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Aim

Your most valuable asset is your learning ability.

This course is a practice in learning and specially improves your
deduction skills.

This course provides you with tools applicable in and necessary
for modeling many natural phenomena.

The fundamental laws necessary for the mathematical
treatment of a large part of physics and the whole of chemistry
are thus completely known, and the difficulty lies only in the
fact that application of these laws leads to equations that are
too complex to be solved.

The first part of the course reviews Linear algebra and calculus
while introducing some very useful notations. In the second
part of the course we study ordinary differential equations.
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Course Evaluation

Final exam 29 Khordad 9 AM 60%
Midterm exam 29 Farvardin 10 AM 40%
Tutorials 10%

Office hours: Mondays 9 AM - 12 PM
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To be covered in the course

In the first part of the course we try leveling the class by
reviewing some very useful concepts from (linear) Algebra and
calculus.

Complex numbers, Vector analysis and Linear algebra

Vector rotation, vector multiplication and vector derivatives

Series expansion of analytic functions

Integration and some theorems from calculus

Dirac delta notation and Fourier transformation

Curvilinear coordinates.

Matrices
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To be covered in the course

When we know the relation between change in dependent
variable with changes in independent variable we are facing a
differential equation.

The laws of nature are expressed in terms of differential
equations. For example, study of chemical kinetics, diffusion
and change in a systems state all start with differential
equations.

Analytically solvable ordinary differential equations.

Due to lack of time a discussion of partial differential equations
and a discussion of numerical solutions to differential equations
are left to a course in computational chemistry.
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References

”Mathematical methods for physicists”, by George Arfken and
Hans Weber

Ordinary differential equations by D. Shadman and B. Mehri
(A relatively thin book in Farsi)

Linear Algebra, Second Edition, Kenneth Hoffman, Ray Kanze

Applied Mathematics for Physical Chemistry by J. Barrante
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Complex numbers

Real numbers

Fundamental theorem of algebra: ”Every non-constant
single-variable polynomial has at least one complex root.”

X 2 + 1 = 0 defines x = i =
√
−1. Complex number

x = a + bi = (a, b) = ceθi .

Complex conjugate, Complex plane, summation, multiplication,
division, and logarithm.

Euler formula, ”our jewel”, e iα = cos(α) + i sin(α) for real α

Proof by Taylor expansion
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Complex numbers

cos x = e ix+e−ix

2 , sin x = e ix−e−ix

2i .

cosh(y) = cos(iy) = ey+e−y

2 ,

i sinh(y) = sin(iy)→ sinh y = ey−e−y

2 .

cos(x) · cos(y) = 1
2 [cos(x + y) + cos(x − y)],

cos(x + y) = cos x cos y − sin x sin y ,
sin(x + y) = sin x cos y + cos x sin y .
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Coordinate System

Rectangular cartesian coordinate system is a one to one
correspondence between ordered sets of numbers and points of
space.

Ordinate (vertical) vs. abscissa (horizontal) axes.

Round or curvilinear coordinate system

Curvilinear coordinates are a coordinate system for Euclidean
space in which the coordinate lines may be curved, e.g.,
rectangular, spherical, and cylindrical coordinate systems.

Coordinate surfaces of the curvilinear systems are curved.

Plane polar coordinate system,
x = r cos θ, y = r sin θ, dS = rdrdθ,

Spherical polar coordinates

x = r sin θ cosφ, y = r sin θ sinφ, z = r cos θ, dV =
r2 sin θdrdφdθ

Rectangular coordinates
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Coordinate System

10/125



Vector analysis

Scalar quantities have magnitude vs. vector quantities which
have magnitude and direction.

Triangle law of vector addition.

Parallelogram law of vector addition (Allows for vector
subtraction), further it shows commutativity and associativity.
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Vector analysis

Direction cosines, projections of ~A.

Geometric or algebraic representation.
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Vector analysis

Unit vectors, ~A = Ax x̂ + Ay ŷ + Az ẑ .

Expansion of vectors in terms of a set of linearly independent
basis allow algebraic definition of vector addition and
subtraction, i.e.,
~A± ~B = x̂(Ax ± Bx) + ŷ(Ay ± By ) + ẑ(Az ± Bz).

|A|, Norm for scalars and vectors.

Ax = |A| cosα, Ay = |A| cosβ, Az = |A| cos γ

Pythagorean theorem,
|A|2 = A2

x + A2
y + A2

z , cos2 α + cos2 β + cos2 γ = 1.

Vector field: An space to each point of which a vector is
associated.

Direction of vector r is coordinate system independent.
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Rotation of the coordinate axes

x ′ = x cosφ+ y sinφ y ′ = −x sinφ+ y cosφ

Since each vector can be represented by a point in space a
vector field A is defined as an association of vectors to points
of space such that
A′x = Ax cosφ+ Ay sinφ A′y = −Ax sinφ+ Ay cosφ
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N-dimensional vectors

[
x ′

y ′

]
=

[
cosφ sinφ
− sinφ cosφ

] [
x
y

]
.

x → x1, y → x2, z → x3

x ′i =
∑N

j=1 aijxj ; i = 1, 2, · · · ,N; aij = cos(x ′i , xj).

In Cartesian coordinates,

x ′i = cos(x ′i , x1)x1 + cos(x ′i , x2)x2 + · · · thus aij =
∂x ′i
∂xj
.

By considering primed coordinate axis to rotate by −φ,
xj =

∑
i cos(xj , x

′
i )x
′
i =

∑
i cos(x ′i , xj)x

′
i =

∑
i aijx

′
i resulting in

∂xj
∂x ′i

= aij .

A is the matrix whose effect is the same as rotating the
coordinate axis, whose elements are aij .
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Matrices

A two dimensional array of elements is called a matrix.

A matrix with m rows and n columns is called an m by n
matrix.

If number of rows and columns are equal matrix is called
square matrix.

Matrix A is determined by determining its elements aij .

A+B = C iff aij + bij = cij

AB = C iff cij =
∑

k aikbkj

The identity matrix I =


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

 .
If metrix A is composed of elements aij , transpose of A, AT , is
composed of elements aji .

Inverse of the sqare matrix A is defined by AA−1 = A−1A = I .
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Vectors and vector space

Orthogonality condition for A: ATA = I or∑
i

aijaik =
∑
i

∂x ′i
∂xj

∂x ′i
∂xk

=
∑
i

∂xj
∂x ′i

∂x ′i
∂xk

=
∂xj
∂xk

= δjk

By depicting a vector as an n-tuple, B = (B1,B2, · · · ,Bn),
define:

Vector equality.

Vector addition

Scalar multiplication

Unique Null vector

Unique Negative of vector

Addition is commutative and associative. Scalar multiplication
is distributive and associative.
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Group

A group is a set equipped with a binary operation which
combines any two elements to form a third element in such a
way that closure, associativity, identity and invertibility called
group axioms are satisfied.

E.g., the set of integers together with the addition operation,
but groups are encountered in numerous areas, and help
focusing on essential structural aspects.

Point groups are used to help understand symmetry
phenomena in molecular chemistry.

A group is a set, G, together with an operation * (called the
group law of G) that combines any two elements a and b to
form another element, denoted a* b or ab.
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Group

Closure: For all a, b in G, the result of the operation, a*b, is
also in G.

Associativity: For all a, b and c in G, (a*b)*c = a*(b*c).

