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Aim
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Your most valuable asset is your learning ability.

This course is a practice in learning and specially improves your
deduction skills.

This course provides you with tools applicable in and necessary
for modeling many natural phenomena.

“The fundamental laws necessary for the mathematical
treatment of a large part of physics and the whole of chemistry
are thus completely known, and the difficulty lies only in the
fact that application of these laws leads to equations that are
too complex to be solved.”

The first part of the course reviews Linear algebra and calculus
while introducing some very useful notations. In the second
part of the course, we study ordinary differential equations.

End of semester objective: Become familiar with mathematical
tools needed for understanding physical chemistry.



Course Evaluation

Final exam 11 Bahman 3 PM  40%
Midterm exam 24 Azar 9 AM 40%
Quizz 10%
Class presentation 10%

@ Office hours: Due to special situation of corona pandemic
office hour is not set, email for an appointment instead.
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To be covered in the course

Complex numbers, Vector analysis and Linear algebra
Vector rotation, vector multiplication and vector derivatives.
Series expansion of analytic functions

Integration and some theorems from calculus

Dirac delta notation and Fourier transformation

Curvilinear coordinates.

Matrices
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To be covered in the course

@ When we know the relation between change in dependent
variable with changes in independent variable we are facing a
differential equation.

@ The laws of nature are expressed in terms of differential
equations. For example, study of chemical kinetics, diffusion
and change in a systems state all start with differential
equations.

@ Analytically solvable ordinary differential equations.

@ Due to lack of time a discussion of partial differential equations
and a discussion of numerical solutions to differential equations
are left to a course in computational chemistry.
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References

@ Modern calculus and analytic geometry by Richard A.
Silverman

@ "Mathematical methods for physicists”, by George Arfken and
Hans Weber

@ Ordinary differential equations by D. Shadman and B. Mebhri
(A thin book in Farsi)

@ Linear Algebra, Second Edition, Kenneth Hoffman, Ray Kanze
@ The Raman effect by Derek A Long
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@ Set, class or family

e xcA y¢gA

@ A C B orequivalently BD A
e A=Biff AC BAB C A, otherewise A # B.
@ Proper subset

@ The unique empty set @
e B—A={x|xe BAx ¢ A}
@ Universal set, U.
0o AA=U-A

@ Venn diagrams
e AUB (A cup B)
e AN B (A cap B)
°

disjoint set.
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e 6 o6 o

Symmetric difference, AAB = (A— B) U (B — A)

Ordered n-tuples vs. sets.

Cartesian product of A and B, Ax B = {(a,b)|la€ A, b€ B}
Al x Ay x - x Ay ={(a1,a2, -+ ,an)|a1 € A1, a2 €
Ao,---an € Ap}

Real numbers, R

2-space = R?

3-space = R®

A relationship is defined as a set of ordered pairs (x,y), i.e., a

relation S from the set X to the set Y is a subset of the
cartesian product X x Y.

Where the sets X and Y are the same there are 3 types of
relations.

A many to one or one to one relation from a set X to a set Y is
called a function from X to Y.
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A function from the set of positive integers to an arbitrary set
is called an infinite sequence or sequence, y = y,, or

Y1, Y2, 3 Yny o OF Yn (n:1727'”)or{y’7}
Dom f = {x|(x,y) € f for some y}, Rng f = {y|(x, y) € f for
some x}

fCDomfxRngfCXxY
Arbitrary set X to R, real valued function
R to R, real function of one real variable

R to R", point valued function or vector function of one real
variable.

R" to R, real function of sevral real variables

R" to RP, coordinate transformation, each coordinate of the
point y = (y1,--- ,¥p) € RP is a dependent variable
Domain as the largest set of values for which the formula
makes sense.



Complex numbers
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“Imaginary numbers are a fine and wonderful refuge of the divine
spirit, almost an amphibian between being and non-being.” Gottfried
Leibnitz

Fundamental theorem of algebra: " Every non-constant
single-variable polynomial has at least one complex root.”

X2 +1 =0 defines x = i = v/—1. Complex number

x =a+ bi = (a,b) = ce’.

Complex conjugate, Complex plane, summation, multiplication,
division, and logarithm.

Euler formula, "our jewel", e'® = cos(a) + isin(«) for real «
Proof by Taylor expansion _ _
_ eIX+67IX . _ eIX_67’X
cosx = S5 —, sinx = £¢
B .\ eVge Y
cosh(y) = cos(iy) = &5,

&Y —eY

isinh(y) = sin(iy) — sinhy =
cos(x) - cos(y) = [cos(x + y) + cos(x — y)],

@ cos(x +y) =cosxcosy — sinxsiny,

sin(x 4+ y) = sinxcosy + cos xsin y.



Coordinate System

@ Rectangular cartesian coordinate system is a one to one
correspondence between ordered sets of numbers and points of
space.

e Ordinate (vertical) vs. abscissa (horizontal) axes.
@ Round or curvilinear coordinate system

@ Curvilinear coordinates are a coordinate system for Euclidean
space in which the coordinate lines may be curved, e.g.,
rectangular, spherical, and cylindrical coordinate systems.

o Coordinate surfaces of the curvilinear systems are curved.
@ Plane polar coordinate system,

x=rcosf, y=rsinf, dS = rdrd,
@ Spherical polar coordinates

@ x =rsinfcos¢p, y=rsinfsing, z=rcosf, dV =
r?sin Odrdpdf

@ Rectangular coordinates
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Coordinate System

z axis

i 5P\ fr sin 6 do

\
LjmEE ey
rsin® | Cdine d¢
¥

Figure: Polar coordinates taken from The Raman Effect by DA Long
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Vector analysis

@ Scalar quantities have magnitude vs. vector quantities which
have magnitude and direction.

@ Triangle law of vector addition.

e Parallelogram law of vector addition (Allows for vector
subtraction), further it shows commutativity and associativity.

B
B .
A A A ¢
c T
B - D
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Vector analysis: direction cosines

i
4 )
\ €08 I} oy
5 o
,/
N \&cm‘]lm
cos U N -
S 0 3
|
|
l
5 |
Y o

Figure: Direction Cosines taken from The Raman Effect by DA Long

@ Direction cosines, projections of A.
@ Geometric or algebraic representation.
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Vector analysis: direction cosines

o Consider two vectors of unit length
n= (Xlaylazl) = (Ir1X7 /f1y7 Ir1Z) and
r = (X2a}’2, 22) = (Irzx, /rzyv /r2z)
@ For the angle between r; and r,
cosf = x1x2 + y1y2 + 2122 = lnxlnx + Inyly + Inzlnz
@ For orthogonal unit vectors r and r', lpxlry + Ipylpry + Lzl = 0
o Also, 2+ 12 +12=1

o Thus, 2, + 12, + 2, =1 2 +P2 +12,=

v ix!x
1 BRI, =1
o Further,

Ix’xlx’y + /y’xly’y + /z’xlz’y =0 /X’YIX’Z + ly’y/y’z + lz’y/z’z =
0 Lezlrx + Iy’z/y’x + Lzl = 0.

o Insummary, Iy lyrp = 60 Ly ol = 0po
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Vector analysis
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Unit vectors, A = A& + A, J + A, 2.

Expansion of vectors in terms of a set of linearly independent
basis allow algebraic definition of vector addition and
subtraction, i.e.,

A+ B =%(Ac£B) + 9(A, + B) + 2(A, £ B,).

|A|, Norm for scalars and vectors.

Ac =|Alcosa, A, =|Alcosf, A, = |A|cosy
Pythagorean theorem,

|A? :A§+A}2,+A§, cos? a + cos? 3+ cos?y = 1.
Vector field: An space to each point of which a vector is
associated.

Direction of vector r is coordinate system independent.



Rotation of the coordinate axes

¥
yY-~-T- """ """ TTTT77
\ .
% [N x
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/// !
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- PNB
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o \ |
¢ i Nt
Ay !
9 N
o x

@ X' = xcos¢+ ysing y' = —xsin¢ + y cos ¢

@ Since each vector can be represented by a point in space a
vector field A is defined as an association of vectors to points
of space such that
Al = A cos¢p + Ay sin¢ A, = —Aysing + Ay cos ¢
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N-dimensional vectors

x| | cos¢p sing X
° [y’]_[—simﬁ cos¢][y]'

@ X = X1, Y —=Xo, Z—X3

) N oy P . .
° X =i ajjXj; =12 N ajj = cos(x}, Xj).
@ In Cartesian coordinates,
! __ / / — ey,
x; = cos(x], x1)x1 + cos(x, x2)x2 + -+ = > ajjx; thus
aj Bx
= oy

@ By considering primed coordinate axis to rotate by —¢,

xj = > ;cos(xj, xI)x! = > cos(x!, xj)x! = . ajx! resulting in
aji = % = ajj.

@ A is the matrix whose effect is the same as rotating the
coordinate axis, whose elements are aj;.
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Vectors and vector space
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Orthogonality condition for A: ATA =/ or
Ox! Ox! Oxj Ox!  Ox;
s = ! L — E— L= 7 — 5
Z_: 24 ik Z 0x; O Z ox! Ox x| K

By depicting a vector as an n-tuple, B = (By, B, , By),
define:

Vector equality.

Vector addition

Scalar multiplication
Unique Null vector
Unique Negative of vector

Addition is commutative and associative. Scalar multiplication
is distributive and associative.



Algebraic structures: Group

@ A group is a set, G, together with an operation * (called the
group law of G) that combines any two elements a and b to
form another element, denoted a*b or ab.

@ Closure: For all a, b in G, the result of the operation, a*b, is
also in G.

@ Associativity: For all a, b and c in G, (a*b)*c = a*(b*c).

o lIdentity element: There exists an element e in G such that, for
every element a in G, the equation e*a = a*e = a holds. Such

an element is unique, and thus one speaks of the identity
element.
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@ Inverse element: For each a in G, there exists an element b in
G, commonly denoted a=! (or -a, if the operation is denoted
"+4"), such that a*b = b*a = e, where e is the identity
element.

@ Groups for which the commutativity equation, a*b = b*a,
always holds are called abelian groups.

@ The identity element of a group G is often written as 1 or 1 a
notation inherited from the multiplicative identity.

@ If a group is abelian, then one may choose to denote the group
operation by 4+ and the identity element by O; in that case, the
group is called an additive group.
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There can be only one identity element in a group, and each
element in a group has exactly one inverse element.

The existence of inverse elements implies that division is
possible

E.g., the set of integers together with the addition operation,
but groups are encountered in numerous areas, and help
focusing on essential structural aspects.

Point groups are used to help understand symmetry
phenomena in molecular chemistry.

The symmetry group is an example of a group that is not
abelian.
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@ A ring consists of a set equipped with two binary operations

that generalize the arithmetic operations of addition and
multiplication.

A ring is an abelian group with a second binary operation that
is associative, is distributive over the abelian group operation,
and has an identity element

Examples of commutative rings include the set of integers
equipped with the addition and multiplication operations, the
set of polynomials equipped with their addition and
multiplication

Examples of noncommutative rings include the ring of n x n
real square matrices with n > 2.
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@ Aring is a set R equipped with two binary operations + and -

R is an abelian group under addition:
(a+b)+c=a+(b+c)foralla, b cinR.
a+b=b+aforalla binR.

There is an element 0 in R such that a + 0 = a for all a in R.
For each a in R there exists -a in R such that a + (-a) = 0.
(a-b)-c=a-(b-c)foralla, b, cinR.

There is an element 1 in R such that a-1=aand 1-a= a for
allainR

Multiplication is distributive with respect to addition:
a-(b+c)=(a-b)+(a-c)foralla, b, cinR.
(b+c)-a=(b-a)+(c-a)foralla b, cinR.



@ Field is a set on which addition, subtraction, multiplication,
and division are defined, and behave as the corresponding
operations on rational and real numbers do.

@ There exist an additive inverse -a for all elements a, and a
multiplicative inverse b™! for every nonzero element b.

@ An operation is a mapping that associates an element of the
set to every pair of its elements.

Associativity of addition and multiplication
Commutativity of addition and multiplication
Additive and multiplicative identity

Additive inverses

Multiplicative inverses

Distributivity of multiplication over addition

The best known fields are the field of rational numbers, the
field of real numbers and the field of complex numbers.
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Linear vector spaces
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@ A vector space over a field F is a set V together with two

operations that satisfy axioms listed below.

Vector addition + : V x V — V/, takes any two vectors V and

W and assigns to them a third vector commonly written as

V4w

Scalar multiplication - : F x V. — V, takes any scalar a and
any vector V and gives another vector av. (The vector v is
an element of the set V). Elements of V are called vectors.
Elements of F are called scalars.

Phase space in which classical mechanics occur and Hilbert
space in which quantum mechanics occur are most important
examples.



