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Aim
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Your most valuable asset is your learning ability.

This course is a practice in learning and specially improves your
deduction skills.

This course provides you with tools applicable in and necessary
for modeling many natural phenomena.

The fundamental laws necessary for the mathematical
treatment of a large part of physics and the whole of chemistry
are thus completely known, and the difficulty lies only in the
fact that application of these laws leads to equations that are
too complex to be solved.

The first part of the course reviews Linear algebra and calculus
while introducing some very useful notations. In the second
part of the course we study ordinary differential equations.



Course Evaluation

Final exam 29 Khordad 9 AM  60%
o Midterm exam 29 Farvardin 10 AM  40%
Tutorials 10%

o Office hours: Mondays 9 AM - 12 PM
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To be covered in the course
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In the first part of the course we try leveling the class by
reviewing some very useful concepts from (linear) Algebra and
calculus.

Complex numbers, Vector analysis and Linear algebra
Vector rotation, vector multiplication and vector derivatives
Series expansion of analytic functions

Integration and some theorems from calculus

Dirac delta notation and Fourier transformation

Curvilinear coordinates.

Matrices



To be covered in the course

@ When we know the relation between change in dependent
variable with changes in independent variable we are facing a
differential equation.

@ The laws of nature are expressed in terms of differential
equations. For example, study of chemical kinetics, diffusion
and change in a systems state all start with differential
equations.

@ Analytically solvable ordinary differential equations.

@ Due to lack of time a discussion of partial differential equations
and a discussion of numerical solutions to differential equations
are left to a course in computational chemistry.
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References

@ "Mathematical methods for physicists”, by George Arfken and
Hans Weber

@ Ordinary differential equations by D. Shadman and B. Mebhri
(A relatively thin book in Farsi)

@ Linear Algebra, Second Edition, Kenneth Hoffman, Ray Kanze
@ Applied Mathematics for Physical Chemistry by J. Barrante
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Complex numbers

@ Real numbers

@ Fundamental theorem of algebra: " Every non-constant
single-variable polynomial has at least one complex root.”

@ X2+ 1 =0 defines x = i = /—1. Complex number
x =a+ bi = (a,b) = ce’.

@ Complex conjugate, Complex plane, summation, multiplication,
division, and logarithm.

o Euler formula, "our jewel”, e’® = cos(a) + isin(«) for real a

@ Proof by Taylor expansion
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Complex numbers
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ix —ix . X _ a—ix
cosx = &EE—, sinx = £=¢
. Yy -y
cosh(y) = cos(iy) = =H—,

eY—e—Y

isinh(y) = sin(iy) — sinhy = €=

cos(x) - cos(y) = [cos(x + y) + cos(x — y)],
cos(x + y) = cosxcosy — sinxsiny,

sin(x + y) =sinxcosy + cosxsin y.



Coordinate System

@ Rectangular cartesian coordinate system is a one to one
correspondence between ordered sets of numbers and points of
space.

@ Ordinate (vertical) vs. abscissa (horizontal) axes.
@ Round or curvilinear coordinate system

@ Curvilinear coordinates are a coordinate system for Euclidean
space in which the coordinate lines may be curved, e.g.,
rectangular, spherical, and cylindrical coordinate systems.

@ Coordinate surfaces of the curvilinear systems are curved.
@ Plane polar coordinate system,
x=rcosf, y=rsinb, dS = rdrd,
@ Spherical polar coordinates
@ x=rsinfcos¢p, y=rsinfsing, z=rcosf, dV =
r? sin Odrdpdb
@ Rectangular coordinates
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Coordinate System

dr=r*sinddrdodo

rsing dg

rsin@
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Vector analysis

@ Scalar quantities have magnitude vs. vector quantities which
have magnitude and direction.

@ Triangle law of vector addition.

o Parallelogram law of vector addition (Allows for vector
subtraction), further it shows commutativity and associativity.

B B
B
A A A ¢
C E
B . D
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Vector analysis

@ Direction cosines, projections of A.

@ Geometric or algebraic representation.
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Vector analysis
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Unit vectors, A = A& + A, J + A, 2.

Expansion of vectors in terms of a set of linearly independent
basis allow algebraic definition of vector addition and
subtraction, i.e.,

Aj:B_x(A + B.)+y(A, £B)) + 2(A, £ B,).

|A|, Norm for scalars and vectors.

Ac=|Alcosa, A, =|Alcosf, A, = |A|cosy
Pythagorean theorem,

A2 = A2 + A2 + A2, cos? o+ cos? 3+ cos?y = 1.
Vector field: An space to each point of which a vector is
associated.

Direction of vector r is coordinate system independent.



Rotation of the coordinate axes

° X
o X' = xcos¢+ ysing y' = —xsin¢ + y cos ¢
@ Since each vector can be represented by a point in space a

vector field A is defined as an association of vectors to points
of space such that

Al = Accos¢p + Ay sin¢ A, = —Aysing + Ay cos ¢
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N-dimensional vectors

x| | cos¢ sing X
[y’]_[—simb cosqﬁ][y]'

@ X = X1, Y —2Xo, Z—X3

N .
° x| =) i1 X i=1,2--- N, ajj = cos(x!, xj).
@ In Cartesian coordinates,
ox!
x! = cos(x{, x1)x1 + cos(x], x2)x2 + - - - thus aj = e
@ By considering primed coordinate axis to rotate by —¢,

xj = >_;cos(xj, xI)x! = > cos(x!, xj)x! = . ajix! resulting in
ox;
BTJ = 4jj-

@ A is the matrix whose effect is the same as rotating the

coordinate axis, whose elements are a;;.
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@ A two dimensional array of elements is called a matrix.

@ A matrix with m rows and n columns is called an m by n
matrix.

@ If number of rows and columns are equal matrix is called
square matrix.

@ Matrix A is determined by determining its elements aj;.
e A+rB =2C ifFa,-j—l—b,-j:c,-j
o AB = Ciiff Cij = Zk a,-kbkj

10 --- 0
01 --- 0
@ The identity matrix [ =
00 --- 1

@ If metrix A is composed of elements a;;, transpose of A, AT is
composed of elements aj;.

o Inverse of the sqare matrix A is defined by AA™t = A~1A = /.
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Vectors and vector space
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e Orthogonality condition for A: ATA=/ or
Ox! Ox! Oxj O Ox;
ijdik = ! ! = B — ! = — = (S
Z,-: 2 ik Z B} O Z oxl Oxi  Oxe K

By depicting a vector as an n-tuple, B = (B1, By, -+, Bp),
define:

Vector equality.

Vector addition

Scalar multiplication
Unique Null vector
Unique Negative of vector

Addition is commutative and associative. Scalar multiplication
is distributive and associative.



@ A group is a set equipped with a binary operation which
combines any two elements to form a third element in such a
way that closure, associativity, identity and invertibility called
group axioms are satisfied.

@ E.g., the set of integers together with the addition operation,
but groups are encountered in numerous areas, and help
focusing on essential structural aspects.

@ Point groups are used to help understand symmetry
phenomena in molecular chemistry.

e A group is a set, G, together with an operation * (called the
group law of G) that combines any two elements a and b to
form another element, denoted a* b or ab.
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@ Closure: For all a, b in G, the result of the operation, a*b, is
also in G.

@ Associativity: For all a, b and c in G, (a*b)*c = a*(b*c).
@ Identity element: There exists an element e in G such that, for
every element a in G, the equation e*a = a*e = a holds. Such

an element is unique, and thus one speaks of the identity
element.

@ Inverse element: For each a in G, there exists an element b in
G, commonly denoted a=?! (or -a, if the operation is denoted
"+"), such that a*b = b*a = e, where e is the identity
element.
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Groups for which the commutativity equation a*b = b*a
always holds are called abelian groups

The symmetry group is an example of a group that is not
abelian.

The identity element of a group G is often written as 1 or 1 a
notation inherited from the multiplicative identity.

If a group is abelian, then one may choose to denote the group
operation by + and the identity element by 0; in that case, the
group is called an additive group.

There can be only one identity element in a group, and each
element in a group has exactly one inverse element.

The existence of inverse elements implies that division is
possible
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o

a field is a set on which addition, subtraction, multiplication,
and division are defined, and behave as the corresponding
operations on rational and real numbers do.

There exist an additive inverse -a for all elements a, and a
multiplicative inverse b™! for every nonzero element b.

An operation is a mapping that associates an element of the
set to every pair of its elements.

Associativity of addition and multiplication
Commutativity of addition and multiplication
Additive and multiplicative identity

Additive inverses

Multiplicative inverses

Distributivity of multiplication over addition

The best known fields are the field of rational numbers, the
field of real numbers and the field of complex numbers.



Linear vector spaces

22/125

@ A ring consists of a set equipped with two binary operations

that generalize the arithmetic operations of addition and
multiplication.

A vector space over a field F is a set V together with two
operations that satisfy axioms listed below.

Vector addition + : V x V — V/, takes any two vectors v and w
and assigns to them a third vector commonly written as v + w.

Scalar multiplication - : F x V — V/, takes any scalar a and
any vector v and gives another vector av. (The vector av is an
element of the set V ). Elements of V are commonly called
vectors. Elements of F are commonly called scalars.