Identity element: There exists an element e in G such that, for
every element a in G, the equation e*a = a*e = a holds. Such
an element is unique, and thus one speaks of the identity
element.

Inverse element: For each a in G, there exists an element b in
G, commonly denoted a−1 (or -a, if the operation is denoted
”+”), such that a*b = b*a = e, where e is the identity
element.
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Group

Groups for which the commutativity equation a*b = b*a
always holds are called abelian groups

The symmetry group is an example of a group that is not
abelian.

The identity element of a group G is often written as 1 or 1G a
notation inherited from the multiplicative identity.

If a group is abelian, then one may choose to denote the group
operation by + and the identity element by 0; in that case, the
group is called an additive group.

There can be only one identity element in a group, and each
element in a group has exactly one inverse element.

The existence of inverse elements implies that division is
possible
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Field

a field is a set on which addition, subtraction, multiplication,
and division are defined, and behave as the corresponding
operations on rational and real numbers do.

There exist an additive inverse -a for all elements a, and a
multiplicative inverse b-1 for every nonzero element b.

An operation is a mapping that associates an element of the
set to every pair of its elements.

Associativity of addition and multiplication

Commutativity of addition and multiplication

Additive and multiplicative identity

Additive inverses

Multiplicative inverses

Distributivity of multiplication over addition

The best known fields are the field of rational numbers, the
field of real numbers and the field of complex numbers.
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Linear vector spaces

A ring consists of a set equipped with two binary operations
that generalize the arithmetic operations of addition and
multiplication.

A vector space over a field F is a set V together with two
operations that satisfy axioms listed below.

Vector addition + : V ×V → V , takes any two vectors v and w
and assigns to them a third vector commonly written as v + w.

Scalar multiplication · : F × V → V , takes any scalar a and
any vector v and gives another vector av. (The vector av is an
element of the set V ). Elements of V are commonly called
vectors. Elements of F are commonly called scalars.
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Linear vector spaces

Axiom Meaning
Associativity of addition u + (v + w) = (u + v) + w
Commutativity of addition u + v = v + u
Identity element of addition ∃0 ∈ V , called the zero vector,

such that v + 0 = v ∀v ∈ V .
Inverse elements of addition for
every v ∈ V ,

∃−v ∈ V , called the addi-
tive inverse of v, such that v +
(−v) = 0

Compatibility of scalar multiplica-
tion with field multiplication

a(bv) = (ab)v

Identity element of scalar multipli-
cation 1v = v,

1 denotes the multiplicative
identity in F

Distributivity of scalar multiplica-
tion with respect to vector addi-
tion

a(u + v) = au + av

Distributivity of scalar multiplica-
tion with respect to field addition

(a + b)v = av + bv
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Scalar or dot product

Real n-tuples labeled Rn, complex n-tuples are labeled Cn.

Inner product should be distributive and associative.
~A · (~B + ~C ) = ~A · ~B + ~A · ~C ~A · (y ~B) = (y ~A) · ~B = y ~A · ~B
Algebraic definition: ~A, ~B ∈ Rn ~A · ~B ≡

∑
i AiBi

~A, ~B ∈ Cn ~A · ~B ≡
∑

i A
∗
i Bi

Dot product of A by a unit vector is the length of A’s
projection into unit vectors direction.

Ax = |A| cosα ≡ ~A · x̂ , Ay = |A| cosβ ≡ ~A · ŷ , Az =

|A| cos γ ≡ ~A · ẑ .

Geometric definition: ~A · ~B = ABB = ABA = AB cos θ

x̂ · x̂ = ŷ · ŷ = ẑ · ẑ = 1

x̂ · ŷ = x̂ · ẑ = ẑ · ŷ = 0

Perpendicular or orthogonal vectors.

x̂ = e1, ŷ = e2, ẑ = e3; em · en = δmn
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Invariance of Scalar or dot product under rotation

~B ′ · ~C ′ =
∑

l B
′
lC
′
l =

∑
l

∑
i

∑
j aliBialjCj =∑

ij(
∑

l alialj)BiCj =
∑

ij δijBiCj =
∑

i BiCi = ~B · ~C ; thus dot
product is scalar.
~C = ~A + ~B, ~C · ~C = (~A + ~B) · (~A + ~B) =
~A · ~A + ~B · ~B + 2~A · ~B →

−→
A ·
−→
B = 1

2 (C 2 − A2 − B2).

Therefore,
−→
A ·
−→
B is a scalar.

Another derivation for cosine law, C 2 = A2 + B2 + 2AB cos θ
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The sine law

This reminds us of the sine law: a
sinA = b

sinB = c
sinC = d

Triangle area,
S = 1

2aha = 1
2a(b sinC ) = 1

2a(c sinB) = 1
2chc = 1

2c(b sinA).
1
2a(b sinC ) = 1

2a(c sinB) = 1
2c(b sinA)
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Vector or cross product

Geometric definition:
−→
C =

−→
A ×

−→
B C = AB sin θ,

−→
C is a

vector perpendicular to the plane of
−→
A and

−→
B such that

−→
A

and
−→
B and

−→
C form a right-handed system.

Cross product is non-commutative.
−→
A ×

−→
B = −

−→
B ×

−→
A

x̂ × x̂ = ŷ × ŷ = ẑ × ẑ = 0

x̂ × ŷ = ẑ , x̂ × ẑ = −ŷ , ẑ × ŷ = −x̂
Angular momentum,

−→
L = −→r ×−→p ; torque, −→τ = −→r ×

−→
F and

magnetic force,
−→
F M = q−→v ×

−→
B .

Treating area as a vector quantity.
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Vector or cross product

−→
A ×

−→
B ≡

−→
C = (Cx ,Cy ,Cz) =

(Ax x̂ + Ay ŷ + Az ẑ)× (Bx x̂ + By ŷ + Bz ẑ) =
(AxBy−AyBx)x̂×ŷ+(AxBz−AzBx)x̂× ẑ+(AyBz−AzBy )ŷ× ẑ
Cx = AyBz−AzBy , Cy = AzBx−AxBz , Cz = AxBy−AyBx .

Ci = AjBk − AkBj , i,j and k are different.
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Vector or cross product

−→
C =

x̂ ŷ ẑ
Ax Ay Az

Bx By Bz

−→
A ·
−→
C =

−→
A · (
−→
A ×

−→
B ) =

Ax(AyBz−AzBy )+Ay (AzBx−AxBz)+Az(AxBy −AyBx) = 0.
−→
B ·
−→
C =

−→
B · (
−→
A ×

−→
B ) = 0.

(
−→
A ×

−→
B ) · (

−→
A ×

−→
B ) = A2B2 sin2 θ.
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Levi-Civita symbol

Levi-Civita symbol, permutation symbol, antisymmetric
symbol, or alternating symbol. ε···ip ···iq ··· = −ε···iq ···ip ···
εi1i2···in = (−1)pε12···n.