Linear vector spaces
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Axiom

Associativity of addition
Commutativity of addition
Identity element of addition

Inverse elements of addition for
every v € V,

Compatibility of scalar multiplica-
tion with field multiplication
Identity element of scalar multipli-
cation 1V = v,

Distributivity of scalar multiplica-
tion with respect to vector addi-
tion

Distributivity of scalar multiplica-
tion with respect to field addition

EIG € V, called the zero vector,
chthat v+0=vVve V.
H—V € V, called the additive
inverse of V, such that v +

— =
(-v)=0
a(bv) = (ab)7

1 denotes the multiplicative
identity in F
a(d+ V) =au+ av

<{

(a+b)V=av+b



Algebra over a field
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a vector space equipped with a bilinear product.

an algebra is an algebraic structure, which consists of a set,
together with operations of multiplication, addition, and scalar
multiplication by elements of the underlying field, and satisfies
the axioms implied by "vector space” and "bilinear”.

The multiplication operation in an algebra may or may not be
associative, leading to the notions of associative algebras and
nonassociative algebras.

Given an integer n, the ring of real square matrices of order n is
an example of an associative algebra over the field of real
numbers under matrix addition and matrix multiplication since
matrix multiplication is associative.



Algebra over a field
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Three-dimensional Euclidean space with multiplication given by
the vector cross product is an example of a nonassociative
algebra over the field of real numbers since the vector cross
product is nonassociative, satisfying the Jacobi identity instead.

An algebra is unital or unitary if it has an identity element with
respect to the multiplication.

The ring of real square matrices of order n forms a unital
algebra since the identity matrix of order n is the identity
element with respect to matrix multiplication.

Algebras are not to be confused with vector spaces equipped
with a bilinear form, like inner product spaces, as, for such a
space, the result of a product is not in the space, but rather in
the field of coefficients.



Scalar or dot product

@ Real n-tuples labeled R”, complex n-tuples are labeled C".

° Igner_’prod_yct slloul_gi be_»dis_t’ributi\_/»e an<1 associa}ive.ﬁ .
A-(B+C)=A-B+A-C A-(yB)=(yA)-B=yA-B

o Algebraic definition: A: BeR" A-B= > AiB;

e ABeC" A-B=Y,AB

@ Dot product of A by a unit vector is the length of A's
projection into unit vectors direction.

o A= ]A]cos_‘azﬁ-f(, A, =|AlcosB=A-9, A, =
|Alcosy=A- 2.

o Geometric definition: A- B = AgpB = ABy = ABcos#

e Xx-R=y-y=2-2=1

eX-y=%-2=2-y=0

@ Perpendicular or orthogonal vectors.

e X=e¢,y=e,Z=es €m*en = 0mn
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Invariance of Scalar or dot product under rotation

o B (' = AR ZIZiZjalfBia/jCj =
ZU(ZI a/,-aU)B,-Cj = ZU (5,’jB,‘C:,' = Zi B;C; = B - C; thus dot
product is scalar.

o C=A+B, C-C=(A+B) (A+B)
A-A+B-B12A-B— A-B=1(C2- A B?).
Therefore, Z . E is a scalar.

@ Another derivation for cosine law, C2 = A2 + B2 + 2AB cos

N
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The sine law

. . . . a _ b
@ This reminds us of the sine law: SnA — snB

@
=]

I
(e}
0
I
Q.

B Law of sines

sind _ sinB  sinC

a b c

@ Triangle area,
S = %ah, = Ja(bsin C) = Ja(csin B) = Sche = $c(bsin A).
e Za(bsin C) = Ja(csin B) = Sc(bsin A)
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Vector or cross product
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Geometric definition: ? = X X B C = ABsind, ? is a
vector perpendicular to the plane of X and ? such that
and B and C form a right-handed system.
Cross product is non-commutative. Z X B = —E X X
XxX=yxy=2z2xz=0
XXy=2, KRXZ=-y, Z2xy=-X

7 P
Angular momentum, L = 7 x ﬁ; torque, 7 =7 x F and
magnetic force, ?M = q7 X B.

Treating area as a vector quantity.



Vector or cross product

Bsin 6

°
o AxB=C=(C.C.C)=

(AR+ Ay Y+ AZ) x (B + B,y + B,2) =

(AB, —A,B)&x J+(AxB; —A;B)Xx 2+(A, B, —A;B,)y x 2
o C,=A/B,—-A;B,, C =A,B.—AB,, (,=AB,~A,B;,.
o C; = AjBix — AiB;j, i,j and k are different.
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Vector or cross product

y
A, A,
B,

o C=
B,
o A-C=A-(AxB)=

Ax(A,B, — A,B,) + A, (A By — AcB:)+ A (AB, — A,By) = 0.
oB-C=B-(AxB)=0.
° (X X E Z E = A?B2?sin? 0.
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Levi-Civita symbol
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@ Levi-Civita symbol, permutation symbol, antisymmetric

symbol, or alternating symbol. €...;,...;,... €y
@ €ijpiy = (—1)Pe1n..n.
€irip-++in
+1  if (i1, /2, ,ip) is an even permutation of (1,2,--- ,n)
=9 -1 if (ir,i2,- -+ ,in) is an odd permutation of (1,2,--- ,n)

0  otherwise (no permutation, repeated index)
@ €jjk€imn =
0i10jmOkn + OimOjnOk + 0indji0km — Oim0j10kn — 0i10jn0km — OinOjmOkI

o 32 iik€imn = o1 (0ii0jmOkn 4 OimOinOki + GindjiOkm —
8im0jidkn — 0ii0jn0km — Oin0jmOki) = OknOjm — Ojndkm



Levi-Civita symbol—applications
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a11 412 a13
@ Determinant: | a1 ax» ax3 = €jjka1id2jazk
a31 d32 a33

o C,' = ij eijkAjBka C= Zijk EUkAjBkéi = EUkAjBkéi

o (AxB)-(Ax B) = (5 cipeABi&) - (Ximp cimnAmBné) =
> iikimn Eik€imnAiBkAmBnlit = 3 jikmn €ijk€imnAjBkAmBn =
> ikmn(Okn8jm — 6jnGkm ) Aj BkAmBn = 3 jymn Okn0jmA; BiAmBp —
2 jkmn OjnOkmAjBkAmBn = 3y AiBiAj Bk = 3y AiBiAKB; =
(30 ANk Br)— (2 AiB)) (2 k AxBx) = |A]?|B|*(1—cos? 0)

o (Ax By =(AXBR-(A-B)y



Triple scalar product

o Z B ? X UkEUkB Cke’)_ZUkGUkABCk—
ij,eUkBCAk_E CxA=C-AxB=
A CxB=-C.BxA

axb
c
e !
1
5 ~ b .7
° a
A« A A
° Z . E X ? B. B, B, | Volume of the parallelepiped
&G ¢ G
defined by X E and ?
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Triple vector product

° ZX(BX?):XB—Fy?
OOZXX'E—F}/X-?—)X:ZX'? y:—zj-g
o Ax(BxC)=2(BA.-C-CA-B)

@ z is magnitude independent.

[Ax (Bx )2 =ABxC)?—[A-(Bx )P
=1—cos’a—[A-(Bx )
=2%[(A-C)?+(A-B?—2A-BA-CB- (]
= 7%(cos? B + cos® v — 2 cos arcos 3 cos )

o l—cosla—[A-(Bx )P =

7%(cos? B + cos? v — 2 cos a cos 3 cos )
o [A-(Bx O =

1 — cos? a — z%(cos? 3 + cos? y — 2 cos a cos 3 cos )

39/1



BAC-CAB
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@ The volume spanned by three vectors is independent of their
order, thus z2 = 1.
@ XX (&kxy)=2z((X-9)X—(X-X)y) = —2zy, also,
KX (Xxy)=Kx2=—ythusz=1.
o Lemma: A x & = no €Emno€mAndio = Y o Emni€mAn
o /YX (é X 6) = /YX (Zuk Eijké,'BjCk) =
Zijk E;J'k(A X é;)BjCk = Zijkmn GUkE;mnBjCkAném =
> ikmn(0jmOkn — Gjndkm) Bj CkAnépm =
> jkmn(0jmOkn) Bj CkAném — 3~ ikmn(0jndkm) Bj CkAném =

—

Yk BiCcAkéj — 3 BiCiAjé = B(A- C) — C(A- é)



Series
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o Y% ak(x—a)k =ap+ai(x —a) + ax(x — a)2 + - - - where

a,ar € R keN

The sequence {sn(x)} where s,(x) = >_7__ ak(x — a)k is a
partial sum sequence for the above series.

The above power series is convergent at point xg if the partial
sum sequence {sp(x)} is convergent at point xp. l.e.,
limp—00 Sn(x0) = s(x0)

s(xp) is the sum of the above series at point xp.

limnoo > opeo ak(x0 — a)% = 3202 ak(xo0 — @) = s(xo)
Set a =0, Zzzo axk = ag + aix + apx2 +---. This is
absolutely convergent iff > |axx*| is convergent.
Convergence radius, convergence interval or region of
convergence.

an+1X”+1

apxn

Ratio test, limp_ 0 | | <1



Taylor series

@ Assume f(x) can be represented as a power series around the
point a.

@ Taylor series of a real or complex valued function f(x) that is
infinitely differentiable at a number a:
f(a) + S0 a) + - a)? + P (e —a) 4 =

(n) .
Yo f n!(a) (x —a)". When a =0, the series is also called a

Maclaurin series.

@ The Taylor series for any polynomial is the polynomial itself.

@ The Maclaurin series for 1/(1- x) is the geometric series
1+ x+ x?+ x3 4 --- so the Taylor series for 1/x at a = 1 is
I-(x—D+(x—-1)2—(x—1)3+--.
o Integrate the above Maclaurin series, to find
4
In(1 —x) = —x—% — % — % —---and the corresponding
Taylor series for In x ata = 1is
(x—1) = 3(x—12+i(x -1 —F(x—1)*+---.
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Taylor series
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Taylor series for log x at some a = xg is:

_ 2
Iog(xo)+%(x—xo) — xig% + -

The Taylor series for the exponential function ¥ at a =20 is
XO X1 X2 X3 X4 X5
A T R H T

x?2 x3 x4 x° _ oco xN
I+ x+5+5+5+355+ =200
If f(x) is given by a convergent power series in an open disc
centered at b in the complex plane, it is analytic in this disc.
For x in this disc, f is given by a convergent power series
F(x) = >onZo an(x — b)".
Differentiating by x the above formula n times, then setting x
— b gives: [2(b) _ . :
= b gives: — = = a, and so the power series expansion
agrees with the Taylor series.

Thus a function is analytic in an open disc centered at b if and
only if its Taylor series converges to the value of the function
at each point of the disc.



Gradient, V

e For a scaler field ¢'(x1, x5, x5) = (x1, %2, x3).

8¢I(X{7X£7X3l,) _ 8¢(X17X2’X3) — 8¢> aXJ — .. a¢
O Tt = T = Y g o — 2 diiay

° % is behaving as a vector component.
Xj

—v=%09 10 450
oDeI—V—x8X+y6y+zaz

@ Thus V¢ is a vector and is called gradient of phi.

o Calculate Vf(r) where r = \/x2 + y2 + 22, result is 79
>_ 0 0 0,

° Vo dr= a*fdx—&-afﬁdy—i-a—fdz:dqb

@ Over a constant ¢ surface d¢p = V¢ - dr = 0.
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oxy2)=C

[*] x

o dp=C— Co=AC= (Vo) dr

45/1



Gradient, V

o X
Consider ¢(x,y, z) = (x* + y? 4+ z2)'/2, find V¢ and direction
cosines of V¢ at (3,2,1).

o [A(r)-VF(r)d®r = — [ f(r)V - A(r)d®r where A or f vanish
at infinity.

o F=-VU

@ Prove V(uv) =vVu+ uVv.
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R
Ar Pris AA_I;=V
r(r)
r(t + Af)
°
Pl (2D 10D 43D (Rx 4 Oy 4 57) =
o V.r=(Xg + 95, +25) (Kx+Jy+22) =3,
V- (Ff(r) =2, V- (Fr"1) =7
° fﬁ(r) -VE(r)d3r=— [f(r)V- A(r)d3r where A or f vanish
at infinity.
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| / Y% — aVx 8\/}/ 8VZ
e Divergence of V, V.V = & + 5+ 5

o V- (pV) for a compressible fluid.

@ The flow going through a differential volume per unit time is:

Z

o (rate of flow in)grgy = (pvx)|x=0dydz
o (rate of flow
out) agep = (PVx)|x=dxdydz = [pvx + %(pvx)dx]xzodydz
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Net rate of flow out|, = %(pvx)\(o 0,0)dxdydz

pvx(Ax,0,0)—pvk(0,0,0) __ Ipvx ><,y7
( A)X (0,00) — 9 ( ]’000

Net flow out (per unit time) = V - (pv) dxdydz.
Continuity equation: % + V- (pv)=0.

V- (fV)=VFf-V+fV-V

B is solenoidal if and only if V- B =0

@ A circular orbit can be represented by r'= Xrcoswt + yrsinwt.
Evaluate r x 7 and 7 + w?F =

limax—so

o Divergence of eIectrostatlc field due to a point charge
— _4q ro_ v.r
V- E V- 47reor2 47r50v 7 47reo[ +r- vr3]
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—

4.0V,
e VxV= :Zijkeijkefaixjf'

Sl
K<<5<D‘Q.>'\<>
o~ R N

o Vx(fV)=fVxV+(VF)xV

e Vx (rF(r))=0

@ Show that electrostatic and gravitational forces are irrotational.
@ Show that the curl of a vector field is a vector field.