Linear vector spaces

Axiom Meaning

Associativity of addition u+(v+w)=(u+v)+w
Commutativity of addition u+v=v+u

Identity element of addition 30 € V, called the zero vector,

such that v+ 0=v Vv e V.
Inverse elements of addition for I—v € V., called the addi-
every v € V, tive inverse of v, such that v +
(-v)=0
Compatibility of scalar multiplica- a(bv) = (ab)v
tion with field multiplication
Identity element of scalar multipli- 1 denotes the multiplicative
cation 1lv = v, identity in F
Distributivity of scalar multiplica- a(u + v) = au + av
tion with respect to vector addi-
tion
Distributivity of scalar multiplica- (a+ b)v = av + bv
tion with respect to field addition
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Scalar or dot product
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@ Real n-tuples labeled R”, complex n-tuples are labeled C".

° Ignerqprod_yct sllouLd beﬁdisEributi\ie anci associa;cive; o
A-(B+C)=A-B+A-C A-(yB)=(yA)-B=yA-B

@ Algebraic definition: /T, BeR" A.-B= > AB;

o ABeC" A-B=Y,AB

@ Dot product of A by a unit vector is the length of A’s
projection into unit vectors direction.

o A = ]A]cosﬂazﬁ»?, A =|AlcosB=A-9, A, =

|Alcosy=A-2Z.

Geometric definition: A- B = AgB = ABs = AB cosf

R-Xx=y-y=2-2=1

X-y=%x-2=2-y=0

Perpendicular or orthogonal vectors.

X=e,y=e,Z=e; em e = Omn



Invariance of Scalar or dot product under rotation

o B (= > BiC = Z/ZiZjaliBia/jCj =
> () anay)BiC = 3, 058G = 3, BiG; = B - C; thus dot
product is scalar.

e C=A+B, C-C=(A+B)-(A+B)
AA+B-B12A B A.B=1(C2— A B
Therefore, X . ? is a scalar.

@ Another derivation for cosine law, C? = A% + B2 + 2AB cos

N =
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The sine law

a _ b __
sinA = sinB

@ This reminds us of the sine law:

9}
)
I
Q

B Law of sines

sinA B sinB B sinC

a b c

@ Triangle area,
S=1ah, = %a(bsm C)=1a (csm B) = 3chc = ic(bsin A).
o Ja(bsin C) = Ja(csin B) = 3c(bsin A)
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Vector or cross product

Geometric definition: ? = X X B C = ABsin®, ? is a
vector perpendicular to the plane of X and E such that X
and B and C form a right-handed system.

Cross product is non-commutative. X X E = _§ X X

]
O XXX=yxy=2x2=0
@ XXy=2 XxZ=-y, 2Zxy=-X

%
Angular momentum, L = 7 x ?; torque, 7 =7 x ? and
magnetic force, F = qV x B.

Treating area as a vector quantity.
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Vector or cross product

Bsin®

°
o AxB=C=(C.C.C)=

(AX+ Ay +A2) x (BX+ Byy+ B,2) =

(AxBy—A B )X x y+(AB, —A;B )5k x 2+(A, B, —A;B,)y x 2
o C,=A/B,-A;B,, C =A,B.-AB,, (,=AB,~A,B..
o (= AjBx — A(B;j, i,j and k are different.
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Vector or cross product

(A B, —A, B )+ A, (A B« —AB;)+A;(AB,—A,By) = 0.
—B-(AxB)=o.
° (X X E X B = A’B2sin 0.

[«
o A.-C =4 (Ax E?
As
B
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Levi-Civita symbol
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@ Levi-Civita symbol, permutation symbol, antisymmetric

symbol, or alternating symbol. €..j ...;.... €ogrripe
@ €ijyeriy = (—1)Pe12..n.
€iyin-eip
+1 if (i1, i2,- - ,in) is an even permutation of (1,2,--- ,n)
=< -1 if (i, k2, -+ ,ip) is an odd permutation of (1,2,--- ,n)

0  otherwise (no permutation, repeated index)
@ €jjk€imn =
0i10jmOkn + OimOjnOki + 0indji0km — 6im0j10kn — 0i10jnOkm — OinGjmOkI

o 30 €ikeimn = 211 (3i0imOkn + SimOjndki + OinGjiSkm —
3im0jidkn — 0ii0jn0km — Oin0jmOki) = OknOjm — Ojndkm



Levi-Civita symbol—applications

a11 a2 a13

o Determinant: | a1 ax» a3 | = €jjka1iazjazk

a31  d32  a33

o C = ij EijkAjBka 6 = Zijk EUkAjBkéi = 6UkAjBké;

o (AxB)-(AxB)= (D ik €ikAiBiE) - (3 mn €imnAmBné) =
> ijkimn €iik€imnAj BicAm Bndis = 3 jimn €ijk€imnAj BiAmBn =
ijmn((sknéjm_5jn5km)AjBkAmBn = ij AjBk(AjBk_AkBj) =
(30 APk Bi)— (3 AiBj) (3o k AkBx) = |A]?|B|*(1—cos? 0)

o (AxBY2=(APB2-(A-By
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Triple scalar product

OZ-BX?:X'( UkGUkB ) ZUkGUkABjCk:
ijl-e,'jkB,'CAk—E ? Z ? XXE
A CxB=-CBxA
A« A A
° Z . B X ? By B B, |. Volume of the parallelepiped
Cx Cy G,

defined by X § and ?
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Triple vector product

OZX(EX?):XE-F)/?
o 0= )(ilf -<Z? + y;;? --E? — X = z;;? -<Z? y = ——z;;? --Z?
o Ax(BxC)=2(BA.C-CA-B)

@ z is magnitude independent.
[Ax (Bx O =A2BxE?—[A-(Bx O
=1—cos>a—[A- (B x )]
= 22[(A-C)2+(A-B)? —2A-BA-CB- (]
= 7%(cos? 8 4 cos® ¥ — 2 cos a cos 3 cos )

o [A-(Bx Q)2 =
1 — cos? o — z%(cos? 3 + cos? y — 2 cos ar cos 3 cos )
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BAC-CAB

@ The volume spanned by three vectors is independent of their
order, thus z2 = 1.

@ XX (&kxy)=2z((X-9)X—(X-X)y) = —2zy, also,

XX (Xxy)=Xx2=—ythusz=1
o Lemma: A x € = D mno €mno€mAndio = Y Emni€mAn
o A'X (é X 6) = A’X (Zijk e,-jke,-BjCk) =

2 ijkmn €ijk€imnBj CkAnem =

ijmn(djm(skn - 5jn5km)8j CkAnem =

ij BjCkAkej — ij BjCkAjek = é(A‘ 6) — C_"(A‘ é)
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Taylor series
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@ Taylor series of a real or complex valued function f(x) that is
infinitely differentiable at a number a:
fa) + 50— a) + 20— a)? + T (x a4 =
P () (x —a)". When a = 0, the series is also called a

n=0 n!
Maclaurin series.

@ The Taylor series for any polynomial is the polynomial itself.

@ The Maclaurin series for 1/(1- x) is the geometric series
1+ x+x% 4+ x3+ - so the Taylor series for 1/x ata = 1 is
I-(x—D+(x—-12—(x—13+---

@ Integrate the above Maclaurin series, to find
In(1—x) = —x — $x> — 3x> — 2x* — .- -and the corresponding
Taylor series for In x at a = 1 is

(X—l)—%(X—1)2+%(X—1)3—%(X—1)4+-“.



Taylor series
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Taylor series for log x at some a = xq is:
RY
log(x0) + l(X_XO)_Xflg%"i_""

X0
The Taylor series for the exponential function ¥ at a =20 is
XO X1 X2 X3 X4 X5
ottt T Tt =

x2 x3 x4 x° _ oco xN

I+ x+5+5+5+355+ =200
If f(x) is given by a convergent power series in an open disc
centered at b in the complex plane, it is analytic in this disc.
For x in this disc, f is given by a convergent power series

o)
F(x) = 2 nzo an(x = b)".
Differentiating by x the above formula n times, then setting x

. (n) . .

= b gives: ALC) I an and so the power series expansion

n!
agrees with the Taylor series.

Thus a function is analytic in an open disc centered at b if and
only if its Taylor series converges to the value of the function
at each point of the disc.



Gradient, V

o ¢'(x1,x3,%3) = B(x1, X2, x3)
09’ (x1:25,%3) _ Op(x1,x2,x3) _ ¢ 0% _ ¢
° 61x2 : (’9fo _2187,07?—2 U8X

° % is behaving as a vector component.
J
_ _ ¢ 0 ~ 0 5 0
o Del =V —X& +y87y+25

o Calculate V£(r) where r = \/x2 + y2 + 22, result is 79
o V- di=Fldx+ Gdy + G2dz = do
@ Over a constant ¢ surface dp=vVe¢-dr=0.
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oxy)=C

[+] x

od<Z>:C1—C2:AC:(V¢)-dr
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Gradient, V

o X
Consider ¢(x,y, z) = (x*> 4+ y? + z?)'/2, find V¢ and direction
cosines of ng at (3,2,1).

o [A(r) rd3r = — [ f(r)V - A(r)d®r where A or f vanish
at |nf|n|ty
e F=-VU

Prove V(uv) = vVu+ uVyv.
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Ar A0 ar Y
r(f)
r(t + Af)
°
P—($0 L 00 1L 50Y. (¢ o

oV r= (X8X +y8y +Zaz)'(XX+y_y—|—ZZ) =3

V- (rf(r)) =72, v ("rf’*l) =7
° fﬁ(r) -VE(r)d3r=— [f(r)V- A( )d>r where A or f vanish

at infinity.
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| Y 7 __ 9V, oV, aV.
e Divergence of V, V.V = % + Tyy Az

o V- (pV) for a compressible fluid.