εi1i2···in

=


+1 if (i1, i2, · · · , in) is an even permutation of (1, 2, · · · , n)

−1 if (i1, i2, · · · , in) is an odd permutation of (1, 2, · · · , n)

0 otherwise (no permutation, repeated index)

εijkεlmn =
δilδjmδkn + δimδjnδkl + δinδjlδkm− δimδjlδkn− δilδjnδkm− δinδjmδkl∑3

i=1 εijkεimn =
∑3

i=1(δiiδjmδkn + δimδjnδki + δinδjiδkm −
δimδjiδkn − δiiδjnδkm − δinδjmδki ) = δknδjm − δjnδkm
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Levi-Civita symbol—applications

Determinant:
a11 a12 a13

a21 a22 a23

a31 a32 a33

= εijka1ia2ja3k

Ci =
∑

jk εijkAjBk , ~C =
∑

ijk εijkAjBk êi = εijkAjBk êi

(
−→
A ×
−→
B ) · (

−→
A ×
−→
B ) = (

∑
ijk εijkAjBk êi ) · (

∑
lmn εlmnAmBnêl) =∑

ijklmn εijkεlmnAjBkAmBnδil =
∑

ijkmn εijkεimnAjBkAmBn =∑
jkmn(δknδjm−δjnδkm)AjBkAmBn =

∑
jk AjBk(AjBk−AkBj) =

(
∑

j A
2
j )(
∑

k B
2
K )−(

∑
j AjBj)(

∑
k AkBk) = |A|2|B|2(1−cos2 θ)

(
−→
A ×

−→
B )2 = (

−→
A )2(

−→
B )2 − (

−→
A ·
−→
B )2
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Triple scalar product

−→
A ·
−→
B ×

−→
C =

−→
A · (

∑
ijk εijkBjCk êi ) =

∑
ijk εijkAiBjCk =∑

jki εijkBiCjAk =
−→
B ·
−→
C ×

−→
A =

−→
C ·
−→
A ×

−→
B =

−
−→
A ·
−→
C ×

−→
B = − ~C · ~B × ~A.

−→
A ·
−→
B ×

−→
C =

Ax Ay Az

Bx By Bz

Cx Cy Cz

. Volume of the parallelepiped

defined by
−→
A ,
−→
B and

−→
C .
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Triple vector product

−→
A × (

−→
B ×

−→
C ) = x

−→
B + y

−→
C

0 = x
−→
A ·
−→
B + y

−→
A ·
−→
C → x = z

−→
A ·
−→
C y = −z

−→
A ·
−→
B

−→
A × (

−→
B ×

−→
C ) = z(

−→
B
−→
A ·
−→
C −

−→
C
−→
A ·
−→
B )

z is magnitude independent.

[Â× (B̂ × Ĉ )]2 = Â2(B̂ × Ĉ )2 − [Â · (B̂ × Ĉ )]2

= 1− cos2 α− [Â · (B̂ × Ĉ )]2

= z2[(Â · Ĉ )2 + (Â · B̂)2 − 2Â · B̂Â · Ĉ B̂ · Ĉ ]

= z2(cos2 β + cos2 γ − 2 cosα cosβ cos γ)

[Â · (B̂ × Ĉ )]2 =
1− cos2 α− z2(cos2 β + cos2 γ − 2 cosα cosβ cos γ)
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BAC-CAB

The volume spanned by three vectors is independent of their
order, thus z2 = 1.

x̂ × (x̂ × ŷ) = z((x̂ · ŷ)x̂ − (x̂ · x̂)ŷ) = −zŷ , also,
x̂ × (x̂ × ŷ) = x̂ × ẑ = −ŷ thus z = 1.

Lemma: ~A× ei =
∑

mno εmnoemAnδio =
∑

mn εmniemAn

~A× (~B × ~C ) = ~A× (
∑

ijk εijkeiBjCk) =∑
ijkmn εijkεimnBjCkAnem =∑
jkmn(δjmδkn − δjnδkm)BjCkAnem =∑
jk BjCkAkej −

∑
jk BjCkAjek = ~B(~A · ~C )− ~C (~A · ~B)
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Taylor series

Taylor series of a real or complex valued function f(x) that is
infinitely differentiable at a number a:

f (a) + f ′(a)
1! (x − a) + f ′′(a)

2! (x − a)2 + f ′′′(a)
3! (x − a)3 + · · · =∑∞

n=0
f (n)(a)

n! (x − a)n. When a = 0, the series is also called a
Maclaurin series.

The Taylor series for any polynomial is the polynomial itself.

The Maclaurin series for 1/(1- x) is the geometric series
1 + x + x2 + x3 + · · ·. so the Taylor series for 1/x at a = 1 is
1− (x − 1) + (x − 1)2 − (x − 1)3 + · · ·.
Integrate the above Maclaurin series, to find
ln(1− x) = −x − 1

2x
2 − 1

3x
3 − 1

4x
4 − · · · and the corresponding

Taylor series for ln x at a = 1 is
(x − 1)− 1

2 (x − 1)2 + 1
3 (x − 1)3 − 1

4 (x − 1)4 + · · · .
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Taylor series

Taylor series for log x at some a = x0 is:

log(x0) + 1
x0

(x − x0)− 1
x2

0

(x−x0)2

2 + · · · .

The Taylor series for the exponential function ex at a = 0 is
x0

0! + x1

1! + x2

2! + x3

3! + x4

4! + x5

5! + · · · =

1 + x + x2

2 + x3

6 + x4

24 + x5

120 + · · ·=
∑∞

n=0
xn

n! .

If f(x) is given by a convergent power series in an open disc
centered at b in the complex plane, it is analytic in this disc.
For x in this disc, f is given by a convergent power series
f (x) =

∑∞
n=0 an(x − b)n.

Differentiating by x the above formula n times, then setting x

= b gives: f (n)(b)
n! = an and so the power series expansion

agrees with the Taylor series.

Thus a function is analytic in an open disc centered at b if and
only if its Taylor series converges to the value of the function
at each point of the disc.
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Gradient, O

φ′(x ′1, x
′
2, x
′
3) = φ(x1, x2, x3)

∂φ′(x ′1,x
′
2,x
′
3)

∂x ′i
= ∂φ(x1,x2,x3)

∂x ′i
=
∑

j
∂φ
∂xj

∂xj
∂x ′i

=
∑

j aij
∂φ
∂xj

∂φ
∂xj

is behaving as a vector component.

Del = O = x̂ ∂
∂x + ŷ ∂

∂y + ẑ ∂
∂z

Calculate Of (r) where r =
√
x2 + y2 + z2, result is r̂ dfdr

Oφ · d~r = ∂φ
∂x dx + ∂φ

∂y dy + ∂φ
∂z dz = dφ

Over a constant φ surface dφ = Oφ · d~r = 0.

37/125



Gradient, O

dφ = C1 − C2 = ∆C = (∇φ) · dr
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Gradient, O

Consider φ(x , y , z) = (x2 + y2 + z2)1/2, find ∇φ and direction
cosines of ∇φ at (3,2,1).∫
~A(r) · ∇f (r)d3r = −

∫
f (r)∇ · ~A(r)d3r where A or f vanish

at infinity.
~F = −∇U
Prove ∇(uv) = v∇u + u∇v .
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Divergence, O

d~r(t)
dt = lim∆t→0

~r(t+∆t)−~r(t)
∆t = ~v

∇ · ~r = (x̂ ∂
∂x + ŷ ∂

∂y + ẑ ∂
∂z ) · (x̂x + ŷ y + ẑz) = 3,

∇ · (~r f (r)) =?, ∇ · (~r rn−1) =?.∫
~A(r) · ∇f (r)d3r = −

∫
f (r)∇ · ~A(r)d3r where A or f vanish

at infinity.
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Divergence, O

Divergence of ~V , ∇ · ~V = ∂Vx
∂x +

∂Vy

∂y + ∂Vz
∂z

∇ · (ρ ~V ) for a compressible fluid.