@ Curl can be measured by inserting a paddle wheel inside the
vector field.



Circulation

@ Circulation of a fluid around a differential loop in the xy-plane.

y Xy ¥ +dy 3 X, +dx. ¥, +dy

S

X Yo 1 (x, + dx, ¥

-

[ %)

VdA = [ Vi(x,y)dA+ [, Vy(x, y)dA, +f3 (x,y)dAx+
4 ( )d)\y = V (Xo,yo)dX+ [V (Xo,yo) + 8xy dx]dy +
Vi(xo ) + Grdy](—dx) + V, (x0, yo)(—dy) =

o 8y Vi)dxdy = V x V|, dxdy
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Successive applications of V

Show that i x V is solenoidal if u and v are each irrotational.
If Ais irrotational show that A x 7 is solenoidal
VVe=V29=(L+5+ L)

V xV¢=0.

V-VxV=0

V-V =NV -VV,+/V-VV,+kV-VV,
Vx(VxV)=VV.-V-V.VV
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Electromagnetic wave equation

@ The set of Maxwell equations:
e V-B=0
oV.-E=2

€0
o V x B=po(J+elE)

—

-~ oB
OVXE——E
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Electromagnetic wave equation

The set of Maxwell equations:
V-B=0
oV -E=2

€0

V x B = po(J+ e %)

°
<
X
m
I
|
S
o]

Eliminating B between the last two equations, by noting that
%V x B =V x %—“f and assuming no charge flux.

V x (V X E) = _EOMO?;TE
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Review: Integrals

o [x(x+a)"dx =
° [ aimdx=
ofﬁdx

2
X
° f—az+x2dx—
3
X
o [ Fradx=

o [tan(ax + b)dx =

o [ cotan(ax + b)dx =
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Review: Integrals

o [x(x+a)"dx =
ofde—
ofﬁdx

o = ZIn|a®+ x?|
ofﬁz)@dx:
ofﬁgxzdx:

o [tan(ax + b)dx =
o —Lin|cos(ax + b)|
o [ cotan(ax + b)dx =
o Lin|sin(ax + b)|
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Review: Integrals

o [sec(ax + b)dx =

o [ cosec(ax + b)dx =
o [sec®(x)dx =

o [ cosec?(x)dx =

o [ tan(x)sec(x)dx =

o [ cotan(x)cosec(x)dx =
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Review: Integrals

o [sec(ax + b)dx =

o lin|sec(ax + b) + tan(ax + b)|
o [ cosec(ax + b)dx =

o —Lin|cosec(ax + b) + cotan(ax + b)|
o [sec®(x)dx =

e tan(x)

o [ cosec?(x)dx =

@ cotan(x)

o [tan(x)sec(x)dx =

@ sec(x)

o [ cotan(x)cosec(x)dx =

e cosec(x)
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Review: Integrals

dx 1 dx
o [yt —dx=[— % =1 & _
J oot =] a(x+£)2+c— £ 2 (x+ L 2c/a— 25

b
1 1 -1 u _1 —1(__Xta;
= Ztan" (——) = S tan” ' (—2=
f u2+(C/a—£) a ( c/afg) a ( c/af%)
o [ 4(x+a)(x+b) dx =
X —
e f ax2+bx+cdx -

o [ \/;££2§‘ix =

o [ xy/x — adx

°o [ Vax + bdx =
o [ \/GEEEE§(1)< =

o [/ dx
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Vector integration over a contour

JeodF=
R[cox,y,2)dx + 9 [cd(x,y,2)dy + 2 [ d(x,y,2z)dz
° | V.dr eg,w=[F.-dr=

C
Jc Fx(x,y,2)dx + [ Fy(x,y,2)dy + [ Fz(x,y,z)dz
° [ V x dF =
R [c(Vydz — Vzdy) — 9 [o(Vidz — Vodx) + 2 [(Vidy — V, dx)
@ Reduce each vector integral to scalar integrals.
e Eg., f017’01 r2dr = 01761(X2 +y?)dr = 017’01(X2 + y?)(Xdx + ydy)
o E.g., Calculate W for F = —Xy + yx
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Surface and volume integration

o [;pdd

° /s V - dé (flow or flux through a given surface),

° [s V x d&

@ Convention for the direction of surface normal: Outward from

a closed surface. In the direction of thumb when contiguous
right hand fingers are traversing the perimeter of the surface.

° Volﬂme integrals:
fv Vdr = >A<fv Vdt —i—f/fv Vydr + 2]\/ V,dr
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Integral definition of gradient

. [s, ¢d&
° V¢ =limy, 0 dQT

@ d7 = dxdydz. Place origin at the center of the differential

volume, dt.

e fsdT ¢dG = —i [gpe(d -
%%)dydz —J Jaecc(® Y )dxdz + j [grp (6 +
9¢ d 8
(’Tj&?y)d)(dz_kaBFE 5

— D2 %) dydx + k [cppc(+ 52 %) dydx
o [¢dd = (i%2 +j9¢ + k52)dxdydz

)dydz + i [agpc(d+

¢ dx
ox 2
9¢ dy
dy 2
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Integral definitions of divergence

- [s. V-dé
o V.V =limg; 0 =%

° s,V ;d& = Jernc V'f’&JF Jagpc V ;d‘?JF Jaege V- dd +
Joerp V - d7 +8{A%FE V- de + [cppe V- ‘;‘5 j
— Jerne (Ve — G 5)dydz + [appc (Vi + G 5 ) dydz —

oV, aV.
Jaecc(Vy = By dzy)dXdZ + [erup(Vy + 5* dy)dxdz —

oV, dz 8VZ dz -
fABFE(V Oz T)dde + fCDHG Vz + 7 7)dde =
(8VX + 5 8Vy 88\22 )dxdydz
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Integral definitions of curl

L daxV
dr

° deT Vxdd = [grycV xdd+ [gpc V X dd + [4ecc V ¥
A + [gpup V % G + [pgre V % dG + [cppg V x d5 =
—dydzV(—dx/2,0,0) x £ + dydzV(dx/2,0,0) x £ —
dxdzV/ (0, —dy/2,0) x § + dxdzV/(0, dy/2,0) x § —
dxdy V (0,0, —dz/2) x 2 + dxdyV (0,0, dz/2) x 2 =
—dydz(V,(—dx/2,0,0)y — V,(—dx/2,0,0)2) +
dydz(V,(dx/2,0,0)y — V,(dx/2,0,0)2) —
dxdz(—Vz(O, —dy/2,0)% + V,(0,—dy/2,0)2) +
dxdz(—V,(0, dy/2,0)% + V,(0,dy/2,0)2) —
dxdy(V, (0,0, dz/2)x— (0,0, —dz/2)y) +
dxdy(V,(0,0,dz/2)x—V,(0,0, dz/2)y) = —dydz((V-(0,0,0)—

x 0V2(0,0,0 x 0V,(0,0,0) \ 2
LOL000)5 _ (1,(0,0,0) - % 26000 .

.;V><\7:|ideofS
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Theorems

62/1

o Gauss's theorem (divergence theorem),
JsV-d& = [,V -Vdr, equates the flow out of a surface S
with the sources inside the volume enclosed by it.

o Result: [¢pdd = [, VodT using V =o¢(x,y,2)3

@ Result: [¢dd x P = Jy V x Pdr using V=3x P

@ Prove Green's theorem,
[y (uV?v = vV2u)dr = [((uVv — vVu) - dG, by applying
Gauss's theorem to the difference of
V- (uVv) =uV?v+Vu-Vvand V- (vVu).

e Alternative form, [ uVv-dd = [, (uV?v+ Vu-Vv)dr



Theorems

o Stokes theorem: §,c V- dX = [(V x V. d&

o Alternate form: [sdo x V¢ = §,5 ¢d\ using V=35
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Potential theory
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@ Scalar potential
° Conser_yative force . .
— F=-V¢ < VXxF=0<+= §F-dr=0
e VXF=-VxV¢p=0
o §F-dr=—§¢Vop-dr=—§dp=0
® facepaF - dr=0 < [acgF-dr=—[gpsF-dr=
Japg F - dr <= the work is path independent.

B
D




Potential theory
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o [PF.dr=¢(A)—¢(B) = F-dr=—dp=—Vé-dr.

Therefore (F +V¢)-dr =0

§ F-dr= [V x F-do by integrating over the perimeter of an
arbitrary differential surface do we see that § F - dr = 0 result
inVx F=0.
Scalar potential for the gravitational force on a unit mass my,
F- — _ Gmimp? __ _ﬁ—)

G — 2 -
Scalar potential for the centrlfugal force and S|mp|e harmonic
oscillator on a unit mass my, FC = w?F and F5Ho = —kr.

Exact differentials. How to know if integral of
df = P(x,y)dx + Q(x, y)dy is path dependent or independent.

@ Vector potential B=VxA



Gauss's law, Poisson’s equation

@ Only a point charge at the origin E=

47reor2
0 S does not contain the origin,

&S contains the origin.

@ Closed surface S not including the origin
fS f'rgU fV ) r2 dT

o Gauss's law: [ E.di=

e}

S

)
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Gauss's law, Poisson’s equation

do’ = —752dQ
JsE-dé =2 = [, Ldr. Further, [(E-d5= [, V-Edr

Maxwell equation: V- E = £
€0

L
€’

Poisson's equation: V2¢ = —

Laplace’s equation V2¢ = 0

Substitute ¢ for E into the Gauss's law.
—41 0 € v,

° J VAT = {0 0 v.
V2(3) = —4md(F) = —4md(x)3(y)é(2).

Thus
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Dirac delta function

d(x)=0 0,
@ Dirac Delta properties (x) . x7
f(0) = J°o f(x)d(x)dx.
@ See functions approximating ¢ in a Mathematica notebook.
1
0 x<-—3,,
On(X) = qn, =g, <x< g,
1
0 X > brE
@ ip(x) = ﬁe‘”%g.
® dn(x) = £1+r1)2x2'

° 5n(X) _sinnx _ 1 fjn eixtdt_

< 2’

L2 F(x)8(x)dx = limp_soe [°5, F(x)dn(x)dx
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Dirac delta function

@ 0(x) is a distribution defined by the sequences §,(x)

e Evenness: 0(x) = d(—x).

o [*, x)5 ax)dx =1 [ £(£)s(y)dy = 1£(0). Thus
d(ax) = 15 |5( X).

o [2 f(x)0(g(x))dx = 3, [27 F(x)d((x — a)g’(a))dx. Thus

d(x—a)

i(g(x)) = Za,g(a):O,g '(2)#0 Te'(a)]

@ Derivative:
[ (x)8'(x — xo)dx = — [ F/(x)d(x — x0)dx = —F'(x0).

@ Delta Operator L(x0) f dx5 (x — x0)-

o [[I7. y)d(z)dxdydz = f027r Jo J52 8(P)r2drsin 6dod
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Representation of Dirac delta by orthogonal functions

70/1

Consider an infinite dimensional vector space where elements of
the underlying set are functions.

(f+8)(x) = f(x) +&(x) (cf)(x )— Cf( )-

Inner product maybe defined as f(x f f(x

where either a, b or both can be oo.

No good and natural basis but real orthogonal functions
{én(x),n=0,1,2,---} form a basis for this vector space.
Their orthonormality relation is

Om - b0 = [} Om(x)9n(x)dx = Oy

Around any point xg a good basis is the set

{(x — x0)°, (x — x0), (x — x0)?, - - - } which is not orthonormal.
Use Gram-Schmidt orthonormalization.

For square integrable functions use {sin(nmx), cos(nmx)}
Expanding delta function in this bases:

5(x — 1) = Yo an(£)n(x).

Take the inner product of both sides by ¢, (x) to derive
coefficients.



Fourier transform
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O(x = 1) = 22520 Pn(t)dn(x) = 6(t — x)
f’;}t) x —t)dt = [ 37770 apdp(t) 3onlo Pn(t)én(x)dt =
Zn,pzo ap¢n( ) np — Zp—O aP¢P(X) F(X)
Fourier integral translates a function from one domain into
another, F(f(t)) = Wf )ewtdt = F(w).
Inverse Fourier transform is
FYF(w)) = \/% 75 F(w) exp(—iwt)dw = £(t).
For the position and momentum conjugate variables:
F(x)) = 7oz /75 w(x)e™®/Mdx = 4 (p),
FH(p) = oz S 75 ¥(p) exp(—ixp/h)dp = 9(x).

_ 1
F(6(x)) = N .
3(x) = FHFO(x))) = F Hjz) = 5 [ 7o exp(—ixp/h)dp
Calculate the Fourier transform of Gauss distribution.

Deduce the uncertainty principle.