@ The flow going through a differential volume per unit time is:

Z

o (rate of flow in)grgH = (pvx)|x=0dydz
o (rate of flow
OUt)ABCD = (pVX)|x:dXdde = [pVx + %(va)dx]xﬂdydz
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Net rate of flow out|, = %(pvx)\ 0,0,0)dxdydz

. pvx(Ax,0,0)—pvi(0,0,0 _apv x,y,
limay_o 24 A)X <(0.0.0) ! X( ]’ooo

Net flow out (per unit time) =V- (pv) dxdydz.
Continuity equation: 8t L+ V.- (pV)=0.

V- (fV)=VFf-V+fV-V

B is solenoidal if and onlyif V-B=0

A circular orbit can be represented by ¥ = Xrcoswt + yrsinwt.
Evaluate r x 7 and 7 4 w?r =

Divergence of eIectrostatic field due to a point charge,

V-E=V.

47reo r2
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—

e VxV=

<§
S
N< ’?‘Q‘ N>

—

o Vx(fV)=FVxV+(VF)xV

e Vx(rF(r)=0

@ Show that electrostatic and gravitational forces are irrotational.

@ Show that the curl of a vector field is a vector field.

@ Curl can be measured by inserting a paddle wheel inside the
vector field.



Circulation

@ Circulation of a fluid around a differential loop in the xy-plane.

y Xo Vo +dy 3 X, +dx, ¥, +dy

S

X Yo 1 (x, + dx, ¥,

1N

(5]

ode/\ Ji Vi, y)dA+ [,V Xyd)\+f3 (x,y)dAx +
Ja Vy(x,y)dAy = Vi(xo, yo)dx + [V (x0, ¥0) + 92 dx]dy +
VA0, 30) + Gedy](—dx) + Vy (x0, y0)(—dy) =
v, v
(5L - %)dxdy =V x V|
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Successive applications of V

Show that & x V is solenoidal if u and v are each irrotational.
If Ais irrotational show that A x 7 is solenoidal
VVe=Vi%=25+25+5

V x V¢ =0.

V.-VxV=0

V-VV=IV.-VV,+,V-VV,+kV-VV,
Vx(VxV)=VV.-V-V.VV

45/125



Electromagnetic wave equation

@ The set of Maxwell equations:
o V-B=0
o V-E=2

€0
o VxB= /io(j—l— 60%’5)

= _ 0B
e VX E= 5t
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Electromagnetic wave equation

The set of Maxwell equations:
V-B=0

—

e V.- E=2L

€0
V x B = po(J+ e %)

= _ 0B
V x E= 5t

Eliminating B between the last two equations, by noting that

%V x B=V x %—’f and assuming no charge flux.

V x (V X E) = *60#0%275

46/125



Review: Integrals

o [x(x+a)"dx =
Ofmdxz

X
o [ adx
2
X —
o [ Fradx=
3
X —
° [ Fedx =

o [tan(ax + b)dx =

o [ cotan(ax + b)dx =
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Review: Integrals

o [x(x+a)"dx =

° fde:

° fﬁdx

o = JiIn|a®+ x?|

° fﬁ;dX:

° fﬁi{zdxz

o [tan(ax + b)dx =
° —%In|cos(ax+b)|
o [ cotan(ax + b)dx =
o Lin|sin(ax + b)|
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Review: Integrals

o [sec(ax + b)dx =

o [ cosec(ax + b)dx =
o [sec(x)dx =

o [ cosec?(x)dx =

o [ tan(x)sec(x)dx =

o [ cotan(x)cosec(x)dx =
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Review: Integrals

o [sec(ax + b)dx =

o Lin|sec(ax + b) + tan(ax + b)|
o [ cosec(ax + b)dx =

o —Lin|cosec(ax + b) + cotan(ax + b)|
o [sec®(x)dx =

e tan(x)

o [ cosec?(x)dx =

e cotan(x)

o [tan(x)sec(x)dx =

@ sec(x)

o [ cotan(x)cosec(x)dx =

@ cosec(x)
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Review: Integrals
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° f ax2+1bx+c dx = f

o v

u2+(c/a )

°deX:

° | saimaedx =
of@dx:
o [ xy/x— adx
°f\/3X+bdX:

of\/)%dx
o [

a(x+2a) +e—4 (x+z)2+c/af%

dx 1 dx _
b2_5f b 2

_ _ x+L£
= e () = den ()
4a



Vector integration over a contour

o [pdF=

% Jedx,y,2)dx + 7 [ 8(x,y,2)dy + 2 [ d(x,y, z)dz
° [ \/’ dr,eg., w= [F -dF=

fc (x,y,2 dX‘i’fCFy(Xa)/a dY+fC (x,y,2z)dz
° - V x df =

R [c(Vydz = Vidy) =9 [(Vidz — Vzdx) + 2 [(Vidy — Vdx)
@ Reduce each vector integral to scalar integrals.

i1 1 1,1 N N

e Eg., fo r’dr = 0170 (x® +y?)dr = 0.0 (x? + y?)(Rdx + ydy)
o E.g., Calculate W for F = —Xy + yx
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Surface and volume integration

o [¢dd

o [ V - dé (flow or flux through a given surface),

o [ V x d&

@ Convention for the direction of surface normal: Outward from

a closed surface. In the direction of thumb when contiguous
right hand fingers are traversing the perimeter of the surface.

° Volﬂme integrals:
fv Vdr = >A<fv Vdr —i—f/fv V,dr + 2]\/ V,dr
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Integral definition of gradient

d
® V¢ =limgyr0 fsd d) Z

o d7 = dxdydz. Place origin at the center of the differential

JF P s S
..f”fx}
volume.
— . loloXe) .
° -g.gbdj $dG = —i [erpc(d — 52%)dydz + i [appc(¢+
X

. 5 .
o 2)dydz — j [apec(d — af & )dxdz +j [genp(d +
a¢> % )dXdZ k fABFE - %%

92 3 )dydx+k [cppe( ¢+gf % )dydx

° fqbda = +J + k )dxdydz
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Integral definitions of divergence and curl

Jo. Vedc
oV Vﬁllde%OTdi

° Js, v 'ﬁdﬁ = Jernc V ;dE"‘ Jasoc V ;dg"' Jagcc V- de +
fBFHD V- do+ fABFE V.-do+ fCDHG V.do =
— Jerre(Vx = B2 %) dydz + [appe(Va + aa\f%)dydz -
Jaece(Vy — %\}//y d2y)dxdz + Jorrp(Vy + 8yy d2y)dxdz _
Jagre(Ve = G5 )dydx + [cppe(Ve + G2 5 ) dydx
(8VX + 5 8Vy 8Vz)dxdydz
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Integral definitions of divergence and curl

dax V
_

o V x \7 = |imd7-*>0 e

o [5, V' xdG= [gpcV xdG+ [uppc V X dG + [4ecc V %
dG + [aenp V % 4G + [appe V X dG + [cppe V % d& =
—dydzV(—dx/2,0,0) x X + dydzV(dx/2,0,0) x % —
dxdzV/ (0, —dy/2,0) x § + dxdzV/(0, dy/2,0) x y —
dxdy V (0,0, —dz/2) x 2 + dxdy V (0,0, dz/2) x 2 =
—dydz(V,(—dx/2,0,0)y — V,(—dx/2,0,0)2) +
dydz(—V,(dx/2,0,0)y — V,(dx/2,0,0)2) —
dxdz(—V,(0, —dy/2,0)% + Vi (0, —dy/2,0)2) +
dxdz(—V,(0, dy/2,0)% + V,(0,dy/2,0)2) —
dxdy(V, (0,0, —dz/2)% — V,(0,0, —dz/2)y) +
dxdy(V, (0,0, dz/2)x — V,(0,0,dz/2)y)

Js

54/125



Theorems
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@ Gauss's theorem, fs V.dé = fv V- Vdr, equates the flow out
of a surface S with the sources inside the volume enclosed by it.

o Alternate form: [o ¢dG = [|, VodT using V =o¢(x,y,2)d
o Alternate form: [, dG x P= JyV x Pdr using V =3x P

@ Prove Green's theorem,
[y (uV2v = vV2u)dr = [((uVv — vVu) - d&, by applying
Gauss's theorem to the difference of
V- (uVv) = uV2v+Vu-Vvand V- (vVu).

e Alternative form, [ uVv-dG = [,(uV?v + Vu-Vv)dr



Theorems

o Stokes theorem: ¢ V.d)= fSV x V. dé

o Alternate form: [sdo x Vo = §,s ¢d using V=39
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Potential theory
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@ Scalar potential
@ Conservative force
= F=-Vp < VxF=0 < §F-dr=0
e VXxF=-VxVop=0
o §F-dr=—§Vp-dr=—§dp=0
® $rcgpaF-dr=0 << [, gF-dr=— [gp,F-dr=
fADBF‘df <= the work is path independent.