The flow going through a differential volume per unit time is:

(rate of flow in)EFGH = (ρvx)|x=0dydz

(rate of flow
out)ABCD = (ρvx)|x=dxdydz = [ρvx + ∂

∂x (ρvx)dx ]x=0dydz
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Divergence, O

Net rate of flow out|x = ∂
∂x (ρvx)|(0,0,0)dxdydz

lim∆x→0
ρvx (∆x ,0,0)−ρvx (0,0,0)

∆x ≡ ∂[ρvx (x ,y ,z)]
∂x |(0,0,0)

Net flow out (per unit time) = ∇ · (ρ~v) dxdydz .

Continuity equation: ∂ρ
∂t +∇ · (ρ~v) = 0.

∇ · (f ~V ) = ∇f · ~V + f∇ · ~V
~B is solenoidal if and only if ∇ · B = 0

A circular orbit can be represented by ~r = x̂ r cosωt + ŷ r sinωt.
Evaluate r × ~̇r and ~̈r + ω2~r =

Divergence of electrostatic field due to a point charge,
∇ · ~E = ∇ · qr̂

4πε0r2 .
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Curl, ∇×

∇× ~V =

x̂ ŷ ẑ
∂
∂x

∂
∂y

∂
∂z

Vx Vy Vz

.

∇× (f ~V ) = f∇× ~V + (∇f )× ~V

∇× (~rF (r)) = 0

Show that electrostatic and gravitational forces are irrotational.

Show that the curl of a vector field is a vector field.

Curl can be measured by inserting a paddle wheel inside the
vector field.
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Circulation

Circulation of a fluid around a differential loop in the xy-plane.

∫
~V ·dλ =

∫
1 Vx(x , y)dλx +

∫
2 Vy (x , y)dλy +

∫
3 Vx(x , y)dλx +∫

4 Vy (x , y)dλy = Vx(x0, y0)dx + [Vy (x0, y0) +
∂Vy

∂x dx ]dy +

[Vx(x0, y0) + ∂Vx
∂y dy ](−dx) + Vy (x0, y0)(−dy) =

(
∂Vy

∂x −
∂Vx
∂y )dxdy = ∇× ~V |z
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Successive applications of ∇

Show that ~u × ~v is solenoidal if u and v are each irrotational.

If ~A is irrotational show that ~A× ~r is solenoidal

∇ · ∇φ = ∇2φ = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 .

∇×∇φ = 0.

∇ · ∇ × ~V = 0

∇ · ∇ ~V = î∇ · ∇Vx + ĵ∇ · ∇Vy + k̂∇ · ∇Vz

∇× (∇× ~V ) = ∇∇ · ~V −∇ · ∇ ~V
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Electromagnetic wave equation

The set of Maxwell equations:

∇ · ~B = 0

∇ · ~E = ρ
ε0

∇× ~B = µ0( ~J + ε0
∂ ~E
∂t )

∇× ~E = −∂ ~B
∂t

Eliminating B between the last two equations, by noting that
∂
∂t∇× ~B = ∇× ∂ ~B

∂t and assuming no charge flux.

∇× (∇× ~E ) = −ε0µ0
∂2 ~E
∂t2

46/125



Electromagnetic wave equation

The set of Maxwell equations:

∇ · ~B = 0

∇ · ~E = ρ
ε0

∇× ~B = µ0( ~J + ε0
∂ ~E
∂t )

∇× ~E = −∂ ~B
∂t

Eliminating B between the last two equations, by noting that
∂
∂t∇× ~B = ∇× ∂ ~B

∂t and assuming no charge flux.

∇× (∇× ~E ) = −ε0µ0
∂2 ~E
∂t2

46/125



Review: Integrals

∫
x(x + a)ndx =∫

1
a2+x2 dx =∫

x
a2+x2 dx

= 1
2 ln |a2 + x2|

∫
x2

a2+x2 dx =∫
x3

a2+x2 dx =∫
tan(ax + b)dx =

−1
a ln | cos(ax + b)|

∫
cotan(ax + b)dx =

1
a ln | sin(ax + b)|
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Review: Integrals

∫
sec(ax + b)dx =

1
a ln | sec(ax + b) + tan(ax + b)|

∫
cosec(ax + b)dx =

−1
a ln |cosec(ax + b) + cotan(ax + b)|

∫
sec2(x)dx =

tan(x)

∫
cosec2(x)dx =

cotan(x)

∫
tan(x) sec(x)dx =

sec(x)

∫
cotan(x)cosec(x)dx =

cosec(x)
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Review: Integrals

∫
1

ax2+bx+c
dx =

∫
dx

a(x+ b
2a

)2+c− b2

4a

= 1
a

∫
dx

(x+ b
2a

)2+c/a− b2

4a2

=

1
a

∫
du

u2+(c/a− b2

4a2 )
= 1

a tan−1( u√
c/a− b2

4a2

) = 1
a tan−1(

x+ b
2a√

c/a− b2

4a2

)∫
1

(x+a)(x+b)dx =∫
x

ax2+bx+c
dx =∫

1√
x±adx =∫

x
√
x − adx∫ √

ax + bdx =∫
x√
x±adx =∫ √

x
a−x dx
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Vector integration over a contour

∫
C φd~r =
x̂
∫
C φ(x , y , z)dx + ŷ

∫
C φ(x , y , z)dy + ẑ

∫
C φ(x , y , z)dz∫

C
~V · d~r , e.g., w =

∫
F · d~r =∫

C
~Fx(x , y , z)dx +

∫
C Fy (x , y , z)dy +

∫
C Fz(x , y , z)dz∫

C
~V × d~r =

x̂
∫
C (Vydz −Vzdy)− ŷ

∫
C (Vxdz −Vzdx) + ẑ

∫
C (Vxdy −Vydx)

Reduce each vector integral to scalar integrals.

E.g.,
∫ 1,1

0,0 r2dr =
∫ 1,1

0,0 (x2 + y2)dr =
∫ 1,1

0,0 (x2 + y2)(x̂dx + ŷdy)

E.g., Calculate W for F = −x̂y + ŷ x
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Surface and volume integration

∫
φd~σ∫
~V · d~σ (flow or flux through a given surface),∫
~V × d~σ

Convention for the direction of surface normal: Outward from
a closed surface. In the direction of thumb when contiguous
right hand fingers are traversing the perimeter of the surface.