Random variable
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@ a random variable, random quantity, aleatory variable, or

stochastic variable is described informally as a variable whose
values depend on outcomes of a random phenomenon.

A random variable's possible values might represent the
possible outcomes of a yet-to-be-performed experiment, or the
possible outcomes of a past experiment whose already-existing
value is uncertain

They may also conceptually represent either the results of an
"objectively” random process (such as rolling a die) or the
"subjective” randomness that results from incomplete
knowledge of a quantity.

The domain of a random variable is a sample space, which is
interpreted as the set of possible outcomes of a random
phenomenon.

A random variable has a probability distribution, which
specifies the probability of its values.



Probability distributions

@ Random variables can be discrete, taking any of a specified
finite or countable list of values, endowed with a probability
mass function characteristic of the random variable’s
probability distribution; or continuous, taking any numerical
value in an interval or collection of intervals, via a probability
density function that is characteristic of the random variable's
probability distribution; or a mixture of both types.

@ Any random variable can be described by its cumulative
distribution function, which describes the probability that the
random variable will be less than or equal to a certain value.

@ The term "random variable” in statistics is traditionally limited
to the real-valued case (E = R ). In this case, the structure of
the real numbers makes it possible to define quantities such as
the expected value and variance of a random variable, its
cumulative distribution function, and the moments of its
distribution.
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Probability distributions
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Z}\il uip(u;)
S p(w)
Average of any function of u: f(u) = Zj‘il f(uj)p(uj)

Average of a discrete random variable, i =

m'th moment of distribution u™

m'th central moment of distribution (v — @)™ including
variance.

The Poisson distribution is popular for modeling the number of
times an event occurs in an interval of time or space.

A discrete random variable X is said to have a Poisson
distribution with parameter a > 0, if, form =0, 1, 2, ..., the
probability mass function of X is given by: Pr(X = m) = %
The positive real number a is equal to the expected value of X

and also to its variance



Probability distributions
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The Poisson distribution may be useful to model events such
as: The number of meteorites greater than 1 meter diameter
that strike Earth in a year; The number of patients arriving in
an emergency room between 10 and 11 pm; The number of
laser photons hitting a detector in a particular time interval

f(u) = [ f(u)p(u)du

Gauss, Gaussian or normal distrib2ution with the probability
density of p(x) = We_( =
Central limit theorem: Average of samples of observations of
random variables independently drawn from independent
distributions converge in distribution to the normal, that is,
they become normally distributed when the number of
observations is sufficiently large.




Stirling’s approximation

o N =N nm~ [Minxdx=NInN-N
o T(N+1)=NI= [7e*xNdx = [ "™ dx where
g(x)=Inx—x/N

35
30
251

201

(x=NY?

o g(x)=InN—-1-—

2N?

oo Nin N—N— M NinN—N [oo — Com?
o Nl ~ k[b e N dx = e (/b e 2N dx =

eNIn N—N 2N
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Binomial and multinomial distribution

@ r-permutation {x1,xp,---,x,} from a set of n elements
{a1,a2, -+ ,an} is the number of ways to pick r elements and
arrange them in order. This is the product
n(n—1)---(n—r+ 1) which is also called falling factorial.

@ The formula for permutation is given by "P, = (n), = (nfi'r),

@ A combination is a way of selecting members from a group,
such that the order of selection does not matter.

@ A k-combination of a set S is a subset of k distinct elements of

S.
@ The number of k-combinations is equal to the binomial
.. n n n(n—=1)---(n—k n!
coefficient ( « ) —nc, = k:(ll)<—(1).--1+1) = k!(nlk)!

@ Distributing k distinguishable balls into n distinguishable bins
(k < n), with exclusion, corresponds to forming a permutation
of size k, taken from a set of size n.

77/1



Binomial and multinomial distribution

@ There are "Py = (n)x = n(n—1)---(n — k + 1) different ways
to distribute k distinguishable balls into n distinguishable
boxes, with exclusion.

@ Distributing k indistinguishable balls into n distinguishable
boxes, with exclusion corresponds to forming a combination of
size k, taken from a set of size n.

@ There are C(n, k) ="Cy = < n > different ways to distribute

k
k indistinguishable balls into n distinguishable boxes, with
exclusion.
@ Distributing N distinguishable objects over 2 states W

N! N—Ny Ny N! Ny N
(] (X+y) ZNI 0 NiI(N— N1)|X 1.y ! ZNLNQ N1|N2’X 2-y '

@ Distributing N dlstlngmshable objects over r states
N! _
NN LN T~ T Nl
o (x1+x+--- +xr)N

N N NN i
Z/\/IZOZN2 Z =0 /\/|X11 "XrN
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Method of Lagrange multipliers

e To maximize f(xy, X2, -+ ,X.), we have
6f = ijl(g—)’;)()d)g = 0; since 0x; are independent of one

another the extremum is found by setting (%)0 =0
J

e With the constraint g(x1,x2,- -+ ,x,) = 0, we have
= ijl(g—i)o&g = 0 which serves as a relation among
values of dx;.
@ Assuming dx, = 0x,(0x1, - -+ ,0Xu—1,0Xut1, -+ ,0Xr).

o 0f —Nog =37 1(5 ~ a—f)o&g
A= (Z)o/(FE)o

(F£)o — A(5E)o =0

With a number of constraints

(95)0 — M(5E)0 — Aa(§8)o —--- =0
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Binomial distribution for large numbers

e To maximize f(N;) = W we maximize In f(Ny).

. dlndjv(Nl):0_>dLM(NlnN—N—NllanJer—(/\/_

1
N1)|n(N—N1)+(N—N1)):
—InNy —1+1+In(N—N;)+1-1=0— Nf =N/2

o Inf(Ny) = In F(N}) + L(& 'j,,f,(z"’l)) M=z (N — N§)? +

o F(Ny) = F(NF) exp [— 2 M) Thys oy ~ /v1/2/2
e Binomial coefficient peaks sharply at Ny = Ny = N/2

@ Multinomial coefficients peaks sharply at
N1:N2:'~:N5:N/S
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Maximum term method

S=yM 71, T,>0

T <S<MT,,—-InT,,<InS<InTp,+InM
If Ty =exp(M) > M <InS<M+InM

If M is very large S = T,
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Important equations in physics

o Laplace's equation: V2¢ =0 or A¢ = 0. Its solutions describe
the behaviour of electric, gravitational and fluid potentials.
Laplace's equation is also the steady-state heat equation.

@ Helmholtz equation represents a time-independent form of the
wave equation: V2A 4+ k2A = 0, where k is the wavenumber
and A is amplitude. HE commonly results from separation of
variables in a PDE involving both time and space varibles.

E.g., the wave equation (V2 — %%) (r,t)=0

e Diffusion equation: (%(rt =V - [D(¢, r)V(¢(r,t))], where
¢(r, t) is the density of the diffusing material at location r and
time t, D(¢, r) is the collective diffusion coefficient for density
at location r. If D is constant, 8¢(r t = = DA¢(r, t) also called
heat equation.

@ Schrodinger wave equation: /h sl(r,t) = H|(r, t)).
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Important equations in physics

@ For the nonrelativistic relative motion of two particles in the
. . . 2

coordinate basis, lh%w(r, t) = [—%LV2 + V(r,t)]¥(r, t).

@ When Hamiltonian is not explicitly dependent on time, we have
the time independent Schrodinger equation: Hy = Eu.

@ For the nonrelativistic2 relative motion of two particle in the
coordinate basis, [—%V2 + V(n)]y(r) = Ey(r).

o All have the form V21 + k% = 0.

@ Any coordinate system in which this equation is separable is of
great interest.

@ Thus finding expressions for gradient, divergence, curl and
laplacian in a general coordinate system is of great interest.
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Curvilinear coordinates

84/1

A point can be specified as the intersection of the 3 planes x =
constant, y = constant and z = constant.

A point can be desdcribed by the intersection of three
curvilinear coordinate surfaces q; = constant, q» = constant,
g3 = constant.

Associate a unit vector §; normal to the surface g; = constant
and in the direction of increasing g;.

General vector V = GVi+ G Vo + G3Vs.

While coordinate or position vectors can be simpler, e.g.,
F'= rf in spherical polar coordinates and r'= pp + zZ2 for
cylindrical coordinates.

ﬁ,? =1, for a right handed coordinate system §; - (2 X §3) > 0.



Curvilinear coordinates

o ds® = dx* +dy* + dz> = 3, h7dq;dg;
@ hj; are referred to as the metric.

e dx = (aql)dql + (aqz)dqm + (aqa)

o dy = ($2)dq1 + (52%)daz + (5%)dq
@ dz = (dql)dq + (an)dCD + (({;972)
o ds®> =dr-dr=dr* =Y. 8’_ dq,dqj

e Thus: h2 oF . OF Ox Ox + dy Oy 0z Oz

bai " Da; — ba oq; T 0q 0q; T b gy Valid in
metric or Rlemannlan spaces.

@ For orthogonal coordinate systems: §; - §; = dj;.
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Curvilinear coordinates

86/1

For orthogonal coordinate systems:

ds? = h2,dq? + h3,dq3 + h3;dq3, ie., hj =0, i+#]j.
Setting hjj = h; >0 ds? = (h1dqy)? + (hodqz)? + (hsdgs)?.
ds; is the differential length in the direction of increasing g;.
Scale factors may be identified as ds; = h;dg; with length
dimension. g—; = h;§;

The differential distance vector

dr'= h1dq1G1 + hodga§o + h3dq3gs

[V-dF=Y; [ Vihidg;

For orthogonal coordinates: doj; = ds;ds; = h;h;dq;dq; and
dr = dS1d52dS3 = h1h2h3dq1dq2dq3

dd = dspds3§y1 + dsidsz§o + dsrdsi1 Gz =

hah3dqadqz g1 + h1h3dq1dq3go + hah1dg2dgi g3



Curvilinear coordinates
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of5\7-d5':

[ Vihyhsdgadgs + [ Vahihzdgidgs + [ Vahahidgrday

@ vector algebra is the same in orthogonal curvilinear coordinates

as in Cartesian coordinates.

A-B=3, Aidi-GkBr = X AiBidik = 3, AiBi
a1 G2 G3

Oﬁxéz Al A2 A3

B, B, Bs

@ To perform a double integral in a curvilinear coordinate one

needs to express a cartesian surface element in terms of the
curvilinear coordinates.

o dii = (g1 + da1, @) — Fq1, @) = So-dqr ds =

a1, g2 + da2) — Flqr, a2) = Frdas

— — o 0
o dxdy = drn x dn|, = [%ng - %%]dqldqg =
Ix Ox
o ox
2y oy |dqdq
dq1  Oq»




Curvilinear coordinates
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@ The transformation coefficient in determinant form is called the
Jacobian

e Similarly, dxdydz = dry - (dr2 X dr3)

Ox  Ox  Ox

€¥71 5;72 fgqs

_| 9y y y

o dxdydz = Pai 9a; O3 dq1dqgrdqgs

0z 9z 0Oz

dq1  90q2  Ogs
@ Volume Jacobian is hyhph3(G1 X G2) - G3
@ In polar coordinates: x = pcos¢ y =psing J=7?
@ In spherical coordinates:

x=rsinfcos¢p y=rsinfsing z=rcost J=7
@ The Jacobian matrix of a vector-valued function in several
variables is the matrix of all its first-order partial derivatives.

@ When this matrix is square, its determinant is referred to as the
Jacobian determinant.
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of Ok
P A
0xq Oxp, % ' c‘ffm
8x1 8X,7

At each point where a function is differentiable, its Jacobian
matrix can also be thought of as describing the amount of
"stretching”, "rotating” or "transforming” that the function

imposes locally near that point.
If fis differentiable at a point p in R”, then its differential is

represented by Jr(p). The linear transformation represented by
Jr(p) is the best linear approximation of f near the point p.

f(x) —f(p) = Jr(p)(x — p) + o(lx —pl}) (as x = p),
o(|][x — p||) is a quantity that approaches zero much faster than
the distance between x and p does as x approaches p.



@ the Jacobian may be regarded as a kind of "first-order
derivative” of a vector-valued function of several variables.

@ The Jacobian of the gradient of a scalar function of several
variables has a special name: the Hessian matrix, which in a
sense is the "second derivative” of the function.

@ Inverse function theorem: the continuously differentiable
function f is invertible near a point p € R" if the Jacobian
determinant at p is non-zero.

@ The absolute value of the Jacobian determinant at p gives the
factor by which the function f expands or shrinks volumes near
p.