B
D




Potential theory
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Thus ffF~dr:¢(A)—¢>(B) = F.dr=—-d¢p=—-V¢-dr.
Therefore (F +V¢)-dr =0

¢ F-dr = [V x F-do by integrating over the perimeter of an
arbitrary differentil volume do we see that § F - dr = 0 result
inVx F=0.

Scalar potential for the gravitational force on a unit mass my,
Fec = _Gmﬁmgr _ _%7

Scalar potential for the centrifugal force and simple harmonic
oscillator on a unit mass m;, F. = w?F and Fsyo = —kF.

Exact differentials. How to know if integral of
df = P(x,y)dx + Q(x, y)dy is path dependent or independent.

Vector potential B=VxA



Gauss's law, Poisson’s equation

qf
4meqr?

@ Only a point charge at the origin E=

0 S does not contain the origin,

o Gauss's law: fs E.d& = {q
€0

S contains the origin.
@ Closed surface S not including the origin

fs ng fv ‘r2 )dt

">

S,

)

&x
]
=/

o [sEE+ [5 BF =0
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Gauss's law, Poisson’s equation

do’ = —p62dSQ
JsE-di =1 = [, Ldr. Further, [(E-di = [,V Edr

Maxwell equation: V - E = %

e Poisson's equation: V?¢ = —%.

Laplace’s equation V2¢ = 0
Substitute ¢ for E into the Gauss's law.

60/125



Dirac delta function
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G P
V2(1) = —4ans(F) = —4ns(x)5(y)d(2).

d(x)=0 x # 0,
£(0) = [ f(x)d(x)dx.

o0

Thus

Dirac Delta properties {

@ See functions approximating ¢ in a Mathematica notebook.
1
0 x<-—3,,
_ 1 1
Sn(x)=4n, —5 <x<5,
1
0 X > brE
n —n2x2
@ ip(x) = Jme .
1
@ 0p(x) = %1+n2x2.
0 Sp(x) = snmx — L 7 ikt

(]
—

20 F(x)8(x)dx = limpsoo [°5, F(x)3n(x)dx



Dirac delta function

@ J(x) is a distribution defined by the sequences d,(x)

e Evenness: 0(x) = d(—x).

o [ f(x)d(ax)dx =1 [ f(£)5(y)dy = L£(0). Thus
d(ax) = |a|6(X)'

o [ F(x)d(g(x))dx =X, [ZFF(x)d((x — a)g’(a))dx. Thus
o(g() = Za,g(a):o,g (@0 T

@ Derivative:
[ f(x)8'(x — x0)dx = — [ f'(x)d(x — x0)dx = —f'(x0).
@ Delta Operator L(x0) = [ dxd(x — xo).

o [[[, y)d(z)dxdydz = fo Jo~ 8(F)r?drsin0dfd¢
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Representation of Dirac delta by orthogonal functions
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Consider an infinite dimensional vector space where elements of
the underlying set are functions.

(f+8)(x) = f(x) +&(x) (cf)(x )— Cf( )-

Inner product maybe defined as f(x f f(x

where either a, b or both can be oco.

No good and natural example but Real orthogonal functions
{én(x),n=0,1,2,---} form a basis for this vector space.
Their orthonormality relation is

Om - On = fab ¢m(X)¢n(X)dX = Omn

Around any point xg an example is the set

{(x —x0)%, (x — x0), (x — x0)?, - - - } which is not orthonormal.
Use Gram-Schmidt orthonormalization.

For square integrable functions use {sin(nmx), cos(nmx)}
Expanding delta function in this bases:

d(x—t) => 120 an(t)dn(x): closure.

Take the inner product of both sides by ¢m(x) to derive
coefficients.



Fourier transform

° 4(x - t) D neo n(t)Pn(x) = 6(t — x)

o [F()o(x — t)dt = [ 32720 app(t) 3onlo dn(t)dn(x)dt =
an Oap¢”( ) np — Zp Oap¢p(X) F(X)

@ Fourier integral translates a function from one domain into
another, F(f(t)) = rf f(t)e“tdt = F(w),

F(x) = = [, 0(x)edx = 1i(p)
° Inverse Fourier transform is
“1(F(w)) = \/ﬂf w) exp(—iwt)dw = f(t),
) = = I w ) exp(—ixp)dp = 1(x)
((X)) =
5(><):JT HFO()) = F Hz) = 25 [ o exp(—ixp)dp
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Probability distributions

S up(uy)
it p(up)

Average of any function of u: f(u) = Zj‘il f(uj)p(uj)

Average of a discrete random variable, i =

m'th moment of distribution u™

@ m'th central moment of distribution (u — @)™ including

variance.
o Poisson distribution: P(m) = "¢~
o F(u) = [ f(u)p(u)du
R _ex?
e Gauss distribution: p(x) = We 202
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Important equations in physics

o Laplace's equation: V2¢ = 0 or A¢ = 0. Its solutions describe
the behaviour of electric, gravitational and fluid potentials.
Laplace’s equation is also the steady-state heat equation.

@ Helmholtz equation represents a time-independent form of the
wave equation: V2A 4 k?A = 0, where k is the wavenumber
and A is amplitude. HE commonly results from separation of
variable in a PDE involving both time and space varibles. E.g.,

the wave equation (V2 — ég—;)u(r, t)=0

e Diffusion equation: % =V - [D(¢, r)V(¢(r,t))], where
o(r, t) is the density of the diffusing material at location r and
time t, D(¢, r) is the collective diffusion coefficient for density
at location r. If D is constant, ad’(r t = = DA@(r, t) also called
heat equation.

@ Schrodinger wave equation: ih%w)(r, t)) = H|y(r, t)).
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Important equations in physics

@ For the nonrelativistic relative motion of two particles in the

coordinate basis, ih%d)(r, t) = —%Vz + V(r, t)]y(r, t).

@ When Hamiltonian is not explicitly dependent on time, we have
the time independent Schrodinger equation: Hy = Eq.

@ For the nonrelativistic2 relative motion of two particle in the
coordinate basis, [—%V2 + V(n)]y(r) = Ey(r).
o All have the form V2¢ + k%) = 0.

@ Any coordinate system in which this equation is separable is of
great interest.

@ Thus finding expressions for gradient, divergence, curl and
laplacian in a general coordinate system is of great interest.

67/125



Curvilinear coordinates

@ A point can be specified as the intersection of the 3 planes x =
constant, y = constant and z = constant.

@ A point can be desdcribed by the intersection of three
curvilinear coordinate surfaces q; = constant, qo = constant,
g3 = constant.

@ Associate a unit vector §; normal to the surface g; = constant
and in the direction of increasing g;.

@ General vector \7 =qgWVi+ @Vo+ §3Vs.

@ While coordinate or position vectors can be simpler, e.g.,
r'= rf in spherical polar coordinates and 7= pp + zZ for
cylindrical coordinates.

e G? =1, for a right handed coordinate system §i - (§2 x §3) > 0.
o ds® = dx* +dy? + dz* = 3 hdq;dg;

@ hj; are referred to as the metric.

o e = (2 )dan + (2 )da + (52 ) s

o dy = ( )dq1 + (3q2)dq2 + (aqa)d%
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Curvilinear coordinates
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dz__(am)dql4‘(a )dq24‘(a%)dQB
ds? = dF-dF = dFQ =3 . 2. o 97 dgidqj. Thus:

ij 9g;
2 _ Ox Ox y Oy 0z Oz A : : :
h = 9q; 9q + 8 9q + 94 9q;" valid in metric or Riemannian

spaces
For orthogonal coordinate systems:

hij =0, i#jorg;-§;=7dj. Thus, setting

hi = h; >0 ds?> = (h1dq1)? + (h2dg2)? + (h3dgs)?.

ds; is the differential length in the direction of increasing g;.
Scale factors may be identified as ds; = h;dq; with length
dimension. £- = h;§;

The d|fferent|a| distance vector

dr= h1dqiG: + h2dq2G> + h3dqsds

f V.dr= Z:f \/,-h,-dq,-

For orthogonal coordinates: dojj = ds;ds; = hjh;dq;dq; and
dr = d51d52d53 = h1h2h3dq1dq2dq3

dd = dsyds3Gy + dsidszbo + dsrdsi Gz =

hah3dqa2dqs gy + h1h3dq1dgsGe + hoh1dg2dq1gs



Curvilinear coordinates

° fS V.di =
[ Vihohsdgodqs + [ Vohihsdgidgs + | Vahyhidgodgn

@ vector algebra is the same in orthogonal curvilinear coordinates
as in Cartesian coordinates.