Volume integrals:∫
v
~Vdτ = x̂

∫
v Vxdτ + ŷ

∫
v Vydτ + ẑ

∫
v Vzdτ
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Integral definition of gradient

∇φ = limdτ→0

∫
Sdτ

φd~σ

dτ

dτ = dxdydz . Place origin at the center of the differential

volume.∫
Sdτ φd~σ = −i

∫
EFHG (φ− ∂φ

∂x
dx
2 )dydz + i

∫
ABDC (φ+

∂φ
∂x

dx
2 )dydz − j

∫
AEGC (φ− ∂φ

∂y
dy
2 )dxdz + j

∫
BFHD(φ+

∂φ
∂y

dy
2 )dxdz−k

∫
ABFE (φ− ∂φ

∂z
dz
2 )dydx +k

∫
CDHG (φ+ ∂φ

∂z
dz
2 )dydx∫

φd~σ = (i ∂φ∂x + j ∂φ∂y + k ∂φ∂z )dxdydz
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Integral definitions of divergence and curl

∇ · ~V = limdτ→0

∫
Sdτ

~V ·d~σ
dτ

∫
Sdτ

~V · d~σ =
∫
EFHG

~V · d~σ +
∫
ABDC

~V · d~σ +
∫
AEGC

~V · d~σ +∫
BFHD

~V · d~σ +
∫
ABFE

~V · d~σ +
∫
CDHG

~V · d~σ =

−
∫
EFHG (Vx − ∂Vx

∂x
dx
2 )dydz +

∫
ABDC (Vx + ∂Vx

∂x
dx
2 )dydz −∫

AEGC (Vy − ∂Vy

∂y
dy
2 )dxdz +

∫
BFHD(Vy +

∂Vy

∂y
dy
2 )dxdz −∫

ABFE (Vz − ∂Vz
∂z

dz
2 )dydx +

∫
CDHG (Vz + ∂Vz

∂z
dz
2 )dydx =

(∂Vx
∂x +

∂Vy

∂y + ∂Vz
∂z )dxdydz
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Integral definitions of divergence and curl

∇× ~V = limdτ→0

∫
Sdτ

d~σ× ~V
dτ∫

Sdτ
~V × d~σ =

∫
EFHG

~V × d~σ +
∫
ABDC

~V × d~σ +
∫
AEGC

~V ×
d~σ +

∫
BFHD

~V × d~σ +
∫
ABFE

~V × d~σ +
∫
CDHG

~V × d~σ =

−dydz ~V (−dx/2, 0, 0)× x̂ + dydz ~V (dx/2, 0, 0)× x̂ −
dxdz ~V (0,−dy/2, 0)× ŷ + dxdz ~V (0, dy/2, 0)× ŷ −
dxdy ~V (0, 0,−dz/2)× ẑ + dxdy ~V (0, 0, dz/2)× ẑ =
−dydz(Vz(−dx/2, 0, 0)ŷ − Vy (−dx/2, 0, 0)ẑ) +
dydz(−Vz(dx/2, 0, 0)ŷ − Vy (dx/2, 0, 0)ẑ)−
dxdz(−Vz(0,−dy/2, 0)x̂ + Vx(0,−dy/2, 0)ẑ) +
dxdz(−Vz(0, dy/2, 0)x̂ + Vx(0, dy/2, 0)ẑ)−
dxdy(Vy (0, 0,−dz/2)x̂ − Vx(0, 0,−dz/2)ŷ) +
dxdy(Vy (0, 0, dz/2)x̂ − Vx(0, 0, dz/2)ŷ)
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Theorems

Gauss’s theorem,
∫
S
~V · d~σ =

∫
V ∇ · ~Vdτ , equates the flow out

of a surface S with the sources inside the volume enclosed by it.

Alternate form:
∫
S φd~σ =

∫
V ∇φdτ using ~V = φ(x , y , z)~a

Alternate form:
∫
S d~σ × ~P =

∫
V ∇× ~Pdτ using ~V = ~a× ~P

Prove Green’s theorem,∫
V (u∇2v − v∇2u)dτ =

∫
S(u∇v − v∇u) · d~σ, by applying

Gauss’s theorem to the difference of
∇ · (u∇v) = u∇2v +∇u · ∇v and ∇ · (v∇u).

Alternative form,
∫
S u∇v · d~σ =

∫
V (u∇2v +∇u · ∇v)dτ
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Theorems

Stokes theorem:
∮
~V · d~λ =

∫
S ∇× ~V · d~σ

Alternate form:
∫
S dσ ×∇φ =

∮
∂S φdλ using ~V = ~aφ
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Potential theory

Scalar potential

Conservative force
⇐⇒ F = −∇φ ⇐⇒ ∇× F = 0 ⇐⇒

∮
F · dr = 0

∇× F = −∇×∇φ = 0∮
F · dr = −

∮
∇φ · dr = −

∮
dφ = 0∮

ACBDA F · dr = 0 ⇐⇒
∫
ACB F · dr = −

∫
BDA F · dr =∫

ADB F · dr ⇐⇒ the work is path independent.
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Potential theory

Thus
∫ B
A F · dr = φ(A)− φ(B)→ F · dr = −dφ = −∇φ · dr .

Therefore (F +∇φ) · dr = 0∮
F · dr =

∫
∇× F · dσ by integrating over the perimeter of an

arbitrary differentil volume dσ we see that
∮
F · dr = 0 result

in ∇× F = 0.

Scalar potential for the gravitational force on a unit mass m1,
FG = −Gm1m2 r̂

r2 = −kr̂
r2 ?

Scalar potential for the centrifugal force and simple harmonic
oscillator on a unit mass m1, ~Fc = ω2~r and ~FSHO = −k~r .

Exact differentials. How to know if integral of
df = P(x , y)dx + Q(x , y)dy is path dependent or independent.

Vector potential ~B = ∇× ~A
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Gauss’s law, Poisson’s equation

Only a point charge at the origin ~E = qr̂
4πε0r2

Gauss’s law:
∫
S
~E · d~σ =

{
0 S does not contain the origin,
q
ε0

S contains the origin.

Closed surface S not including the origin∫
S

r̂ ·d~σ
r2 =

∫
V ∇ · (

r̂
r2 )dτ

∫
S

r̂ ·d~σ
r2 +

∫
S ′

r̂ ·d~σ′
δ2 = 0
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Gauss’s law, Poisson’s equation

dσ′ = −r̂δ2dΩ∫
S
~E · d~σ = q

ε0
=
∫
V

ρ
ε0
dτ . Further,

∫
S
~E · d~σ =

∫
V ∇ · ~Edτ

Maxwell equation: ∇ · ~E = ρ
ε0

Poisson’s equation: ∇2φ = − ρ
ε0

.

Laplace’s equation ∇2φ = 0

Substitute φ for E into the Gauss’s law.
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Dirac delta function

∫
v ∇

2( 1
r )dτ =

{
−4π 0 ∈ v ,

0 0 6∈ v .
Thus

∇2( 1
r ) = −4πδ(~r) = −4πδ(x)δ(y)δ(z).

Dirac Delta properties

{
δ(x) = 0 x 6= 0,

f (0) =
∫∞
−∞ f (x)δ(x)dx .

See functions approximating δ in a Mathematica notebook.

δn(x) =


0 x < − 1

2n ,

n, − 1
2n < x < 1

2n ,

0 x > 1
2n .

δn(x) = n√
π
e−n

2x2
.

δn(x) = n
π

1
1+n2x2 .

δn(x) = sin nx
πx = 1

2π

∫ n
−n e

ixtdt.∫∞
−∞ f (x)δ(x)dx = limn→∞

∫∞
−∞ f (x)δn(x)dx
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Dirac delta function

δ(x) is a distribution defined by the sequences δn(x)

Evenness: δ(x) = δ(−x).∫∞
−∞ f (x)δ(ax)dx = 1

a

∫∞
−∞ f ( ya )δ(y)dy = 1

a f (0). Thus

δ(ax) = 1
|a|δ(x).∫∞

−∞ f (x)δ(g(x))dx =
∑

a

∫ a+ε
a−ε f (x)δ((x − a)g ′(a))dx . Thus

δ(g(x)) =
∑

a,g(a)=0,g ′(a)6=0
δ(x−a)
|g ′(a)| .