@ the n-dimensional dV element is in general a parallelepiped in
the new coordinate system, and the n-volume of a
parallelepiped is the determinant of its edge vectors.
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@ According to the inverse function theorem, the matrix inverse
of the Jacobian matrix of an invertible function is the Jacobian
matrix of the inverse function.

o E.g., The Jacobian matrix of the function F : R3 — R* with
yi=x1
components 2= SXZ
y3 =4x5 — 2x3
Ya = X3Sin x1
o E.g., The Jacobian determinant of the function F : R® — R3
y1=5x2
with components y» = 4x2 — 2sin(xox3)

Y3 = X2X3
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Differential vector operations in orthogonal coordinates
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Gradient is the vector of maximum space rate of change
@ Since ds; is the differential length in the direction of increasing
qg;, this direction is depicted by the unit vector §;.
Vdf : q: v/l/}|l — &j) haad:_-h
8 0
Vip(aq, qz,CI3) qlagi + 6oL + 8358 =

A~ _OY ~ )
a1 h10q1 + a2 h25Q2 + 33 h30q3

dp) =Vip-dr=3, gjfds,-zz, S da;
fs V.dg
V. V(Ch, 92, 93) = limgr 0 —5—

(]

Q@ =



Differential vector operations: Divergence
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@ Area integrals for the two g1 = constant surfaces are

Vi(qr + dq1= 92, G3)ds2ds3 — V1(q1, G2, G3)dsads; =
[V1h2h3 + 2-(Vihahs)dai]dgadas — Vihahsdgadgs =
2= (Vah h3)dCl1 dgadgs
i V.do=
[aith(vlh2ﬁ3) + 8%2(\/2/71/73) + ai%(v3h2h1)]dq1dq2dq3 where
Vi=4gi-V
v \7(6%7672,673) = ,
ot lag (Vih2hs) + 50-(Vahihs) + 5-(Vahahy)]
Using V = Vo) aL, 62, 93 ), V-V=vV% =
hlhlgh3 [821(%?3 8q1) + aq2(hh78l) + %(hi—g’lg—i)]




Differential vector operations: Curl

@ Assuming the surface s to lay on q; = constant surface.
o Iim5_>0 fSV xV.do= (?1 : (V X V)h2h3dq2dQ3 = f)%s V.dr

o §, V- dF'= Vahydgy + [Vahs + 52-(Vshs)daz]dgs — [Vaho +

a2 (Vaha)dgs|dgs — Vahsdas = [52-(Vah3) — - (Vaho)dgadas

V x Vi = 33 [52 (Vahs) — 2 (Vaho)]

Permuting the indices V x V|, = m[a—%(vlhl) 6q1(V3h3)]
higi  h2Go h3gs

0 0 0
© Thus V x V h1h2h3 Iq1 0q2 g3

Vi hVs h3V3
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Circular cylindrical coordinates

o (p,d,z), 0<p<oo, 0<¢<2m and —0 <z <0

x

X =pcos¢p, y=psing, z=2z
.42 9x Ox Oy Oy | 0z 9z
Using: hij T 0q;0q; ' 0q; Dq; ' 9q; Dg;

hlzhpzl, h2:h¢:p, h3:hZ:1.
F=pp+2z, V=7pV,+oVs+32V,
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Circular cylindrical coordinates

) 219 Lo
o Vip(p, 6,2) = pOL + LI + k2
oV, oV,
° V-V = L5 eVo) + 5 + %
9 9 (19 9.0
o V2 = L& (050) + (250 + (5
|2 o
onV:; 5% 95 bz
V, pVy V,
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Spherical polar coordinates

e (r,0,90), 0<r<oo, 0<6<mand0<¢<2rm
@ x =rsinfcos¢p, y=rsinfsing, z=rcosf
em=h =1 hy=hg=r, h3=hy=rsing.
° r—/sm0cos¢>+15|n05m¢+kcos& 6 =
i cos @ cos ¢ + J cos B sin ¢ — ksine, <b——/sm¢—|—jcos¢

Aﬁlp 1 81/1
vw_ r89 ¢rsm06¢

o V-V =l [sin02(r?V,) + rf(sin0Vp) + r 2]

o V. -Vy = rQSmg[smear( 28w)+ (smgaw) snlm%g]
o VxV=

o VIf(r)= , Vi =

o V. 7f(r)= V. rr"

o V2f(r) = ,V2rn

o V x7f(r)=
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Separation of variables
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Helmholtz equation: gif + ayd’ + g;f + k%) =0

Assume 9(x, v,z )=X( )Y(v)Z(2)
YZEX XZ Y+ XYLZ 4 k2XYZ =0

1 d’°X _kz_;dw _ 1d%*z

X dx2 Y dy? Z dz?

;dZX__lz kz_;dZY_;oPZ__,z
X dx2 — ) Y “dy? Z dz22 —

1 d’Y 2 2 1d°Z

Y dy? —k ‘H_?ﬁ

1d2y 2 1d*Z L2 2 2 _ .2

2 2
¢/mn(X7yaz) = X/(X) m( )Zn(Z)
V= Zlmn almn¢lmn(xa Y, Z)
Process would work for k2 = f(x) + g(y) + h(z) + k"2, e.g.,

2
XEEHI ) =P, =k GE () + 3G +h(2)
7T+g()=/2—k/2—%TZ h(z)



Separation of variables
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In spherical polar coordinates Helmholtz equation read:

S [sin 02 (r292) + 2 (sin09%) + sigeg%g] S

Try ¢(r,0,¢) = R(r)O(6)®(¢)

R S (PR + 5rhey S (5N 099) + gk 0% = —K2
L S (e W R ARAET-))
-

R S (PR + ok (sin099) — 7y = —K2

F (PR + 2K = — g S (sin092) +

P55 (sin092) — -0 + QO =0

L8(R %) 1 k2R - 9 =

Most general solution:

¢Qm(r7 97 ¢) = ZQm RQ(r)@Qm(e)q)m((b)



A two dimensional array of elements is called a matrix.

A matrix with m rows and n columns is called an m by n
matrix.

@ If number of rows and columns are equal matrix is called
square matrix.

@ Matrix A is determined by determining its elements aj;.
e A+B =C ifFa,-j—l—b,-j:c,-j
o AB = Ciiff Cij = Zk a,-kbkj

10 ---0

01 0
@ The identity matrix [ =

00 ---1

@ If matrix A is composed of elements aj;, transpose of A, AT s
composed of elements aj;.

o Inverse of the sqare matrix A is defined by AA™t = A~1A = /.
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@ Find the inverse of matrix A by placing an identity matrix | on
A's side and turning A into | by row operations.

@ Find the inverse of matrix A by placing identity matrix | below
or on top of A and turning A into | by column operations.

@ If A is a square matrix, then the minor of the entry in the i-th
row and j-th column (also called the (i,j) minor, or a first
minor) is the determinant of the submatrix formed by deleting
the i-th row and j-th column. This number is often denoted
M;i;. The (i,j) cofactor is obtained by multiplying the minor by
C_1y+j'

@ The cofactors feature prominently in Laplace’s formula for the
expansion of determinants, which is a method of computing
larger determinants in terms of smaller ones. Given the n x n
matrix (a;;), det(A) can be written as the sum of the cofactors
of any row or column of the matrix multiplied by the entries
that generated them.
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@ The cofactor expansion along the jth column gives:
det(A) = alelj + angzj + a3J-C3j + -+ 3nanj = 27:1 a,-jC,-j
@ The cofactor expansion along the ith row gives:
det(A) =a31Ch1+anpCor+ai3Csz+ -+ ainCip, = ZJ 1 9ij C,'j
@ One can write down the inverse of an invertible matrix by
computing its cofactors and using Cramer's rule.
@ The matrix formed by all of the cofactors of a square matrix A
is called the cofactor matrix or comatrix:

CGi Go - G
Coy Co - Gop
| e
Cnl Cn2 Cnn

@ The transpose of the cofactor matrix is called the adjugate
matrix or the classical adjoint of A.
@ Then the inverse of A is the transpose of the cofactor matrix

times the reciprocal of the determinant of A: A1 = det(A) c’.
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Symmetric Matrices
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Ais symmetric < A= AT — for every i,j, aji = aj.
A real symmetric matrix represents a self-adjoint operator over
a real inner product space.

The corresponding object for a complex inner product space is
a Hermitian matrix with complex-valued entries, which is equal
to its conjugate transpose.

The sum and difference of two symmetric matrices is again
symmetric.

given symmetric matrices A and B, then AB is symmetric if
and only if A and B commute.

@ For integer n, A" is symmetric if A is symmetric.

o If A~1 exists, it is symmetric if and only if A is symmetric.
Y y Y

1 1
X =2 (X+XT)+5 (x=xT).
A symmetric n x n matrix is determined by 3n(n+ 1) scalars.

A skew-symmetric matrix is determined by 3n(n — 1) scalars.



Symmetric Matrices

@ Two square matrices A and B over a field are called congruent
if there exists an invertible matrix P over the same field such
that PTAP = B.

@ Matrix congruence is an equivalence relation.

@ Matrix congruence arises when considering the effect of change
of basis.

@ Any matrix congruent to a symmetric matrix is symmetric: if X
is a symmetric matrix then so is AXAT for any matrix A.

@ The real n x n matrix A is symmetric if and only if
(Ax,y) = (x,Ay) Vx,y € R"
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Unitary Matrices

@ A complex square matrix U is unitary if its conjugate transpose
Ut is also its inverse—that is, if UTU = UUT = I, where | is the
identity matrix.

@ The Hermitian conjugate of a matrix is denoted by a dagger
() and the equation above becomes UTU = UUT = I.

@ The real analogue of a unitary matrix is an orthogonal matrix.

@ Unitary matrices have significant importance in quantum
mechanics because they preserve norms, and thus, probability
amplitudes.
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Symmetric Matrices
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For every symmetric real matrix A there exists a real
orthogonal matrix Q such that D = QTAQ is a diagonal
matrix. Every symmetric matrix is thus, up to choice of an
orthonormal basis, a diagonal matrix.

If A and B are n x n real symmetric matrices that commute,
they can be simultaneously diagonalized: there exists a basis of
R" such that every element of the basis is an eigenvector for
both A and B.

Every real symmetric matrix is Hermitian, and therefore all its
eigenvalues are real.

The property of being symmetric for real matrices corresponds
to the property of being Hermitian for complex matrices.

if A is a complex symmetric matrix, there is a unitary matrix U
such that UAUT is a real diagonal matrix with non-negative
entries. This result is referred to as the Autonne—Takagi
factorization.
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Det(A) = €jj..ipd1i; " * * Ani,

Theorem: Det(AB) = Det(A)Det(B). Thus Det(A~1A) =
Det(l) — Det(A~')Det(A) = 1 — Det(A™") = pzy
Matrix A is invertible iff Det(A) # 0

Orthogonal matrix R satisfies R~ = RT or equivalently
RRT =1

det(RT)=det(R) thus for an orthogonal matrix det(R)?=1.
Special orthogonal matrix: A real orthogonal matrix with
det(R)=1; it represents a proper rotation.

Eigenvalues and eigenvectors: AV = \V

(A—ANV =0,  det(A— Al) =0 which is the
characteristic polynomial.

A similarity transformation or conjugation is B = P~L1AP.
Similar matrices represent the same linear operator under two
different bases, with P being the change of basis matrix.



@ Consider a general rotation y = Tx using the change of basis
matrix P, y = Sx’ — Py = SPx — y = (P71SP)x = Tx

@ Similarity is an equivalence relation on the space of square
matrices.

@ Similar matrices share properties of their underlying operator:

@ Rank: the rank of a matrix A is the dimension of the vector
space generated (or spanned) by its columns.

@ The column rank of A is the dimension of the column space of
A, while the row rank of A is the dimension of the row space of
A.

@ This number (i.e., the number of linearly independent rows or
columns) is simply called the rank of A.

@ A matrix is said to have full rank if its rank equals the largest
possible for a matrix of the same dimensions, which is the
lesser of the number of rows and columns. A matrix is said to
be rank deficient if it does not have full rank.
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o if a linear operator on a vector space has finite-dimensional
image, then the rank of the operator is defined as the
dimension of the image.

@ Characteristic polynomial: the characteristic polynomial of a
square matrix is a polynomial which is invariant under matrix
similarity transformation and has the eigenvalues as roots. It
has the determinant and the trace of the matrix as coefficients.
pa(t) = det(tl — A)

@ The characteristic equation is the equation obtained by
equating the characteristic polynomial to zero.

@ pa(t) is monic (its leading coefficient is 1) and its degree is n.

e It's constant coefficient pa(0) is det(—A) = (—1)" det(A), the
coefficient of t" is one, and the coefficient of "~ is tr(-A) =
-tr(A).

o t2 — tr(A)t + det(A).
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@ A complex square matrix A is normal if it commutes with its

conjugate transpose Af: A normal <=  ATA = AAT

The spectral theorem states that a matrix is normal if and only
if it is unitarily similar to a diagonal matrix, and therefore any
matrix A satisfying the equation ATA = AAT is diagonalizable.
Among complex matrices, all unitary, Hermitian, and
skew-Hermitian matrices are normal.

Likewise, among real matrices, all orthogonal, symmetric, and
skew-symmetric matrices are normal.

A defective matrix is a square matrix that does not have a
complete basis of eigenvectors, and is therefore not
diagonalizable.

An n x n matrix is defective if and only if it does not have n
linearly independent eigenvectors.
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Eigendecomposition of a matrix:

Let A be a square n X n matrix with n linearly independent
eigenvectors q; (where i = 1, ..., n). Then A can be factorized
as A =QAQ!