- o

A-B =73 4 AiGi GBx = >y AiBkdix = >_; AiBi

O B P R
e AxB= A]_ A2 A3
By B, B

@ To perform a double integral in a curvilinear coordinate one
needs to express a cartesian surface element in terms of the
curvilinear coordinates.

o dii = Aq1 + dq1, ) — Alq1, @) = 4-dgr dis =

Alr, @2 + dgz) — 7(q1, 92) = = dap

o dxdy = dfi x dil. =[5 50 — G o 1dandaz =

Ox  Ox

%) 0

oy oy |dade
dq1  Oqo
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Curvilinear coordinates

@ The transformation coefficient in determinant form is called the
Jacobian

e Similarly, dxdydz = dry - (dr» x dr3)

Ox  Ox  Ox
?;71 5372 €g73
—| % 9y 9y
@ dxdydz = o 0m  Om dq1dgrdgs
0z 9z 0z
dq1  0q2  OJgs
@ Volume Jacobian is hihoh3(G1 X G2) - G3
@ In polar coordinates: x = pcos¢p y =psing J=7
@ In spherical coordinates:
x=rsinfcos¢p y=rsinfsing z=rcost J=7
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Differential vector operations

Gradient is the vector of maximum space rate of change
Since ds; is the differential length in the direction of increasing
g;, this direction is depicted by the unit vector §;.

V”lﬂ : ql vw‘l — Je. h(?(;bq’
oy _

Vi(q1, 92, 93) = & 2L Tt hpl + 8358 =

o0 0 o
¢ hada; + @00 t+ Brog

- . J.
V- V(q1, 92, g3) = limgr_0 45—
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Differential vector operations: Divergence

73/125

@ Area integrals for the two g1 = constant surfaces are
Vi(q1 + dq1, g2, g3)ds2ds3 — Vi(q1, G2, g3)ds2ds3 =
[Vihahs + 52-(Vihahs)dai]daadgs — Vihahadgadgs =
%(V1h2h3)dqldq2dQ3

o [V.-do=
[(%(VlhglP) + g (Vahihs) + 52-(V3hahi)|dg1dgadgs where
Vi=4gi-V

°oV: ‘7(Q1 qQ2,93) =
h1h2h3[aql(V1h2h3) + 8q2(V2h1h3) + 9 O_(V3hahy))

o Using V = V¥(q1, g2, q3), V V= V2¢ =

1 hohs O 3 O hahy 09
hihah3 [qu( %7136‘771)—'_ 86]2( ho 8q2)+ 86]3( f7315773)]




Differential vector operations: Curl

@ Assuming the surface s to lay on q; = constant surface.
o Iim5_>0 fsV xV.do= (?1 : (V X V)h2h3dq2dQ3 = 9%5 V.dr

o §, V- dF = Vahydgy + [Vahs + 52-(Vshs)daa]das — [Vaho +
a2 (Vaha)dgs|dgs — Vahsdas = [52-(V3h3) — - (Vaho)]dgadas
V x V1 = gh-[52-(Vahs) — 52-(Vahy)]
Permuting the indices V x V|, = M[a—%(vlhl) aql(V3h3)]
higy  h2G> h3gs
) b 0

Thus V x V h1h2h3 dar g2 a3

mVi hVs h3Vs

74/125



Circular cylinder coordinates

° (p,0,z), 0<p<oo, 0<¢p<2m and —c0 <z <X

x

Ox Ox dy Oy 9z Oz

o

@ X =pcos¢, y=psing, z=1z
e p2

® Using: hij T 9q;0q; " 9q; dq; T Bq; g

Ohlzhp:]., h2:h¢:p, h3:hz=1.

o F=pp+2z, V=pV,+dVs+2V,
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Spherical polar coordinates

(]

(r,0,0), 0<r<oo, 0<f<mand0<¢p<22rm

x =rsinfcos¢p, y=rsinfsing, z=rcosf

hi=h =1, hy=hg=r, h3=hy=rsinb.
io:fsin@cosgb+fsin9cosib+l?cos&, GOA: A
icos&cos¢+jcos€sin¢ ksinf, ¢o= —ising+ jcoso
Vw—F +90}?919p+¢ rs.lneaqs

V- V—r2
V-V =
VxV=

[sin 9 (rPV,) + r@(sin 0Vp) + r%]

sin @
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o Det(A) = €jy..i,a1i; " * Ani,

o Theorem: Det(AB) = Det(A)Det(B). Thus Det(A~1A) =
Det(l) — Det(A~')Det(A) = 1 — Det(A™") = pzy

e Matrix A is invertible iff Det(A) # 0

@ Consider a system of n first order linear equations in n
unknowns,

aiixy + apxa + -+ ainxp = by
as1Xy + axnxa + -+ amxp = by
an1X1 + anaxe + -+ appXn = by



@ Such a system can be written in matrix form

a1 a2 o0 A X1 b
a1 axn - ax X || b2
dnl an2 - ann Xn by
e AX=8B
o If Det(A) #0, X = A~1B and is uniquely determined.
0
e If B=| . | the above system of linear equations is called
0
homogeneous.
@ In order for this system to have any solution other than the
0
trivial X = | . |, Det(A) must equal zero.
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Leibniz integral rule

4 (fab((xx)) f(x, t) dt) -
f(x,b(x)) - Lb(x) — f(x,a(x)) - La(x) + f 9 a ~f(x,t)dt,
@ A generalisation of the fundamental theorem of caIcqus if
= faxf( t) dt then F'(x)=f(x),
o F(xi+Ax) — F(xi) = [T f(t) dt — [ f(¢
JEHEE(L) dt.
e F(xy + Ax) — F(x1) = f(c) - Ax.

. F(x1+Ax)—F(x .
o limax_o0 % = limax—o f(c).
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Differential equations
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Ordinary differential equations only contain functions of a
single variable.

Differential equations with partial derivatives include functions
of more than one variable.

The highest order derivative in the differential equation
determines the order of the differential equation.

(v")3 + 2yy’ + 5xy = sinx is an ordinary differential equation
of order 2.

(2£)2 — [sin(xy) — 4x]? = 0 is an ordinary differential equation

dx .
of the first order.

3 2 . . . . . .
% + x% + Baxaut = 0 is a differential equation with partial

derivatives of the third order.



Ordinary differential equations

o F(x,y,y, - ,y(”)) =0 on an interval I.

o Fis rewritten as, y(" = f(x,y,---,y("71)

e A function ¢ such that ¢(" = f(x, ¢,--- ,(" D) is a solution
to this differential equation on |I.

@ Initial conditions are restrictions on the solution at a single
point, while boundary conditions are restrictions on the
solution at different points.

oEg,y =2y —4x—>y=ce®+2x+1
e Eg,y'+y=x—y=cicosx+ csinx+ x

o ao(x)y(™ + a1 (x)y(" Y + ... + a,(x)y = b(x) is a linear
ordinary differential equation which constitutes our focus in
this section of the course.
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Ordinary differential equations
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y® 44y 4 3y = x; =3 y=e*+3

X2y" +5xy" +4y =0, x >0; y1=x"2yp=x2Inx

y —2xy =1 y=e" Iy e tdt + e

e+ Uy =0, up=x>+y% = xy

Up — CUyy = 0 up = sin(x + ct), ux = sin(x — ct), uz =

f(x+ ct) + g(x — ct)

U + Uy + Uz, = 0 u = (X2 + y? +22)71/2
Py +xy' +y=0,y(1) =1,y (1) =-1; y=
cos(In x) — sin(In x)



First order differential equations

o y'=1f(x,y) y(x0) = yo there exists a unique solution if f and
% are continuous around (xg, yo)-

o First order linear differential equations: 2 + a(x)y = f(x)

o Assuming A(x) = [~ a(t)dt,
F(Ay) = Ay + a(x)y) = A f(x)

@ General solution is: y = e=AX) [ el t)f( t)dt 4 ce=AX)

@ Imposing the initial condition, y(x0) = yo,
y = e—AK) f;; eA(t)f(t)dt + yoe*(A(X)*A(Xo))

eeg,y =y+sinx, eX(y —y)=(e*y) = e *sinx

e Xy = [Ye tsintdt+c = Ste *(sinx +cosx) + ¢
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First order differential equations

@ Solve y) =y +sinx, y(0)=1
o (xInx)y' +y =6x3, x> 1, thus (yInx) = 6x2,

3
y=2% x>1.

@ Assuming a(x) and f(x) to be continuous on the interval
(c, B) for every xp € (v, ), the initial value problem
!/ — —
y' 4+ a(x)y = f(x) y(x0) = o, for every value of yy has one
and only one solution on the interval («, ).
o xy' +2y =4x2 x>0, y(1) =2 resultiny = x* + 5.
@ Solve it for y(1)=1.
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First order differential equations

y' 4+ £ =3cos2x,x >0
y' +3y =x+ e
(x*+1)y'+y+1=0
y'sin2x = y cos 2x
xy+y+4=0,x>0
X2y —xy =x*>+4,x>0
Yy +2y =xe ¥, y(1) =0
'+ 2y = =y ) = 0

x2 !

y' +ycotx =2x —x?cotx,y(3) =% +1
y' —x3y = —4x3,y(0) = 6
y'+ytanx =sin2x;y(0) =1

sinxy’ + cosxy = cos2x,x € (0,m); y(5) = 1/2
y'-l-%:e’g, x>0; y(1)=0
Yty =xe*y(0)=1

85/125



Nonlinear First order DEs

For nonlinear equations there is no general method for solving
the DE.