Derivative:∫
f (x)δ′(x − x0)dx = −

∫
f ′(x)δ(x − x0)dx = −f ′(x0).

Delta Operator: L(x0) =
∫
dxδ(x − x0).∫∫∫∞

−∞ δ(x)δ(y)δ(z)dxdydz =
∫ 2π

0

∫ π
0

∫∞
0 δ(~r)r2dr sin θdθdφ
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Representation of Dirac delta by orthogonal functions

Consider an infinite dimensional vector space where elements of
the underlying set are functions.
(f + g)(x) = f (x) + g(x) (cf )(x) = cf (x).

Inner product maybe defined as f (x) · g(x) =
∫ b
a f (x)g(x)dx

where either a, b or both can be ∞.

No good and natural example but Real orthogonal functions
{φn(x), n = 0, 1, 2, · · · } form a basis for this vector space.

Their orthonormality relation is
φm · φn =

∫ b
a φm(x)φn(x)dx = δmn

Around any point x0 an example is the set
{(x − x0)0, (x − x0), (x − x0)2, · · · } which is not orthonormal.

Use Gram-Schmidt orthonormalization.

For square integrable functions use {sin(nπx), cos(nπx)}
Expanding delta function in this bases:
δ(x − t) =

∑∞
n=0 an(t)φn(x): closure.

Take the inner product of both sides by φm(x) to derive
coefficients.
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Fourier transform

δ(x − t) =
∑∞

n=0 φn(t)φn(x) = δ(t − x)∫
F (t)δ(x − t)dt =

∫ ∑∞
p=0 apφp(t)

∑∞
n=0 φn(t)φn(x)dt =∑∞

n,p=0 apφn(x)δnp =
∑∞

p=0 apφp(x) = F (x)

Fourier integral translates a function from one domain into
another, F(f (t)) = 1√

2π

∫∞
−∞ f (t)e iωtdt = F (ω),

F(ψ(x)) = 1√
2π

∫∞
−∞ ψ(x)e ixpdx = ψ(p)

Inverse Fourier transform is
F−1(F (ω)) = 1√

2π

∫∞
−∞ F (ω) exp(−iωt)dω = f (t),

F−1(ψ(p)) = 1√
2π

∫∞
−∞ ψ(p) exp(−ixp)dp = ψ(x)

F(δ(x)) = 1√
2π

,

δ(x) = F−1(F(δ(x))) = F−1( 1√
2π

) = 1
2π

∫∞
−∞ exp(−ixp)dp
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Probability distributions

Average of a discrete random variable, ū =
∑M

j=1 ujp(uj )∑M
j=1 p(uj )

Average of any function of u: f (u) =
∑M

j=1 f (uj)p(uj)

m’th moment of distribution um

m’th central moment of distribution (u − ū)m including
variance.

Poisson distribution: P(m) = ame−a

m!

f (u) =
∫
f (u)p(u)du

Gauss distribution: p(x) = 1
(2πσ2)1/2 e

− (x−x̄)2

2σ2
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Important equations in physics

Laplace’s equation: ∇2φ = 0 or ∆φ = 0. Its solutions describe
the behaviour of electric, gravitational and fluid potentials.
Laplace’s equation is also the steady-state heat equation.

Helmholtz equation represents a time-independent form of the
wave equation: ∇2A + k2A = 0, where k is the wavenumber
and A is amplitude. HE commonly results from separation of
variable in a PDE involving both time and space varibles. E.g.,
the wave equation (∇2 − 1

c2
∂2

∂t2 )u(r , t) = 0

Diffusion equation: ∂φ(r ,t)
∂t = ∇ · [D(φ, r)∇(φ(r , t))], where

φ(r , t) is the density of the diffusing material at location r and
time t, D(φ, r) is the collective diffusion coefficient for density

at location r. If D is constant, ∂φ(r ,t)
∂t = D∆φ(r , t) also called

heat equation.

Schrodinger wave equation: i~ ∂
∂t |ψ(r , t)〉 = Ĥ|ψ(r , t)〉.
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Important equations in physics

For the nonrelativistic relative motion of two particles in the
coordinate basis, i~ ∂

∂tψ(r , t) = [− ~2

2µ∇
2 + V (r , t)]ψ(r , t).

When Hamiltonian is not explicitly dependent on time, we have
the time independent Schrodinger equation: Ĥψ = Eψ.

For the nonrelativistic relative motion of two particle in the
coordinate basis, [− ~2

2µ∇
2 + V (r)]ψ(r) = Eψ(r).

All have the form ∇2ψ + k2ψ = 0.

Any coordinate system in which this equation is separable is of
great interest.

Thus finding expressions for gradient, divergence, curl and
laplacian in a general coordinate system is of great interest.
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Curvilinear coordinates

A point can be specified as the intersection of the 3 planes x =
constant, y = constant and z = constant.

A point can be desdcribed by the intersection of three
curvilinear coordinate surfaces q1 = constant, q2 = constant,
q3 = constant.

Associate a unit vector q̂i normal to the surface qi = constant
and in the direction of increasing qi .

General vector ~V = q̂1V1 + q̂2V2 + q̂3V3.

While coordinate or position vectors can be simpler, e.g.,
~r = r r̂ in spherical polar coordinates and ~r = ρρ̂+ zẑ for
cylindrical coordinates.

q̂2
i = 1, for a right handed coordinate system q̂1 · (q̂2× q̂3) > 0.

ds2 = dx2 + dy2 + dz2 =
∑

ij h
2
ijdqidqj

hij are referred to as the metric.

dx = ( ∂x∂q1
)dq1 + ( ∂x∂q2

)dq2 + ( ∂x∂q3
)dq3

dy = ( ∂y∂q1
)dq1 + ( ∂y∂q2

)dq2 + ( ∂y∂q3
)dq3
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Curvilinear coordinates

dz = ( ∂z∂q1
)dq1 + ( ∂z∂q2

)dq2 + ( ∂z∂q3
)dq3

ds2 = d~r · d~r = d~r2 =
∑

ij
∂~r
∂qi
· ∂~r∂qj dqidqj . Thus:

h2
ij = ∂x

∂qi
∂x
∂qj

+ ∂y
∂qi

∂y
∂qj

+ ∂z
∂qi

∂z
∂qj

, valid in metric or Riemannian
spaces.
For orthogonal coordinate systems:
hij = 0, i 6= j or q̂i · q̂j = δij . Thus, setting
hii = hi > 0 ds2 = (h1dq1)2 + (h2dq2)2 + (h3dq3)2.
dsi is the differential length in the direction of increasing qi .
Scale factors may be identified as dsi = hidqi with length
dimension. ∂~r

∂qi
= hi q̂i

The differential distance vector
d~r = h1dq1q̂1 + h2dq2q̂2 + h3dq3q̂3∫
~V · d~r =

∑
i

∫
Vihidqi

For orthogonal coordinates: dσij = dsidsj = hihjdqidqj and
dτ = ds1ds2ds3 = h1h2h3dq1dq2dq3

d~σ = ds2ds3q̂1 + ds1ds3q̂2 + ds2ds1q̂3 =
h2h3dq2dq3q̂1 + h1h3dq1dq3q̂2 + h2h1dq2dq1q̂3
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Curvilinear coordinates∫
S
~V · d~σ =∫

V1h2h3dq2dq3 +
∫
V2h1h3dq1dq3 +

∫
V3h2h1dq2dq1

vector algebra is the same in orthogonal curvilinear coordinates
as in Cartesian coordinates.
~A · ~B =