Q is the square n x n matrix whose ith column is the
eigenvector g; of A, and A is the diagonal matrix whose
diagonal elements are the corresponding eigenvalues, A; = A;.

The decomposition can be derived from the fundamental
Av = \v

property of eigenvectors: AQ = QA
A=QAQ L



@ Consider a system of n first order linear equations in n

unknowns,
aiixi +axe+ -+ ainxn = b
arixy +awxo + -+ amxp = b
an1Xx1 + anpXx2 + -+ + anppxp = bn

@ Such a system can be written in matrix form

ail a2 - ain X1 by
a1 ax» -+ an X2 bo
dnl anp2 - ann Xn bn
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AX =B
If Det(A) #0, X = A"'B and is uniquely determined.
0

(]

If B=| . | the above system of linear equations is called
0
homogeneous.

In order for this system to have any solution other than the
0

0
trivial X = | . |, Det(A) must equal zero.
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@ Slater expansion
d dA(t
@ Jacobi's formula: p det A(t) = tr <adj(A(t)) )>

e Corollary: detef® = t(tB)
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Tensors
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Every scaler is a tensor of rank 0.

Every vector is a tensor of rank 1.

Contravariant vector: A} = Zj ax' A;, e.g., spatial coordinate

- . ! 8X .
Covariant vector: A; =3, o 4 Aj, e.g., gradient vector.
Ox; ox!
In cartesian cordinates 8— = ax = aj

Every square matrix is a tensor of rank 2, if its components
translate in a coordinate rotation according to:

ox! 3X i Ox!
rj Akl No_ x| Rk I
AT =3 Bi'=3u B Gi=

8xk 8X/ Bxk 8x
8Xk 8X[ ki
2ok o o A
2 2
—-Xy — . . —-Xy — ,
[ ); Y ] is a tensor, while [ )2/ Y ] is not.
X Xy X< —=xy

Show that the Kronecker delta 5," is a mixed second rank
tensor.



Contraction, direct product
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Kronecker delta is isotropic.
A symmetric tensor A™" = A"™
An antisymmetric tensor A™" = — A"

Contraction is a generalisation of trace, it reduces the rank by
2.

Contraction include equating a contravariant and a covariant
index and summing over that common index.

Direct product: covariant vector a; and contravariant vector b/
multiplied component by component, give tensor a;b’/

0 o)
b = P a bl = 5 5% (ayb)

Contracting direct product a,-b’j = aib¥, giving the regular
scaler product.



Contraction, direct product
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@ Quotient rule: If A and B in the relations

K,'A,‘ =B K,JAJ = B,' K,JAJk = B,’k KljklAij =
By KijAx = Bijjx are tensors and these relations are valid in
all cartesian coordinates, then K is also a tensor.

An inversion has transformation coefficients a;; = ¢;;

Polar vectors: An inversion of coordinate axes and a change in
the sign of coordinates leaves the vector unchanged after an
inversion, e.g., distance vector.

Pseudo vector or axial vector: For vectors defined as cross
product of two polar vectors, component sign does not change
by coordinate transformation and thus the vectors inverts by
coordinate axes inversion.



Contraction, direct product
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E.g., angular velocity, w = r x v; angular momentum,
L =r x p; torque, N = r x f; magnetic induction field B,

B _ _

ot — V x E.

Pseudovector and pseudotensor transformations:

C/ = |ala; G, Af.j = |a|ajkajiAw, where |al is the

determinant of the array of coefficients.

Tensor densities: differing from tensors only in reflections or
inversions of the coordinates.

Triple scaler product S = A x B - C is a pseudoscaler, thus
volume is a pseudoscaler.



Euler angles
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The Euler angles are three angles introduced by Leonhard Euler
to describe the orientation of a rigid body with respect to a
fixed coordinate system.

They can also represent the orientation of a mobile frame of
reference in physics or the orientation of a general basis in
3-dimensional linear algebra.

The three elemental rotations may be extrinsic (rotations
about the axes xyz of the original coordinate system, which is
assumed to remain motionless), or intrinsic (rotations about
the axes of the rotating coordinate system XYZ, solidary with
the moving body, which changes its orientation after each
elemental rotation).

Euler angles are typically denoted as «, 3,7, or ¢, 0, .
Proper Euler angles (z-x-z, x-y-X, y-z-y, z-y-z, X-z-X, y-X-y)

Tait-Bryan angles (x-y-z, y-z-x, z-x-y, X-z-y, z-y-X, y-X-2)



Euler angles

@ The axes of the original frame are denoted as X, y, z and the
axes of the rotated frame as X, Y, Z.

Figure: Proper Euler
angles geometrical
definition. The xyz
(fixed) system is shown in
blue, the XYZ (rotated)
system is shown in red.
The line of nodes (N) is
shown in green, taken
from en.wikipedia.org
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en.wikipedia.org

Euler angles
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line of nodes as the intersection of the planes xy and XY (it
can also be defined as the common perpendicular to the axes z
and Z and then written as the vector product N = z x Z).

a (or ¢) is the angle between the x axis and the N axis
(x-convention - it could also be defined between y and N,
called y-convention)

B (or ) is the angle between the z axis and the Z axis

v (or ) is the angle between the N axis and the X axis
(x-convention).

Euler angles between two reference frames are defined only if
both frames have the same handedness.

Intrinsic rotations are elemental rotations that occur about the
axes of a coordinate system XYZ attached to a moving body.
Therefore, they change their orientation after each elemental
rotation.



Euler angles

@ « (or ) represents a rotation around the z axis, 3 (or )
represents a rotation around the x’ axis, y (or ) represents a
rotation around the z" axis.

@ Extrinsic rotations are elemental rotations that occur about the
axes of the fixed coordinate system xyz. The XYZ system
rotates, while xyz is fixed.

@ Starting with XYZ overlapping xyz, a composition of three
extrinsic rotations can be used to reach any target orientation
for XYZ. The Euler or Tait-Bryan angles («, 3, v) are the
amplitudes of these elemental rotations.

@ The XYZ system rotates about the z axis by . The X axis is
now at angle v with respect to the x axis.

@ The XYZ system rotates again about the x axis by 8. The Z
axis is now at angle 8 with respect to the z axis.

@ The XYZ system rotates a third time about the z axis by a.
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Euler angles

e for a and +, the range is defined modulo 27 radians.

e for 3, the range covers 7 radians (but can't be said to be
modulo 7).

@ Precession, nutation, and intrinsic rotation (spin) are defined
as the movements obtained by changing one of the Euler
angles while leaving the other two constant.

Figure: Euler basic motions of
the Earth. Intrinsic (green),
Precession (blue) and
Nutation (red) taken from
en.wikipedia.org
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en.wikipedia.org

Euler angles

@ any rotation matrix R can be decomposed as a product of
three elemental rotation matrices

@ R= X(a)Y(B)Z(y) is a rotation matrix that may be used to
represent a composition of extrinsic rotations about axes z, v,
x, (in that order), or a composition of intrinsic rotations about
axes x-y'-z"

@ the number of euler angles in dimension D is quadratic in D;
since any one rotation consists of choosing two dimensions to
rotate between, the total number of rotations available in
dimension D is Nyot = (5) = D(D — 1)/2.

@ When studying rigid bodies in general, one calls the xyz system
space coordinates, and the XYZ system body coordinates.
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Euler angles

@ The space coordinates are treated as unmoving, while the body
coordinates are considered embedded in the moving body.

@ Calculations involving acceleration, angular acceleration,
angular velocity, angular momentum, and kinetic energy are
often easiest in body coordinates, because then the moment of
inertia tensor does not change in time.

@ If one also diagonalizes the rigid body’s moment of inertia
tensor (with nine components, six of which are independent),
then one has a set of coordinates (called the principal axes) in
which the moment of inertia tensor has only three components.
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Leibniz integral rule
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* & () flendb) =
(x, b(x)) - Eb(x) — f(x,a(x)) - La(x) + f a —f(x, t)dt,
@ A generalisation of the fundamental theorem of calculus if
= [f(t) dt then F'(x)=f(x),
o F(xi+Ax) — F(x1) = 22 f(t) dt — [ F(t) dt =
SRR E(t) dt.
o F(x1 +Ax)— F(x1) = f(c)- Ax

. F(x1+Ax)—F(x .
o limax_o % = limax—o f(c).



Differential equations
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Ordinary differential equations only contain functions of a
single variable.

Differential equations with partial derivatives include functions
of more than one variable.

The highest order derivative in the differential equation
determines the order of the differential equation.

(y")2 4+ 2yy’ + 5xy = sinx is an ordinary differential equation
of order 2.

(2£)2 — [sin(xy) — 4x]? = 0 is an ordinary differential equation

dx .
of the flrst order

8X3 + x5 + 8xat = 0 is a differential equation with partial
derlvatlves of the third order.



Ordinary differential equations

o F(x,y,y',--,y(M) =0 on an interval I.

o Fis rewritten as, y(" = f(x,y,---,y("1)

e A function ¢ such that ¢(" = f(x, ¢,--- , (") is a solution
to this differential equation on I.

@ Initial conditions are restrictions on the solution at a single
point, while boundary conditions are restrictions on the
solution at different points.

e Eg,y=2y—4d4x—y=ce®*+2x+1

eEg,.yV+y=x—y=cicosx+ csinx+ x

0 ag(x)y(™ + a1(x)y("D 4 .- 4 ay(x)y = b(x) is a linear
ordinary differential equation which constitutes our focus in
this section of the course.
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Ordinary differential equations
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yW4ay" 13y =x; =% yp=e*X+3

X2y" +5xy" +4y =0, x>0; y1 =x2,yo=x2Inx
y —2xy =1, y=e" Iy e tdt + &

Ue T Uy =0, 1 =x2+y% up=xy

Upt — CPUyy = 0; up = sin(x + ct), up = sin(x — ct), u3

f(x+ ct) + g(x — ct)
Usx + Uyy + Uz, = 0; 0 = (x2 +y2+ 22)*1/2

y'txy' +y=0y(1)=1y'(1)=-1 y=
cos(In x) — sin(In x)



First order differential equations

o y'=1f(x,y) y(x0) = yo there exists a unique solution if f and
% are continuous around (xop, ¥o)-

o First order linear differential equations: % + a(x)y = f(x)
o Assuming A(x) = [~ a(t)dt,
F(ANy) = A(y + a(x)y) = AW f(x)
o General solution is: y = e =A%) [X AWf(t)dt + ce=AX)
e Imposing the initial condition, y(x0) = yo,
y = e—AKX) f;; eA(t)f(t)dt + yoe—(A(X)—A(Xo))

eeg,y =y+sinx, e X(y —y)=(e*y) =e *sinx

e Xy = [Me tsintdt + c = e *(sinx + cosx) + ¢
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First order differential equations

@ Solve y' =y +sinx, y(0)=1
o (xInx)y' +y=16x3 x>1,thus (yInx) = 6x2,

3
yzz)fnjc x>1.

@ Assuming a(x) and f(x) to be continuous on the interval
(c, B) for every xp € (v, ), the initial value problem
y'+a(x)y = f(x) y(xo0) = yo, for every value of yy has one
and only one solution on the interval («, f3).

C

o xy' +2y =4x2, x>0, y(1) = 2, result iny:x2+?,
@ Solve it for y(1)=1.
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First order differential equations

y' 4+ £ =3cos2x,x >0

Y +3y =x+e >
(x*+1)y'+y+1=0
y'sin2x = y cos2x
xy)+y+4=0,x>0

X2y —xy = x> +4,x >0

Yy +2y =xe"?;y(1)=0
y'+ iy = y(r) =0

y' +ycotx =2x—x*cotx,y(3) =5 +1
y' = x3y = —4x3y(0) =6
y'+ ytanx =sin2x;y(0) =1

sinxy’ + cosxy = cos2x,x € (0,7); y(5) = 1/2
y+L=e" x>0 y(1)=0
Yty =xey(0) =1
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Nonlinear First order DEs

@ For nonlinear equations there is no general method for solving
the DE.
Separable differential equations:
y'=f(x,y) = p(x) +aly)y’ =0
p(x)dx +q(y)dy =0 — d[P(x) + Q(y)] =0 —
P(x)+ Q(y) =c =y =¢(x,c)
Eg,y = 32&3’1;3 — (24 sinx)dx —3(y — 1)?dy =0 —
1/3

2x —cosx —(y =13 =c =y =1+ (2x — cosx — ¢)

o Eg. y =2 y(0) =1 (v —y+1/y)dy =
(x3—1)dx = y*/4 —y?/2 +In|y| =x*/4 —x+ ¢
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Complete first order DE

134/1

y = Ei i’/g — p(x,y)dx + q(x, y)dy = 0 this equation is

complete in a region D if and only if there is a g such that
dg(x,y) = p(x, y)dx + q(x, y)dy

9 9
o =p(xy), g =aqlxy)
E.g., For

(4x — y)dx + (2y = x)dy =0, g(x,y) =2x> —xy +y* gis
an integral of the differential equation and the curves
g(x,y) = c are its integral curves.