Separable differential equations:

y'=1f(xy) = p(x)+aly)y' =0

p(x)dx +q(y)dy =0 — d[P(x) + Q(y)] =0 —

P(x)+ Q(y) =c =y =d(x,c)

Eg.,y = 32Jiq)x2 — (24 sinx)dx —3(y — 1)2dy =0 —

1/3

2x—cosx—(y—1) =c—y=1+(2x—cosx — c)

3,
Eg.y' = 225.y(0) =1 (> —y+1/y)dy =
(x3—1Ddx = y*/4—y2/2+In|y| =x*/4 —x+ ¢
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Complete first order DE
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y' = qu’ig — p(x,y)dx + q(x, y)dy = 0 this equation is

complete in a region D if and only if there is a g such that

dg(x,y) = p(x, y)dx + q(x,y)dy

% =p(xy), FE=alxy)

E.g., For

(4x — y)dx + 2y —x)dy =0, g(x,y) =2x>—xy +y? gis
an integral of the differential equation and the curves

g(x,y) = c are its integral curves.

Theorem: The necessary and sufficient condition for

completeness of p(x, y)dx + g(x, y)dy = 0 in a region D of the

xy plane is to have g—y = %, (x,y)e D



Complete first order DE
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The condition is necessary since gy, = gyx, to prove sufficiency
consider g such that g«(x, y) = p(x,y), gy(x,y) = q(x,y)
thus we have g(x, y) = [ p(t,y)dt + h(y) — g(x. y) =
[ it + W (y) = q(x, y) thus

_ x 9p(t,y)
W(y) = aq(x,y) = [* 5 dt
If we show that the right hand side is only a function of y, we
have an algorithm for evaluating g.

x Op(t,
silabey) = [* B b = 51— 5 =0
E.g., (4x — y)dx + (2y — x)dy = 0 for which
92 =-1, %——1 Thus
dg

g(x,y) = (4x — y)dx + (2y — x)dy



Completing a first order DE
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g(x,y) = 2x*> — xy + h(y) so
—x+H(y)=2y—x h(y)=y*+c,
glx,y)=2*—xy+y*+c
Integration factor

p(x, y)p(x, y)dx + u(x, y)q(x, y)dy = 0
2(1p) = £ (1q)

p(x,y)% — q(x,y)g—ﬁ + (%5 - %)/1, = 0. This PDE must be
solved to find the integrating factor.

E.g., x> — y? + 2xyy’ = 0, Assuming

p=p(x),  p(x)(x* = y?)dx + p(x)(2xy)dy = 0

S0 = y?)] = S l(2xy)] = xp’ + 200 =0 = pu(x) = x~

(1—%)dx+(2)dy =0 —= x+y2/x = c = y2+ (x—a)? = &2

2



Completing a first order DE: excersize

(X 1)y’ +y2 = 0;y(0) =1

(2x — y)dx —xdy =0

(x —2y)dx + (4y —2x)dy =0

ydxy XY 4 sdx = 0

3(x — 1)%dx — 2ydy =0

Y (1 + 2x%y)dx + x3eVdy = 0

(x? + y?)?(xdx + ydy) + 2dx + 3dy = 0
(x? + y?)dx + 2xydy = 0,y(1) =1
Xglj_);,z - X;i};g =0,y(2)=2

(x —y)dx + (2y — x)dy = 0,y(0) =1

0, —Qgx
If u= pu(x), ﬁ:o, %:qu dx
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Completing a first order DE
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If = ply), 9 =2Pedy

(x2—y?)—2xyy' =0

y+ (2 =x)y =0

Bxy +y2) + (x> +xy)y' =0

(3xy + y?)dx + (3xy + x?)dy =0

Bernoulli equation: y’ + a(X)y = b(x)y® use z = y1=¢
Z+(1-a)a(x)z—(1—a)b(x)=0

Xy/ —y= exy3

Riccati equation: y’ = a(x)y + b(x)y? + c(x) assume
y = ¢(x) to be a private solution and use y = ¢(x) + 1/z to
derive Z' + [a(x) + 2¢(x)b(x)]z = —b(x).

Y =145 =2y 4y ¢(x)=x

Y =x+(2x=1y=x-1, ¢(x)=1

VY 4xy? =22y +x3=x+1, ¢(x)=x-1

Y4y = (1+2e)y +e> =0, ¢(x)=e"

Yy +y?—2y4+1=0

get



Completing a first order DE
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If = ply), 9 =2Pedy

(x> =y?) —2xyy' =0

y+ (2 =x)y' =0

(Bxy +y?) + (x* +xy)y' =0

(3xy + y?)dx + (3xy + x?)dy =0

=Xty

Bernoulli equation: y’ + a(X)y = b(x)y® use z =y
Z+(1-a)a(x)z—(1—a)b(x)=0

xy! —y = ey?

Riccati equation: y’ = a(x)y + b(x)y? + c(x) assume

y = ¢(x) to be a private solution and use y = ¢(x) + 1/z to
derive z' + [a(x) + 2¢(x)b(x)]z = —b(x).

Y =1+4x2 =2y +y% ¢(x)=x

Y =x+(2x=1y=x-1, ¢(x)=1

VY +xy? =22y +x3=x+1, ¢(x)=x-1

Y4y = (1+2e)y +e> =0, ¢(x)=e"

Yy +y?—2y4+1=0

-«

get



Linear differential equations

° ao(x)y(”) + al(x)y(”_l) + -+ an(x)y = b(x)

o y( 4 p1(x)y(" D 4 4 pa(x)y = F(x)

o Ly= L 4 pi(}) &+ pa(x)

o Ly[y] = f(x)

@ Existence and uniqueness theorem: If p1, po, -+, pn, and £ are
continuous on the interval |, Vxp € I the above equation has
one and only one solution y = ¢(x) satisfying
B(x0) = a1,¢'(x0) = a2, ¢"(x0) = a3, -+, ¢"V(x0) = ay.

o ¥y +p(x)y' +q(x)y =0; y(x) =0,y (x0) =0 only has the
trivial solution.

92/125



Linear differential equations

o xy" + (cosx)y’ + 135y = 2x solutions can be determined for
each of the intervals (—oo, —1),(—1,0) and (0, c0).

e Homogeneous differential equations have f(x)=0. E.g.,
Y+ p(x)y" +a(x)y = 0.

@ Operator L is called linear iff for arbitrary constants
c1,C, €3, ,Ck and functions
b1, 02, ks Llards + cado 4 -+ 4 ckdi] =
cll1] + col[do] + - + ckl[dx].

® c1p1+ o+ -+ ki =Y ; Cipj is a linear combination of
the k functions ¢;.

o If ¢1,¢2, -+, ¢k are solutions of L,[y] = 0 each linear
combination of them is a solution as

La[>20 1 cidi] = Y210 cilaldi] = 0.
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Homogeneous Linear differential equations

o Llyl]=y"—-y=0

° y//I + y/ — O

@ m functions g1, 84>, - ,&m are linearly independent on the
interval | iff c1g1(x) + c2g2(x) + - - - + cm&m(x) = 0 implies
thatcg = =---=¢, =0.

@ The set of functions g1, 82, -+, &m are linearly dependent on
the interval | if there is a set of constants ¢1, ¢, -, Cm

including at least one non zero ¢; such that for
Vx el cgi(x)+ cga(x)+ -+ cmgm(x) =0.
o Eg., {enx, e},

o Eg., {eX, e, coshx}.
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Wronskian

@ Introduced by Polish mathematician Jozef Wronski.
o If fi, fp, -+, f, are (n-1) times differentiable functions on I,
f(x) B(x) - fa(x)
f(x) R(x) - fi(x)
W(f17f27”.7fn): 1: 2: :
1 1 1
000 7000 - /()
2 .3
2 .3y _ | X X _ A
o Eg., W(x%,x%) = oy 32 | =X
1 & e
o Eg, W(l,e¥,e7)=]0 & —e™|=2
0 & %

95/125



Wronskian
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. [ ¢1(x0)  2(x0) } { by

Theorem: Given p(x) and g(x) continuous on I, two solutions
of Lr[y] = y" + p(x)y’ + q(x)y = 0 are linearly independent on
| iff their Wronskian is non-zero on |.

If ¢1 and ¢, are dependent

b1, by # 0| by + bapo =0 by + by =0

[¢1 ¢2}{b1]20
o1 ¢y | | b

Nonzero Wronskian implies by = b» = 0 and that ¢; is linearly
independent from ¢».

Assume {¢1, ¢2} are linearly independent and
Ixo  W(d1,42)(x0) =0

b ] = 0 has nontrivial solutions b1g, by
2

P1(x0)  B3(x0)



Wronskian

@ Define 1/}(X) = blogbl(x) + b20¢2(X)

o Y(x0) = b1091(x0) + b20¢2(x0) = 0

o ¢'(x0) = b1o#(x0) + b2og(x0) =0

@ (x) is the solution to L,[y] =0, ¢(x0) =0, ¢'(x)=0
According to the existence and uniqueness theorem 3 = 0.

@ This implies linear dependence of {¢1, ¢2}.
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Wronskian
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Theorem: Wronskian of the solutions to the Ly[y] =0 on | are
either never zero or always zero.