∑
ik Ai q̂i · q̂kBk =

∑
ik AiBkδik =

∑
i AiBi

~A× ~B =

∣∣∣∣∣∣
q̂1 q̂2 q̂3

A1 A2 A3

B1 B2 B3

∣∣∣∣∣∣
To perform a double integral in a curvilinear coordinate one
needs to express a cartesian surface element in terms of the
curvilinear coordinates.
d~r1 = ~r(q1 + dq1, q2)− ~r(q1, q2) = ∂~r

∂q1
dq1 d~r2 =

~r(q1, q2 + dq2)− ~r(q1, q2) = ∂~r
∂q2

dq2

dxdy = d~r1 × d~r2|z = [ ∂x∂q1

∂y
∂q2
− ∂x

∂q2

∂y
∂q1

]dq1dq2 =∣∣∣∣∣ ∂x
∂q1

∂x
∂q2

∂y
∂q1

∂y
∂q2

∣∣∣∣∣ dq1dq2
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Curvilinear coordinates

The transformation coefficient in determinant form is called the
Jacobian

Similarly, dxdydz = dr1 · (dr2 × dr3)

dxdydz =

∣∣∣∣∣∣∣
∂x
∂q1

∂x
∂q2

∂x
∂q3

∂y
∂q1

∂y
∂q2

∂y
∂q3

∂z
∂q1

∂z
∂q2

∂z
∂q3

∣∣∣∣∣∣∣ dq1dq2dq3

Volume Jacobian is h1h2h3(q̂1 × q̂2) · q̂3

In polar coordinates: x = ρ cosφ y = ρ sinφ J =?

In spherical coordinates:
x = r sin θ cosφ y = r sin θ sinφ z = r cos θ J =?
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Differential vector operations

Gradient is the vector of maximum space rate of change
Since dsi is the differential length in the direction of increasing
qi , this direction is depicted by the unit vector q̂i .
∇ψ · q̂i = ∇ψ|i = ∂ψ

∂si
= ∂ψ

hi∂qi
.

∇ψ(q1, q2, q3) = q̂1
∂ψ
∂s1

+ q̂2
∂ψ
∂s2

+ q̂3
∂ψ
∂s3

=

q̂1
∂ψ

h1∂q1
+ q̂2

∂ψ
h2∂q2

+ q̂3
∂ψ

h3∂q3

dψ =

∇ · ~V (q1, q2, q3) = limdτ→0

∫
Sdτ

~V ·d~σ
dτ
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Differential vector operations: Divergence

Area integrals for the two q1 = constant surfaces are
V1(q1 + dq1, q2, q3)ds2ds3 − V1(q1, q2, q3)ds2ds3 =
[V1h2h3 + ∂

∂q1
(V1h2h3)dq1]dq2dq3 − V1h2h3dq2dq3 =

∂
∂q1

(V1h2h3)dq1dq2dq3∫
V · dσ =

[ ∂
∂q1

(V1h2h3) + ∂
∂q2

(V2h1h3) + ∂
∂q3

(V3h2h1)]dq1dq2dq3 where

Vi = q̂i · ~V
∇ · ~V (q1, q2, q3) =

1
h1h2h3

[ ∂
∂q1

(V1h2h3) + ∂
∂q2

(V2h1h3) + ∂
∂q3

(V3h2h1)]

Using V = ∇ψ(q1, q2, q3), ∇ · V = ∇2ψ =
1

h1h2h3
[ ∂
∂q1

(h2h3
h1

∂ψ
∂q1

) + ∂
∂q2

(h1h3
h2

∂ψ
∂q2

) + ∂
∂q3

(h2h1
h3

∂ψ
∂q3

)]
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Differential vector operations: Curl

Assuming the surface s to lay on q1 = constant surface.

lims→0

∫
s ∇× ~V · d~σ = q̂1 · (∇× ~V )h2h3dq2dq3 =

∮
∂s
V̂ · d~r

∮
∂s
~V · d~r = V2h2dq2 + [V3h3 + ∂

∂q2
(V3h3)dq2]dq3 − [V2h2 +

∂
∂q3

(V2h2)dq3]dq2−V3h3dq3 = [ ∂
∂q2

(V3h3)− ∂
∂q3

(V2h2)]dq2dq3

∇× ~V |1 = 1
h2h3

[ ∂
∂q2

(V3h3)− ∂
∂q3

(V2h2)]

Permuting the indices ∇× ~V |2 = 1
h3h1

[ ∂
∂q3

(V1h1)− ∂
∂q1

(V3h3)]

Thus ∇× ~V = 1
h1h2h3

∣∣∣∣∣∣
h1q̂1 h2q̂2 h3q̂3
∂
∂q1

∂
∂q2

∂
∂q3

h1V1 h2V2 h3V3

∣∣∣∣∣∣
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Circular cylinder coordinates

(ρ, φ, z), 0 ≤ ρ <∞, 0 ≤ φ ≤ 2π, and −∞ < z <∞

x = ρ cosφ, y = ρ sinφ, z = z

Using: h2
ij = ∂x

∂qi
∂x
∂qj

+ ∂y
∂qi

∂y
∂qj

+ ∂z
∂qi

∂z
∂qj

h1 = hρ = 1, h2 = hφ = ρ, h3 = hz = 1.

~r = ρ̂ρ+ ẑz , ~V = ρ̂Vρ + φ̂Vφ + ẑVz

75/125



Spherical polar coordinates

(r , θ, φ), 0 ≤ r <∞, 0 ≤ θ ≤ π, and 0 < φ < 2π

x = r sin θ cosφ, y = r sin θ sinφ, z = r cos θ

h1 = hr = 1, h2 = hθ = r , h3 = hφ = r sin θ.

r0 = î sin θ cosφ+ ĵ sin θ cosφ+ k̂ cos θ, θ0 =
î cos θ cosφ+ ĵ cos θ sinφ− k̂ sin θ, φ0 = −î sinφ+ ĵ cosφ

∇ψ = r̂0
∂ψ
∂r + θ̂0

1
r
∂ψ
∂θ + φ̂0

1
r sin θ

∂ψ
∂φ

∇ · ~V = 1
r2 sin θ

[sin θ ∂∂r (r2Vr ) + r ∂∂θ (sin θVθ) + r
∂Vφ
∂φ ]

∇ · ∇ψ =

∇× ~V =
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Matrices

Det(A) = εi1···ina1i1 · · · anin
Theorem: Det(AB) = Det(A)Det(B). Thus Det(A−1A) =
Det(I )→ Det(A−1)Det(A) = 1→ Det(A−1) = 1

Det(A)

Matrix A is invertible iff Det(A) 6= 0

Consider a system of n first order linear equations in n
unknowns,

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2

... =
...

an1x1 + an2x2 + · · ·+ annxn = bn
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Matrices

Such a system can be written in matrix form
a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann




x1

x2
...
xn

 =


b1

b2
...
bn


AX = B
If Det(A) 6= 0, X = A−1B and is uniquely determined.