Theorem: The necessary and sufficient condition for

completeness of p(x, y)dx + g(x, y)dy = 0 in a region D of the

xy plane is to have g—y = g—;’, (x,y) €D



Complete first order DE
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The condition is necessary since gy, = gy, to prove sufficiency
consider g such that g«(x,y) = p(x,y), gy(x,y) = q(x,y)
thus we have g(x,y) = [* p(t,y)dt + h(y) = g,(x,y) =

x 0
J¥ 2N bt 4 W (y) = g(x, y) thus

W(y) = q(x,y) — [* 2 dt

If we show that the right hand side is only a function of y, we
have an algorithm for evaluating g.

x Op(t, 9 0
Felaey) = [* B dr] = 52— 5 =0
E g (4x — y)dx + (2y — x)dy = 0 for which
52 = -1, gg = —1. Thus

dg(x,y) = (4x — y)dx + (2y — x)dy



Completing a first order DE
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glx,y) = 2x% — xy + h(y) so
—x+h(y)=2y—x h(y)=y*+c,

g(x,y) =2x>—xy +y?>+c

Integration factor

1(x, y)p(x, y)dx + u(x, y)q(x, y)dy = 0
(1) = £ (1q)

p(x,y)% - (X,y)% + (%’f - g—z),u = 0. This PDE must be
solved to find the integrating factor.

E.g., x> — y? + 2xyy’ = 0, Assuming

p=p(x),  p(x)(x* = y?)dx + p(x)(2xy)dy = 0

SO =y = Z[n(2xy)] = xp + 20 =0 = p(x) = x>

(1-5)dx+(Z)dy =0 = x+y?/x = c = y? + (x—a)? = &°

x2



Completing a first order DE: excersize

Y = x3y2

(1+x )1/2y’ =1+y?

Y =x+y2+xy +yiY(1) =

(x + 1)y +y?=0;y(0) = 1

(2x — y)dx —xdy =0

(x —2y)dx + (4y — 2x)dy =0
yax-xay deZXdy +xdx =0

3(x — 1)%dx — 2ydy =0

Y (1 + 2x2y)dx + x3eVdy = 0

(x% 4 y?)?(xdx + ydy) + 2dx + 3dy = 0
(x2 + y?)dx + 2xydy = 0,y(1) =1
0, y(0) =2

(x = y)dx + (2y —x)dy =0,y(0) =1

If p=n(x), Gy =0, G =PEr®dx

e 6 6 o6 o
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Completing a first order DE
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® 6 6 6 ¢

If = ply), % =23Pedy

(x* - y2) —2xyy’ =0

y+ (2 =x)y =0

(Bxy +y?) + (x* +xy)y' =0

(3xy + y2)dx + (3xy + x?)dy = 0

Bernoulli equation: y’ + a(X)y = b(x)y® use z = y'=@
Z+(1—-a)a(x)z—(1—a)b(x)=0

xy! —y = eXy?

Riccati equation: y’ = a(x)y + b(x)y? + c(x) assume
y = ¢(x) to be a private solution and use y = ¢(x) + 1/z to
derive z' + [a(x) + 24(x)b(x)]z = —b(x).

Y =14+x2=2xy+y? ¢(x)=x

Y =xy*+(2x =1y =x—-1, ¢(x)=1

YV 4xy? =22y +x3=x+1, ¢(x)=x-1

Y4y = (1+2e)y +e> =0, ¢(x)=e"

Yy +y?2-2y+1=0

get



Completing a first order DE
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® 6 6 6 ¢

Ifp=nly), % =22"dy

(x*—y?) —2xyy' =0

y+ (2 =x)y =0

(Bxy +y?) + (x* +xy)y' =0

(3xy + y?)dx + (3xy + x?)dy =0

p=x+y

Bernoulli equation: y’ 4+ a(X)y = b(x)y® use z =y
Z+(1—-a)a(x)z—(1—a)b(x)=0

xy! —y = eXy?

Riccati equation: y’ = a(x)y + b(x)y? + c(x) assume

y = ¢(x) to be a private solution and use y = ¢(x) + 1/z to
derive z' + [a(x) + 24(x)b(x)]z = —b(x).

Yy =14+x2-2xy +y?, o¢(x)=x

yV —xy?+(2x—1)y=x—-1, ¢(x)=1

YV 4xy? =22y +x3=x+1, ¢(x)=x-1

Y4y —(1+20)y+e> =0, o(x)=e
Y+y*=2y+1=0

-«

get



Linear differential equations

o ao(x)y(" +a(x)y(" D + - + an(x)y = b(x)

o y(M 4 p1(x)y(" D 4 - 4 pa(x)y = f(x)

o Ln= 2+ pi(x) L+ + palx)

o L[yl = f(x)

@ Existence and uniqueness theorem: If p1, p2,--- , py and f are
continuous on the interval |, Vxg € | the above equation has
one and only one solution y = ¢(x) satisfying
¢(X0) = Qy, d)/(XO) = a2, ¢H(X0) =3, agb(n_l)(XO) = Qp.

o y'+p(x)y' +q(x)y =0; y(x)=0,y'(x0) =0 only has the
trivial solution.

139/1



Linear differential equations

o xy" + (cosx)y’ + 175y = 2x solutions can be determined for
each of the intervals (—oo, —1),(—1,0) and (0, c0).

e Homogeneous differential equations have f(x)=0. E.g.,
y"+ p(x)y" + q(x)y = 0.

@ Operator L is called linear iff for arbitrary constants
c1,C,C3,- -, Cx and functions
b1,02,+ ,Pki Llaagr + coga + -+ + cki] =
allgi] + coLlgo] + -+ + ckl[dx].

® cip1+ oo+ -+ ckdpk = Y, Cigi is a linear combination of
the k functions ¢;.

o If ¢1,¢2, -+, ¢k are solutions of L,[y] = 0 each linear
combination of them is a solution as

La[3oF 1 cidi] = S cilalgi] = 0.
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Homogeneous Linear differential equations

o Lyl]=y"—y=0

° y/// +y/ — 0

@ m functions g1, g2, -+, gm are linearly independent on the
interval | iff c1g1(x) + c2g2(x) + - - - + cmgm(x) = 0 implies
thatci=c=---=c¢, =0.

@ The set of functions g1, 42, -+, gm are linearly dependent on
the interval | if there is a set of constants ¢1, ¢, -, Cm

including at least one non zero ¢; such that for
Vx €l cgi(x)+ cga(x) + -+ cmgm(x) = 0.
e E.g., {e"X e}

e E.g., {e~, e %, coshx}.
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Wronskian

@ Introduced by Polish mathematician Jozef Wronski.
o If 1, f, -+, f, are (n-1) times differentiable functions on I,
fi(x) B(x) - fa(x)
f(x) Bx) - f(x)
W(flvfé)”'vfn): : : .
”—'1 I'l—'l n—.1
000 B0 e #7000
2 3
2 .3y _ | X X _ A
e Eg, W(x%,x°) = oy 3x2 | =X
1 e e
o Eg, W(1,eX,e*)=|0 & —e*|=2
0 e e~
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Wronskian

143/1

o [ $1(x0)  d2(x0) } [ by

Theorem: Given p(x) and g(x) continuous on |, two solutions
of La[y] = y" + p(x)y’ + q(x)y = 0 are linearly independent on
| iff their Wronskian is non-zero on |.

If 1 and ¢, are dependent

3by, by #0| bipr+ bap =0 b1 + b, =0

[¢1 ¢2}|:b1]:0
o1 ¢y | | b

Nonzero Wronskian implies by = bo = 0 and that ¢; is linearly
independent from ¢o.

Assume {¢1, ¢} are linearly independent and
Ixo W(¢1, ¢2)(x0) =0

] = 0 has nontrivial solutions b1, by

¢>/1 (x0) ¢/2(X0) bo



Wronskian

@ Define ¥(x) = bioo1(x) + baod2(x)

@ (x0) = b1og1(x0) + b2o2(x0) =0

o Y'(x0) = brod1(x0) + b2o3(x0) = 0

@ 1(x) is the solution to Ly[y] =0, (x0) =0, ¢'(x)=0
According to the existence and uniqueness theorem ¥ = 0.

@ This implies linear dependence of {¢1, ¢2}.
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Wronskian
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Theorem: Wronskian of the solutions to the Ly[y] =0 on | are
either never zero or always zero.

Proof: W(¢1,¢2)(x) = ¢r1h — 2y, L¥ = ¢1¢5 — gl =
p(x)($162 — ¢p¢1) = —p(x)W
Abel relation: W(¢p1, ¢2)(x) = ce — I (t)dt, xel

W(61,62)(x) = W(on,62)(r0)e” Ho™O%, xe
If p1(x), p2(x),- -, pa(x) are continuous on the interval |, then

solutions ¢1(x), @2(x), -+, dn(x) of
Loly] = y™ + p1(x)y(™=D - + pp(x)y = 0 are linearly
independent iff their Wronskian is nonzero.

Further, Z¥ + p1 (x)W = 0



Wronskian

o W(d1, ., dn)(x) = W(dr, - . n)(ro)e 0P xe
o y" —4y"” + 5y’ — 2y =0 has solutions
b1 = €5, o = xe¥, 3 = €2, these constitute a fundamental
set of solutions.

@ Theorem: Linear homogeneous differential equation of order n
has n linearly independent solutions.

@ Proof: consider

Laly] = 0; y(x0) =1,y'(x0) = 0,y"(x0) = 0,--- ,y(" D(x0) = 0
Laly] =0 y(x0) =0,y'(x0) = 1,¥"(x0) = 0,--- ,y(" D(x0) = 0

Laly] = 0; y(x0) =0,y (x0) = 0,y"(x0) =0, ,y("V(x) =1
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# of solutions of a LHDE

@ By existence and uniqueness theorem the above equations have

solutions ¢1(x), d2(x), -+, dn(x)

o
C1¢1(X) -+ CQ¢2(X) + -+ cngzﬁ,,(x) =0
c1¢y (x) + 2o (x) + -+ + cadp(x)
1y (x) + @y (x) + -+ cagp(x) =0
ad" (x) +aed () + o+ ool (x) =0
@ Substitute x =xgtoderiveci = =---=¢, =0

@ n linearly independent solutions of a linear differential equation
of order n are called a fundamental set of that equation.

147/1



Linear vector space of solutions

@ Theorem: If p1(x), p2(x),- -, pn(x) are continuous on the
interval |, and if solutions ¢1(x), ¢2(x), -, dn(x) are a
fundamental set of

Loly]l = v + pr(x)y"=1) 4+ .. + pa(x)y = 0 on |, for every
solution qﬁ( ) there is a unique set c1,- - , ¢, such that
¢(X) = Cl(bl(x) + C2¢2(X) +---+ Cn¢n(X)
@ Proof: Assume
d(x0) = ao, ¢'(x0) = a1, -+, ¢V (x0) = ap_1

c1é1(x0) + c2¢2(x0) + '+Cn¢n(xo) = o
ady(xo) + @da(x) + -+ cdp(x) =

adl" M (x0) + ol P (x0) + - + st D (x0) = an
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Linear vector space of solutions

e if solutions ¢1(x), ¢2(x),- -, dn(x) are a fundamental set of
Laly] = ¥y + p1(x)y" D + - 4 p,(x)y =0 on |,
W(¢1, - ,dn)(x) # 0. Thus the above system has unique

solutions ¢, --- , c0. Define
= cf¢1(x) + 3p2(x) + -+ cdn(x)

@ According to existence and uniqueness theorem ¢ = ¢.
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Linear nonhomogeneous differential equations

o Consider a private solution ¢,(x) of
Laly] = ¥y + p1(x)y"D + .- + py(x)y = f(x) where p;(x)
and f(x ) are continuous on |, and {¢1(x), P2(x), -, dn(x)} is
a fundamental set of the corresponding linear homogeneous

DE. If ¢(x) is any other solution to the L,[y] = f(x) then
Lo[¢p — ¢p) = La[@] — La[¢op] = 0 thus ¢ = ci¢;i + ¢p
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Linear nonhomogeneous differential equations

e Theorem: If ¢p(x) is a private solution of L,[y] = f(x), every
solution can be written as ¢(x) = ckpk(x) + ¢p(x) this is
called a general solution.

e Find the general solution to y*) + 2y” 4+ y = x
® ¢p =x, {cosx,sinx,xcosx,xsinx}, ¢(x)="
oEg,y' —y=x y(0)=0,y(0)=1
° pp=—x {e, e}
o Eg.,
X2y +4xy' +2y =6x+1, x>0, y(1)=2, y(2)=1

o ¢p=x+1/2,{1/x,1/x°}
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Linear differential equations: Exercise

o If L[y] = y” + ay’ + by, find a) L[cosx], b) L[x?], ¢) L[x"], d)

L[erX]
o If L[y] = y(™ + a;y("=1) ... + a3,y determine L[e™]
o L[y] = x?y" + axy’ + by determine L[x'], do the same for

L[y] — X3y/// + 81X2y” + azxy’ + azy

@ Check validity of given solution and determine its validity
integral. xy” +y' =0; ¢(x) =In(%)

0 4x%y" +4xy' + (4> — 1)y =0; ¢(x) = \/%sinx

o (1—x2)y" = -2xy' +6y; ¢(x)=3x>—-1

o (1-x%)y"=-2xy' +2y +2; ¢(x)=xtanh~1x

o Show that ¢1(x) = §x3 and ¢(x) = %(X3/2 + 1)? satisfy

(y')? — xy = 0 on the interval (0,00). Do their sum satisfy this
DE?
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Linear differential equations: Exercise

o y' —3y?/3 = 0 has the general solution y = (x + ¢)3. Test if
linear combinations of these solutions are solutions. Test the
independence of different solutions? Consider the following

_ (x—a)P} x<a
solutions: a = b
utions: 2) (x) {O =)
(x—a)® x<a
0 x<b
o(x) = 3 c) p(x) =<0 b>x>a
(x=b)> x>b 3
(x—=b)> x>b
@ Show that functions 1,x, x2,--- , x" constitute a linearly

independent set.