Proof: W(¢1,¢2)(x) = é16 — dad, % = d16% — dad{ =
p(x)(102 — dr1) = —p(x)W

Abel relation: W(¢1, ¢2)(x) = ce Fo p(t)dt, xel

W(é1,62)(x) = W(@1,2)(x0)e 1o 0%, x et
If p1(x), p2(x), -+, pn(x) are continuous on the interval |, then

solutions ¢1(x), ¢2(x), -+, dn(x) of
Laly] = ¥y 4 p1(x)y"=Y) + ... + py(x)y = 0 are linearly
independent iff their Wronskian is nonzero.

Further, % +p1(x)W =0



Wronskian

o W(g1,+,6n)(x) = W(br, -+, dn)(x0)e o™ e
e y" —4y" + 5y’ — 2y =0 has solutions
b1 = €%, ¢ = xe*, ¢3 = e, these constitute a fundamental
set of solutions.

@ Theorem: Linear homogeneous differential equation of order n
has n linearly independent solutions.

@ Proof: consider

Ln[y] =0; y(XO) = 1’y,(X0) = O’y”(XO) =0, 7y(n_1)(X0) =
Ln[y] =0; y(XO) = O,y,(Xo) = 17y”(X0) =0, 7y(n_1)(X0) =0

Laly] = 0i y(x0) =0,y'(x0) = 0,y"(x0) =0, -+ ,y" D(x) = 1
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# of solutions of a LHDE

@ By existence and uniqueness theorem the above equations have

solutions ¢1(x), #2(x), -+, ¢n(x)

°
cagi(x) + cga(x) + -+ + cnpn(x) =0
1 (x) + @s(x) + -+ + ()
1] (x) + 25 (x) + -+ + cadp(x) =0
adl" V() + ooy V(x) + 4 col(x) =0
@ Substitute x = xp toderiveci = =---=¢, =0

@ n linearly independent solutions of a linear differential equation
of order n are called a fundamental set of that equation.
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Linear vector space of solutions

@ Theorem: If p1(x), p2(x),- -, pn(x) are continuous on the
interval |, and if solutions ¢1(x), ¢2(x),- - , Pn(x) are a
fundamental set of

Loly] = v + p1(x)y"=1) + -+ pa(x)y = 0 on |, for every
solution qS( ) there is a unique set ¢y, - - , ¢, such that
¢(x) = c1¢1(x) + c2¢2(x) + -+ + cndn(x)

@ Proof: Assume

d(x0) = a0, ¢'(x0) = a1, -+, ¢("_1)(Xo) = a1
ca1¢1(x0) + 2¢a(x0) + -+ + cadn(x0) = o
C1</>1( ) + C2¢2( ) "+ Cn(ﬁ/n(XO) =

adl" D (x0) + 268 V(x0) + -+ b V(x0) = ans
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Linear vector space of solutions

e if solutions ¢1(x), p2(x),- -, dn(x) are a fundamental set of
Loly] = y(n) + Pl(X)y("_l) + -4 pa(x)y =0on I,
W (p1,- - ,dn)(x) # 0. Thus the above system has unique

. 0 0 .
solutions ¢7,- - -, c,. Define

¥ = c{p1(x) + Fpa(x) + - + chn(x)
@ According to existence and uniqueness theorem ) = ¢.
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Linear nonhomogeneous differential equations

o Consider a private solution ¢p(x) of
Laly] =y + p1(x)y("=D) + - - + pa(x)y = f(x) where p;(x)
and f(x ) are continuous on |, and {¢1(x), pa(x), -+, Pn(x)} is
a fundamental set of the corresponding linear homogeneous

DE. If ¢(x) is any other solution to the L,[y] = f(x) then
Lnl¢ — ¢p] = Lald] — La[op] = 0 thus ¢ = cigj + ¢p
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Linear nonhomogeneous differential equations

@ Theorem: If ¢p(x) is a private solution of L,[y] = f(x), every
solution can be written as ¢(x) = cxpi(x) + ¢p(x) this is
called a general solution.

e Find the general solution to y*) +2y” 4+ y = x
® ¢p =x, {cosx,sinx,xcosx,xsinx}, ¢(x)="?
o Eg,y'—y=x, y(0)=0,y/(0)=1
° ¢p=—x {ef,e7*}
e Eg.,
X2y +hxy' 42y =6x+1, x>0, y(1)=2, y(2)=1

o ¢p=x+1/2,{1/x,1/x?}
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Linear differential equations: Exercise

o If L[y] = y” + ay’ + by, find a) L[cosx], b) L[x?], c) L[x"], d)
L[efX]

o If Lly] =y + a1y("=1) + ... 4 a,y determine L[e™]

o L[y] = x2 "+ axy’ + by determine L[x"], do the same for
Lyl = x3y" + a1x®y" + axxy’ + azy

@ Check validity of given solution and determine its validity
integral. xy” +y' =0; ¢(x) =In(%)

o 4x%y" +4xy' + (4x*> — 1)y =0; qS(X):\/gsinx

o (1—x3)y" =-2xy'+6y; o¢(x)=3x2-1

o (1—x2)y" = —2xy —|—2y+2 $(x) = xtanh™1 x

@ Show that <;51( ) = 2x3 and ¢a(x) = §(x3/? + 1)? satisfy

(y')? — xy = 0 on the interval (0,00). Do their sum satisfy this
DE?
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Linear differential equations: Exercise

o y' —3y?/3 =0 has the general solution y = (x + ¢)3. Test if

linear combinations of these solutions are solutions. Test the
independence of different solutions? Consider the following

solutions: a) ¢(x) = {(()X —a) X i ?b
x> a
(x—a)® x<a

0 x<b
qﬁ(x):{ o) o(x)=X0 b>x>a
(x—b)® x>b (x—b) x> b

@ Show that functions 1,x, x2,--- , x" constitute a linearly
independent set.

@ Prove that n solutions of the DE
Lly] = y™ + pr(x)y"=1) + - + pu(x)y = 0 are linearly
independent iff their Wronskian is nonzero.

@ Drive the Abel relation for n=3. To this end show that
¢1 P2 @3

wi=1| ¢ ¢ ¢h

" " "
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Linear DE with constant coefficients

vy oy 4 apy(=2) 1 ay =0

Ln=& +ad+ +a,=D"+aD" 1t +a,
Lly] = (L1 Le)ly]

If ¢ is a solution to L;[y] = 0 then

Lg] = (L1 -+~ Li—aliv1--- Le)Li[¢] =0

@ In this way solutions of linear homogeneous DE with constant

coefficients of order n can be deduced from solutions of DEs of
order one and two.

e Eg.,
Laly] = y"+y'~2y = 0 = (D*+D—2)y = (D—1)(D+2)y = 0
o {eX, e 2}
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Linear DE with constant coefficients: exercise

@ Prove that roots of a polynomial with real coefficients appear
in complex conjugate pairs.

@ Prove that each polynomial of odd degree has at least one real
root.

@ Prove that each polynomial can be written as a product of first
and second order polynomials with real coefficient.

@ Write these polynomials as multiplication of first and second
dergree polynomials.

o D3+1, D3-1, D*+1, D*+2D%+10, D3-D?4+D-1.
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L homogeneous second order DE with constant coefficients

109/125

For a second order DE L[y] = y” 4+ ay’ + by = 0 try solutions
of the form ¢(x) =

L[e] = p(s)e™ p(s) = s>+ as + b is called characteristic
polynomial of the DE.

@ p(s) = 0 is the characteristic equation of the DE.
e p(s)=0—>s=s1,5
0 51 5 ¢(x)= e + e including the case of complex

conjugate roots.

If 51 = a+ bi then s, = a — bi. {elatb)x ela=bi)x} o

{e?* cos bx, e sin bx}

A homogeneous equation in x is said to have a double root, or
repeated root, at a if is a factor of the equation. At the double
root, the graph of the equation is tangent to the x-axis.

s1 =% %L[esx] = L[%esx] = L[xe*]

L[xe™*] = p'(s1)e"™ + p(s1)xe* =0

P(x) = (a1 + c2x)e™



L homogeneous second order DE with constant coefficients

o Eg.,y ' +2y/+10y =0, y(0)=1,
o Eg.y'+2y+y=0, y(0)=1,y/(0)=0
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Higher order LHDE with constant coefficients

Lyl =y +ay(™D ... +a,y =0
L[e™] = p(s)e™ where p(s) = s" + a;s" 1 + .- + a, is the
characteristic equation of our DE.

