey, rN)dr1 s drN = eizﬁNUN dr1 tee drN

o [ e BUNdr,,1--dr
o P(n) (r,- ~rn)_ff Zn e

° p(n)(rla"' arn) - (N P n (rla arn)

N—-1

e Its N, M Pade approximant is f(x) ~

construct (? —1) = bop
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Distribution functions in liquids

o %fp(l)(fl)drl = p(l) — % — p

e Correlation function g("(ry,--- , r,) is defined by
p(ﬂ)(rl’... rn)—p g(n ( . 7rn)
n n —BUndr, q---dr
T i P

Vr(1 4 O(N-t) Lo

e Radial distribution function g(z)(F’l, %) =g@(ro) =g(r) is
important since it can be measured experimentally.

o [°pg(r)amr’dr=N—-1~N

o If Un(r, -+, rv) = >_,; u(ry) all thermodynamic functions can be

written in terms of g(r).
e P(f) x fooo 47rr2g( )SIFs(:)r) dr =

Jo~ Amr?(g(r) — 1)5'?S(r5)r dr+ [,° 4ﬂr2%dr where s = 4T sin(6/2)
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Distribution functions in liquids

o P(0) oc [5° 4nr?(g(r) = 1)% dr = [(g(r) — 1)e™7dF
e Fourier transform of h(r) = (g(r) — 1) is proportional to scattering
through 6

o Structure factor h(3) = p [ h(r)e*Td7

o For a fluid E = 3NKT + kT2(8|a"TZ’V)N,V = 3NKT + U, where

0= S+ [ Ue=BYdry-dry
= 7

o U= N(zl\é,\,l) [ [u(rn2)ePYdr - dry =
o [e=BUdrs..dr
M Ty u(rp)[ 1L sz3 Iy = 1 [ [ u(r12)p®(r1, r2)drrdry =
%fooou )g( Yamr3dr

° NET 3t akr Jo u(r)a(r, p, T)amr2dr
o p=kT(ZrR)N 1 = kT(aIn Z"’)N,T, where assuming a cubic volume
V1/3 vi/3
ZN =y - Jy e PYdady - dyndzy
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Distribution functions in liquids

e Zy=VN fol"'fol e_BUdX{d)/{"'dyllvdev where x;, = V1/3x,’(
° (%LV’V) = NVyN-1 fol "fol e PUdx|dy] - - dydz}y —

vN -
- 0 fo BY( av)N Tdxidy; - - - dypdz),
du(ry) dry du(r,-j)i

U
° (GuINT = 2icicj<n dry dV — “dry 3V
dlInZy d
o (FvInT =V — gvir Jv Jv 2 lé(ff)ﬂ(2)(rlv r2)drydrz

@ The pressure equation: 2= = p — W Jo~ r'(r)g(r)amr?dr is an
equation of state for fluid.

o g(r,p, T)=go(r, T)+ pgi(r, T) + p°ga(r, T) + - --

° F=p- 67727 2ol JoT i (r)gi(r)dmrdr

o Biyo(T) = —gi Jo~ ru/(r)gi(r)amrdr

o B(T) = ; 0 (e — 1)arr?dr = —6,%7- fooofdz(rr)e_ﬁu(')hrrzdr
thus go(r, T) = e Au(r),
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Distribution functions in liquids

o Gibbs-Helmholtz equation (5477 )n,v = E can be used to derive
Helmholtz free energy and thus chemical potential.

o d(A/T)=[3+ 58+ Jo" u(r)g(r,p, T)4nr?dr)NkTd(1/T)

@ Introducing coupling parameter (,
U(r, - ,m,¢) = Zszz Cu(riy) + 2 a<icj<n ulri)

o u=(2)y 7=AN,V,T)—AN—-1,V,T)

o — A =IQy=InZy—InN!'—3NInA

° —k‘Z,--zanN_l—InN—In/\3

o In A =In 24U finV =InV+ [ (252)dC
° (% :—ﬂf [ e PO u(ny)|dA - diy
o (BIEQZN = —mir Jv [y u(n2) )P DA, R)dAdR =

— i o u(r)g(r :Q)Amr2dr
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Distribution functions in liquids: Kirkwood equation

o L =In N3 + e fo fo u(r)g(r; Q)anr?drd¢
pln

—BU) dF, . 1---dF}
)(1,2’ n;C): NN!n)lf Je ZN({)rH n
o

( —
° kTag — ZN(C N f [ e PO u(ry)dR - diy —
(NNIn)lzN C) ZJ 2f Jem AU u(ry)drgr---diy

N 2fva rij)p (’lvrj)dfldrj
° FOtJ 2 ey N,
o [e=BUdF 1 dF) n

S ) g G = 01,2, n) S u(ny)
e Fot j=n+1, ..., N,

Jy ulnp)([ -+ [ e )d7n+1”'df7 1741+ diy)dij

va u(rj)p (n+1)(1,2,-+- ,n,j, C)dF;

(n) n [ — —

) kTagC === (r1J)+ va fV r12 p(z)(rl,rg,g)drldm —

(n+1) .
o (1,2, ,n,n+1,¢)
fv ”(fl,n+1) pM(1,2,,n,C) drint1

<
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Class presentations

Ms. Dehnary Polymers 14 Tir 9 am
Ms. Sharifi Imperfect gases 15 Tir 9 am
Ms. Mohammady Distribution functions in liquids 16 Tir 9 am
Mr. Mohammady Time correlation functions 17 Tir 9 am
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Table of physico-chemical constants

Quantity Symbol Value (SI units)

atomic mass constant my=1u 1.6605389 x 10~27 kg
Avogadro’s number Na, L 6.0221417 x 1023
Boltzmann constant k =R/Na 1.3806505 x 10~23JK !
Faraday constant F = Npe 96485.338 Cmol?

gas constant R 8.314472 JKmolt,

0.08205 L atm mol1K1,

8.20573 m3 atm mol 1K1
molar Planck constant Nah 3.99031 x 10710 J s mol!
electric constant (vacuum eg = 1/(upc®) 8.854187817 x 10712
permittivity) Fmt
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Table of physico-chemical constants

Quantity Symbol Value (SI units)
magnetic constant (vacuum g 12.56637061 x 10~" NA™
permeability)
Newtonian constant of gravitation G 6.67408x107 1! m3kgls2
Planck constant h 6.626070040 x 10734 Js
reduced Planck constant h 1.054571800 x 10734 Js
c
e

speed of light in vacuum 299792458 m/s
electronic charge 1.60219 x 1071°C
electron mass Me 9.10956 x 10731Kg
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