@ Prove that n solutions of the DE
Lyl = ¥y + p1(x)y"™ + -+ + pa(x)y = 0 are linearly
independent iff their Wronskian is nonzero.

@ Drive the Abel relation for n=3. To this end show that

$1 P2 @3

w=| 6 ¢ o

/1 /1 /11
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Linear DE with constant coefficients

Yy ary (= 4 ay(=2) a0y =0
L,,:%+al%+--~+an:D”+alD”_1+---+a,,
Lly] = (L1 Li)ly]

If ¢ is a solution to L;[y] = O then

Ll¢] = (L1---Li—1Liy1--- Lx)Li[¢] =0

@ In this way solutions of linear homogeneous DE with constant

coefficients of order n can be deduced from solutions of DEs of
order one and two.

e 6 o6 o

e Eg,
Lalyl = y"+y'=2y = 0= (D*+D-2)y = (D-1)(D+2)y =0
{ex7ef2x}
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Linear DE with constant coefficients: exercise

155/1

Prove that roots of a polynomial with real coefficients appear
in complex conjugate pairs.

Prove that each polynomial of odd degree has at least one real
root.

Prove that each polynomial can be written as a product of first
and second order polynomials with real coefficient.

Write these polynomials as multiplication of first and second
dergree polynomials.

D3+1, D3-1, D*4+1, D*+2D?4+10, D3-D?4+D-1.



L homogeneous second order DE with constant coefficients
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For a second order DE L[y] = y” + ay’ + by = 0 try solutions
of the form ¢(x) = e

L[e™] = p(s)e™ p(s) = s+ as + b is called characteristic
polynomial of the DE.

@ p(s) = 0 is the characteristic equation of the DE.
@ p(s)=0—>s=s1,5
@ 51 #£5 ¢(x)= e + e including the case of complex

conjugate roots.

If s; = a+ bi then s, = a — bi. {e(atP)x ola=bi)x} o

{e?* cos bx, e sin bx}

A homogeneous equation in x is said to have a double root, or
repeated root, at a if is a factor of the equation. At the double
root, the graph of the equation is tangent to the x-axis.

s1 =% %L[esx] = L[%es’(] = L[xe™]

L[xe**] = p/(s1)e* + p(s1)xe* =0

o(x) = (a + cox)e™



L homogeneous second order DE with constant coefficients

e Eg,y"+2y/+10y =0, y(0)=1,
e Eg,y'+2y/+y=0, y(0)=1,y'(0)=0
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Higher order LHDE with constant coefficients

L[y] = y(n) -+ aly(n_l) + -4+ any = 0
L[e™] = p(s)e™ where p(s) = s" + a1s" 1 4 .-+ a, is the
characteristic equation of our DE.

If s1,8,---,s; are roots of characteristic equation with
multiplicities of ny, no,--- , n; the fundamental set is as follows:

{ele,Xeslx, . 7an—leslx7 e52x’ Xeszx7 . ’Xn2—1652x7

S;ix S X ni—1 _s;jx
.,eJ’XeJ’...7xl eJ}

Eg,y® 42y 4+y=0—-(D3+1)2%y =0
D3(D—-1)*(D+1)%y =0
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Higher order LHDE with constant coefficients: Exercise

@ Write a fundamental set for each of the following equations.
e D% =0

o (D+2)*y =0

o (D?>+4)(D—3)’y =0

o (D?+16)[(D —1)2+6]2y =0

o (D2 -1)(D*+2D+2)*y =0
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Finding private solutions: Variation of parameters

o Lyl =y"+ p(x)y’ + q(x)y = f(x) with {¢1, 2} as a
fundamental set.
Assume ¢p = U11 + Uy
bp = U1 P1 + UrP2 + 19 + U2y
Assume vy + upp = 0. Thus ¢, = u1¢) + uagdh.
bp = U197 + oy + U1 P} + urPh.
L[¢p] = ¢ + p(x)0p + q(X)Pp = 1¢] + u23 + Uiy +
uydy + p(x)(urd] + tagh) + q(x)(urd1 + taga) =
un(=pe — q1) + wa(—pdy — qp2) + Uiy + updy +
p(x)(u1¢) + u2gh) + q(x)(u1d1 + a2) = f(x)
o g+ oy = F
g gl =L

o1 ¢ || w f(x)
e By Cramer's rule: vf = 7_‘/{/(()21‘172)(3) up = C(vx(ifléz%

x f x f
o u(x) =~ [ wiands 2 = [ WS

o Finaly, ¢p(x) = [ 2LII-01donl) £(5) gs
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Finding private solutions: Variation of parameters

° Suppose dt" + pa(t )dtnn:lly + -+ pa(t)y = g(t)

@ Solve the corresponding homogeneous differential equation to
get: ya(t) = Cuy1(t) + Goya(t) + ... + Cayn(t).

@ Assume a particular solution to the nonhomogeneous
differential equation is of the form:

Y(t) = n()ni(t) + w2(t)y2(t) + ... + un(t)yn(t).

@ Solve the following system of equations for uj(t), uj(t),, uj(t).
ur (D)ya(t) + up(£)ya(t) + ...+ un(t)yn(t) =0

Ui(t)y{(t) + up(t)ya(t) + - + up(t)ys(t) 0

YTV + (A () + ot (V) = g(0)
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Finding private solutions: Variation of parameters

oy -2y +y= %;2 where the fundamental set is {e*, xe*}
o y" +y =tanx

oy —y +2y = e *sinx

° V'Y = G

o (D?+10D —12)y = (51

o (4D? — 8D +5)y = e*tan?(x/2)

oy +y=g(t)

162/1



Undetermined multipliers method for finding PS
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One can guess the general form of the private solution and
substitute in the DE to find the undetermined multipliers in the
general form.

y'+y=3x>+4 = (D> + 1)y =3x>+ 4

Note that D3(3x% +4) =0 — D3(D?+ 1)y =0

y=c+ ox+ c3x% 4 ¢4 cOs X + G5 sin x

Substituting y into original DE determines multiples except for

cos x and sin x multiples as they are solutions of the
corresponding homogeneous equation and cancel out.

Eg.,y'+2y=¢



Undetermined multipliers method for finding PS
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"

o y'+y =sinx

e Since (D?+1)sinx =0,(D?+ 1)(D®+ D)y =0

o (D —2)3y =3e*

e Since (D —2)(3e*) = 0,(D —2)*y = 0. Thus ¢p(x) = cx3e®

@ The method of undetermined multiples has the following
limitations.

In L[y] = f(x), L must contain only constant coefficients.

f(x) must contain functions which satisfy a homogeneous linear
DE with constant coefficient.



Undetermined multipliers method for finding PS

o If f(x) = pn(x) = aox" + a1x" "L + -+ a, — dp(x) =
Xx"(Aox" 4+ Ax"t .+ A
o If
F(x) = pa(x)e™ = dp(x) = x"(Aox" + Arx""1 4 + Ap)e™
° If f(x) = pn(x)e™*sin Bx or f(x) = pn(x)e™* cos Bx then
(x) r(on + A1x” Lo Ap)e® cos Bx + x(Agx™ +

Arx" -4 Ap)e*sin fx
L[y] _ y/// + y// — 3X3 -1
y" + 4y = xe*

y" —y = x?eXsinx

If L[y] = fi(x) + fo(x) + - - - + f(x) and

Llpp1] = fi(x), Llpp2] = f2(x), - -+, L[ppk] = fi(x) then by
linearity of L,

Llgp, + @p, + -+ + &p ] = fi(x) + f2(x) + - -+ + fi(x)

e 6 o6 o
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Undetermined multipliers method for finding PS

y" + 4y = xe* + xsin 2x

Y+ 3y =240

y'+ay' + 4y = xe™™

y"” + 9y = 2xsin3x

% — 4% + 8y = (1 +sin2t)

(]
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Euler differential equation
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nth order homogeneous Euler equation:

(x — x0)"y(™ + a1(x —x0)" Ly D 4 ... 48,y =0
Xp is the singularity of the Euler equation.

Consider L[y] = x?y" +axy’ + by =0, x>0

Impose the change of variable t =Inx. y' =+ %

" d?y d?tdy _ 1 d%y 1 dy
—dt2( )+dx x2dtZ2 X2 dt

2dt T x? dt2 x2 dt
d
FHa-1F +by=0
Characteristic equation: s? +(a —1)s+ b =0
Depending on A for the characteristic equation fundamental
set is {1t = x1 @2t = x2} {e%t = x5 tel! =
x*Inx},  {x%cos(fBInx),x*sin(SInx)}
If we substitute x° for y, L[x®] = [s? + (a — 1)s + b]x* =0



Euler differential equation

@ The characteristic equation p(s) = s>+ (a—1)s + b= 0. If
A >0 — d(x) = c1x® 4 ox2, x > 0 where x®t = e%/nx

o If A =0 we note that
%L[xs] = L[x*Inx] = p/(s)x* + p(s)x° Inx

o At s = s, L[x Inx] = p'(s1)x™ + p(s1)x** Inx = 0. Thus
d(x) = ax + oxTinx,x >0

o If A <0 — ¢(x) = e™(cycos(SInx)+ casin(BInx)),x >0

@ For x < 0 we make the change of variable { = —x. Euler
equation become C2 dCQ + aC +by=0

c1¢® + (™ siEseR
P(¢) = al™ + (™ In¢ si=s5€R
ci(¥cos(BIn() + c2(*sin(BIn¢) s=a=xif
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Euler differential equation
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@ Combining solutions for x > 0 and x < 0.
c1|x]® + co| x|
¢(Ix[) = q alx|* + calx|* In|x]
ci|x|* cos(BIn |x|) + c2|x|*sin(BIn |x])
x2y" +2xy' +2y = 0;y(1) = 0,y'(1) =0
x?y —5xy’ +13y =0
x2y" +5xy’ +4y =0
x2y" —3xy’ + 4y = Inx
x2y" +4xy’ —6y =0
Order reduction technique:
Lyl = x%y" + 53y = 2(1 +x?)y = x



Series
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e Find the convergence interval for )

Every power series defines a continuous differentiable function
over its radius of convergence. > /7 ; arx" = f(x)

(Do arx ) (X0 bix®) = Y202g ckx® where
Ck = an:o ak—mbm - anzo bk_mam
Uniqueness of the taylor series.

[e¢) 2n

n
n=0 nt1% and

Zoo (x+1)"

n=1 27p

1 _d_ 1 _ oo n—1
e (1—x)2 = dx (1-x) — Zn:l hx
@ Linear indepence of power series starting from different powers

of x.

If p(x) and q(x) are analytic around xg then

y" + p(x)y’ + g(x)y = 0 has analytic solution around the point
X0-

E.g., Determine a series solution for the following differential
equation about xp =0, y” + xy’ +y = 0.

G(x) = 2oklo akx”



Series

0 Dok +2)(k+ )apxk + 300 kakxk + > pakxk =0
00 2k
o ¢(x) = ao[l + X1 (- mrpea-me] T alx +
0o 2k+1
Y (D e e
@ Legendre differential equation,
(1—x2)y" —2xy' + \(A+1)y =0
@ Solution would converge on the interval (-1,1).
0 Y2 l(k+2)(k+ Lakia + (A= k)A+k+1ak]xk =0
@ For natural values of X\ one of the solutions would be a
polynomial. These are Legendre polynomials.

e If p(x) and q(x) are analytic around xg then
y" + p(x)y’ + g(x)y = f(x) has solution ¢(x) such that
#(x0) = a and ¢/(x0) = b, Taylor series of the solution would
have a convergence radius greater than the smallest of the
convergence radius of p, q and f at xp.
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Numeric solution to a differential equation

@ Start by substituting Taylor series of p and q in the
corresponding homogenous equation. To derive
on(x) = a0 + a1x + Y32, (akao + Brar)x

o Lemma: If 3" cxx* has convergence radius
R*>0 Vr<R* IM:|clrk<M

e Numerically Solve the equation dyd—(tt) = —\y(t) and compare
the resulting solution to exact solution.
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