If s1,5,---,s; are roots of characteristic equation with
multiplicities of ny, n,- -+, n; the fundamental set is as follows:

{eslx, Xeslx7 L. ,an—leslx, eSQX’ XGSQX, L. ’an—leSQX’

S X S X ni—1 _s;x
.,eJ’Xejj...7xj eJ}

Eg.,y® +2y" +y=0—(D3+1)2y =0
D3(D—-1)*(D+1)?y =0
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Higher order LHDE with constant coefficients: Exercise

@ Write a fundamental set for each of the following equations.
e D’y =0
o (D+2)*y =0
o (D?>+4)(D—3)%y =0
o (D?+16)[(D—1)2+6]2y =0
o (D?—-1)*(D?>+2D+2)*y =0

112/125



Finding private solutions: Variation of parameters

o Lly] =y"+ p(x)y’ + a(x)y = f(x) with {¢1, ¢2} as a
fundamental set.
Assume ¢p = u1¢1 + Uy
P = Upd1 + Uy + 1@ + Uy
Assume uj¢1 + tppo = 0. Thus ¢, = u1d| + ua¢s.
bp = U] + gy + Uy Py + urdh.
Llgp] = ¢y + p(x)dp + q(x)dp = 1107 + u2dy + 1197 +
updy + p(x)(u1¢h + 12dh) + q(x) (11 + tadha) =
ur(—pd) — qé1) + ua(—peh — qi2) + Ui b + Urdy +
p(x)(u1¢] + uagh) + q(x)(u11 + ta2) = f(x)
° ujdy + updp =f
g gl =1

P b || w f(x)

e By Cramer's rule: vf = 77‘/{/(()2?;(3) uh = fv(v)asqilgg

i x  f(s)pa(s _ [x _f(s)¢a(s)
o u(x) =~ [} winanmds ()= [ win e

e Finaly, ¢p(x) = f;; ¢2(x)$&§;)1’—¢¢;1)((>3¢2(5)f(s)ds

® 6 6 6 o
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Finding private solutions: Variation of parameters

o Suppose T + pi(t) Ly + -+ py(t)y = g(t)

@ Solve the corresponding homogeneous differential equation to
get: yn(t) = Cuya(t) + Goya(t) + ... + Caya(t).

@ Assume a particular solution to the nonhomogeneous
differential equation is of the form:

Y(t) = un(t)yr(t) + u2(t)y2(t) + ... + un(t)ya(t).
@ Solve the following system of equations for
up (1), up(t), - -, up(t).
up (t)y1(t) + up(t)y2(t) + ... + up(t)yn(t) =0
uj ()y1(t) + up(t)ys(t) + .. + up(t)yn(t) =0

uy () (8) + ub(e)y" () + e+ dp (s D (E) = g(t)
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Finding private solutions: Variation of parameters

oy -2y +y= %XXZ where the fundamental set is {e*, xe*}
o y"+y =tanx

oy —y +2y = e Xsinx

° V' +y = Gx

o (D2 410D —12)y = (41

e (4D? — 8D +5)y = e*tan?(x/2)

oy +y=g(t)
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Undetermined multipliers method for finding PS
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e 6 o6 o

One can guess the general form of the private solution and
substitute in the DE to find the undetermined multipliers in the
general form.

V' +y=3x>+4—=(D*>+ 1)y =3x> +4

Note that D3(3x%2 +4) =0 — D3(D? + 1)y =0

y=oc + ox+ c3x2 + ¢4 COS X + C5Sin X

Substituting y into original DE determines multiples except for

cos x and sin x multiples as they are solutions of the
corresponding homogeneous equation and cancel out.

Eg.,y’"+2y=¢"



Undetermined multipliers method for finding PS

"

o y'+y =sinx

e Since (D?+1)sinx =0,(D?+ 1)(D3+ D)y =0

o (D —2)3y =3e%*

e Since (D —2)(3e*) =0,(D —2)*y = 0. Thus ¢p(x) = cx3e

@ The method of undetermined multiples has the following
limitations.

e In L[y] = f(x), L must contain only constant coefficients.

e f(x) must contain functions which satisfy a homogeneous linear
DE with constant coefficient.
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Undetermined multipliers method for finding PS

o If f(x) = pn(x) = aox" + arx" "L+ -+ a, —= dp(x) =
X (Agx" + Apx"L 4+ AY)
o If
f(x) = pn(x)e™ = ¢p(x) = x"(Aox" + Arx" L4 - + Ap)e™
° If f(x) = pn(x)e* sin Bx or f(x ) = pn(x)e™* cos Bx then
bp(x) = ’(on + Alx" Ly 4 Ap)e® cos Bx + x"(Aox™ +
Arx"L 4+ Ap)e™sin Bx
Ly]=y"+y"=3x*-1
y" + 4y = xe*
y" —y = x?e<sinx
If Lyl = A(x) + B(x) + - + fi(x) and
Ll¢p1] = fi(x), L{¢p2] = fa(x), -+, L[ppk] = fic(x) then by
linearity of L,
Ligp + ¢pp + -+ Op ] = f(X) + 22(x) + - + fi(x)
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Undetermined multipliers method for finding PS

y" + 4y = xe* + xsin 2x
y/// 4 3y// =24 X2
y'+4y' + 4y = xe™™
y"” + 9y = 2xsin 3x

2
9% — 4% 1 8y = (1 +sin2t)
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Euler differential equation

@ nth order homogeneous Euler equation:
(x = x0)"y("M + a1 (x — x0)" Ly D ... 42,y =0
@ Xxp is the singularity of the Euler equation.
o Consider L[y] = x?y" + axy’ + by =0, x>0
° Impose the change of variable t = Inx. y' = - 2%
 CORE = A R

x2dt — X2 dt2 x2 dt
2
° %—i—(a—l)dy—kby—o
o Characteristic equation: s>+ (a—1)s+b=0

@ Depending on A for the characteristic equation fundamental
set is {7t = x1, e%t = x2}  {et = x7, et =
xTInx}, {x*cos(fInx),x*sin(BInx)}

o If we substitute x° fory, L[x°] = [s?> +(a — 1)s + b]x* =0
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Euler differential equation

o The characteristic equation p(s) = s> 4 (a—1)s + b= 0. If
A >0 — ¢(x) = c1x® + cx®,x > 0 where x® = e%1/nx

o If A =0 we note that
L1[x*] = L[x*Inx] = p/(s)x* + p(s)x* In x

o At s = s, L[x" Inx] = p'(s1)x + p(s1)x Inx = 0. Thus
d(x) = ax? 4+ oxTinx,x >0

o If A <0 — ¢(x) =e*(cicos(BInx)+ cpsin(SlInx)),x >0

@ For x < 0 we make the change of variable { = —x. Euler
equation become CZ% + aCZ—Z +by=20

¢ + (™ st ER
¢(¢) = q aal™ + (™ In¢ ss=s R
ci(®cos(BIn¢) + c2(*sin(BIn¢) s=a+ip
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Euler differential equation

@ Combining solutions for x > 0 and x < 0.
x| + e|x|*
O(Ix[) = § culx** + ca|x[* In|x|
c1|x]®cos(BIn |x]) + c2|x|*sin(5 In|x|)
x2y" 4 2xy' +2y =0;y(1) =0,y/(1) =0
x?y —bxy’ +13y =0
x? ”—i—5xy +4y =0
—3xy’ +4y =Inx
2 y" +4xy’ — 6y =0
Order reduction technique:
Lly] = x?y" + 5%y = 2(1 + )y = x
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Series
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0 S ak(x—a)k =ap + ar(x — a) + ax(x — a)® + - -+ where

aceR keN

The sequence {sn(x)} where s,(x) = > 7__ ak(x — a)¥ is a
partial sum sequence for the above series.

The above power series is convergent at point xg if the partial
sum sequence {sp(x)} is convergent at point xp. l.e.,
limp— 00 Sn(x0) = s(xo)

s(xp) is the sum of the above series at point xg.

liMn-so0 D oko k(X0 — )¢ = 307, ak(x0 — a)* = s(x0)
Set a =0, ZZ:O axk = ap + aix + apx®> +---. This is
absolutely convergent iff 3 |axx*| is convergent.
Convergence radius, convergence interval or region of
convergence.

1
lim |M|
n— o0 ENY



Series
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Every power series defines a continuous differentiable function
over its radius of convergence. Y heoakx = f(x)

(> ko akxk)( ka )= rso ckx® where
Ck = Z:’IZO ak*mbm - Zfﬂ:o bk—mam

@ Uniqueness of the taylor series.

e Find the convergence interval for > °°

=0 n+1x and

Zoo (x+1)"
n=1 2"n

1 _d 1 _xoo on-1
e (1—x)2 = dx (1—x) — Zn:l hx

Linear indepence of power series starting from different powers
of x.

If p(x) and q(x) are analytic around xg then

y"+ p(x)y’ + q(x)y = 0 has analytic solution around the point
X0-

E.g., Determine a series solution for the following differential
equation about xp =0, y” + xy' +y = 0.

¢(X) = Ziozo aka



Series

o 2ok +2)(k + L)apxk + 352 kapxk + 3325 apxk =0
00 2k
° ¢(x) = ao[l + 32 (- mop-@me] + atlx +
00 2k+1
> (D ey mo)
@ Legendre differential equation,
(1—x2)y" —2xy' + \(A+1)y =0
@ Solution would converge on the interval (-1,1).
0 S olk 4+ 2)(k + L)aksa + (A — k)(A+ k +1)ak]xk =0
@ For natural values of X\ one of the solutions would be a
polynomial. These are Legendre polynomials.

e If p(x) and q(x) are analytic around xp then
y" + p(x)y’ + g(x)y = f(x) has solution ¢(x) such that
¢(x0) = a and ¢/(xp) = b, Taylor series of the solution would
have a convergence radius greater than the smallest of the
convergence radius of p, q and f at xg.
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Numeric solution to a differential equation

@ Start by substituting Taylor series of p and q in the
corresponding homogenous equation. To derive
Pn(x) = a0 + a1x + Yo p(vkao + Brar)x*

o Lemma: If chxk has convergence radius
R*>0 Vr<R* 3IM:|clrk <M

@ Numerically Solve the equation dyd—(tt) = —Ay(t) and compare

the resulting solution to exact solution.
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