If B =


0
0
...
0

 the above system of linear equations is called

homogeneous.
In order for this system to have any solution other than the

trivial X =


0
0
...
0

, Det(A) must equal zero.
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Leibniz integral rule

d
dx

(∫ b(x)
a(x) f (x , t) dt

)
=

f
(
x , b(x)

)
· d
dx b(x)− f

(
x , a(x)

)
· d
dx a(x) +

∫ b(x)
a(x)

∂
∂x f (x , t) dt,

A generalisation of the fundamental theorem of calculus; if
F (x) =

∫ x
a f (t) dt then F’(x)=f(x),

F (x1 + ∆x)− F (x1) =
∫ x1+∆x
a f (t) dt −

∫ x1

a f (t) dt =∫ x1+∆x
x1

f (t) dt.

F (x1 + ∆x)− F (x1) = f (c) ·∆x .

lim∆x→0
F (x1+∆x)−F (x1)

∆x = lim∆x→0 f (c).
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Differential equations

Ordinary differential equations only contain functions of a
single variable.

Differential equations with partial derivatives include functions
of more than one variable.

The highest order derivative in the differential equation
determines the order of the differential equation.

(y ′′)3 + 2yy ′ + 5xy = sin x is an ordinary differential equation
of order 2.

(dydx )2 − [sin(xy)− 4x ]2 = 0 is an ordinary differential equation
of the first order.
∂3u
∂x3 + x ∂u∂t + ∂2u

∂x∂t = 0 is a differential equation with partial
derivatives of the third order.
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Ordinary differential equations

F (x , y , y ′, · · · , y (n)) = 0 on an interval I.

F is rewritten as, y (n) = f (x , y , · · · , y (n−1))

A function φ such that φ(n) = f (x , φ, · · · , φ(n−1)) is a solution
to this differential equation on I.

Initial conditions are restrictions on the solution at a single
point, while boundary conditions are restrictions on the
solution at different points.

E.g., y ′ = 2y − 4x → y = ce2x + 2x + 1

E.g., y ′′ + y = x → y = c1 cos x + c2 sin x + x

a0(x)y (n) + a1(x)y (n−1) + · · ·+ an(x)y = b(x) is a linear
ordinary differential equation which constitutes our focus in
this section of the course.
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Ordinary differential equations

y (4) + 4y ′′′ + 3y = x ; y1 = x
3 , y2 = e−x + x

3

x2y ′′ + 5xy ′ + 4y = 0, x > 0; y1 = x−2, y2 = x−2 ln x

y ′ − 2xy = 1; y = ex
2 ∫ x

0 e−t
2
dt + ex

2

uxx + uyy = 0; u1 = x2 + y2, u2 = xy

utt − c2uxx = 0; u1 = sin(x + ct), u2 = sin(x − ct), u3 =
f (x + ct) + g(x − ct)

uxx + uyy + uzz = 0; u = (x2 + y2 + z2)−1/2

x2y ′′ + xy ′ + y = 0, y(1) = 1, y ′(1) = −1; y =
cos(ln x)− sin(ln x)
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First order differential equations

y ′ = f (x , y) y(x0) = y0 there exists a unique solution if f and
∂f
∂x are continuous around (x0, y0).

First order linear differential equations: dy
dx + a(x)y = f (x)

Assuming A(x) =
∫ x

a(t)dt,
d
dx (eA(x)y) = eA(x)(y ′ + a(x)y) = eA(x)f (x)

General solution is: y = e−A(x)
∫ x

eA(t)f (t)dt + ce−A(x)

Imposing the initial condition, y(x0) = y0,
y = e−A(x)

∫ x
x0
eA(t)f (t)dt + y0e

−(A(x)−A(x0))

e.g., y ′ = y + sin x , e−x(y ′ − y) = (e−xy)′ = e−x sin x

e−xy =
∫ x

e−t sin tdt + c = −1
2 e−x(sin x + cos x) + c
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First order differential equations

Solve y ′ = y + sin x , y(0) = 1

(x ln x)y ′ + y = 6x3, x > 1, thus (y ln x)′ = 6x2,

y = 2x3+c
ln x x > 1 .

Assuming a(x) and f (x) to be continuous on the interval
(α, β) for every x0 ∈ (α, β), the initial value problem
y ′ + a(x)y = f (x) y(x0) = y0, for every value of y0 has one
and only one solution on the interval (α, β).

xy ′ + 2y = 4x2, x > 0, y(1) = 2, result in y = x2 + c
x2 .

Solve it for y(1)=1.
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First order differential equations

y ′ + y
x = 3 cos 2x , x > 0

y ′ + 3y = x + e−2x

(x2 + 1)y ′ + y + 1 = 0

y ′ sin 2x = y cos 2x

xy ′ + y + 4 = 0, x > 0

x2y ′ − xy = x2 + 4, x > 0

y ′ + 2y = xe−2x ; y(1) = 0

y ′ + 2
x y = cos x

x2 ; y(π) = 0

y ′ + y cot x = 2x − x2 cot x , y(π2 ) = π2

4 + 1

y ′ − x3y = −4x3; y(0) = 6

y ′ + y tan x = sin 2x ; y(0) = 1

sin xy ′ + cos xy = cos 2x , x ∈ (0, π); y(π2 ) = 1/2

y ′ + y
x = ex

2
, x > 0; y(1) = 0

y ′ + y = xe−x ; y(0) = 1
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Nonlinear First order DEs

For nonlinear equations there is no general method for solving
the DE.

Separable differential equations:
y ′ = f (x , y)→ p(x) + q(y)y ′ = 0

p(x)dx + q(y)dy = 0→ d [P(x) + Q(y)] = 0→
P(x) + Q(y) = c → y = φ(x , c)

E.g., y ′ = 2+sin x
3(y−1)2 → (2 + sin x)dx − 3(y − 1)2dy = 0→

2x − cos x − (y − 1)3 = c → y = 1 + (2x − cos x − c)1/3

E.g., y ′ = x3y−y
y4−y2+1

, y(0) = 1→ (y3 − y + 1/y)dy =

(x3 − 1)dx → y4/4− y2/2 + ln |y | = x4/4− x + c
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Complete first order DE

y ′ = −p(x ,y)
q(x ,y) → p(x , y)dx + q(x , y)dy = 0 this equation is

complete in a region D if and only if there is a g such that
dg(x , y) = p(x , y)dx + q(x , y)dy
∂g
∂x = p(x , y), ∂g

∂y = q(x , y)

E.g., For
(4x − y)dx + (2y − x)dy = 0, g(x , y) = 2x2 − xy + y2, g is
an integral of the differential equation and the curves
g(x , y) = c are its integral curves.

Theorem: The necessary and sufficient condition for
completeness of p(x , y)dx + q(x , y)dy = 0 in a region D of the
xy plane is to have ∂p

∂y = ∂q
∂x , (x , y) ∈ D
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Complete first order DE

The condition is necessary since gxy = gyx , to prove sufficiency
consider g such that gx(x , y) = p(x , y), gy (x , y) = q(x , y)
thus we have g(x , y) =

∫ x
p(t, y)dt + h(y)→ gy (x , y) =∫ x ∂p(t,y)

∂y dt + h′(y) = q(x , y) thus

h′(y) = q(x , y)−
∫ x ∂p(t,y)

∂y dt

If we show that the right hand side is only a function of y, we
have an algorithm for evaluating g.
∂
∂x [q(x , y)−

∫ x ∂p(t,y)
∂y dt] = ∂q

∂x −
∂p
∂y = 0

E.g., (4x − y)dx + (2y − x)dy = 0 for which
∂p
∂y = −1, ∂q

∂x = −1. Thus
dg(x , y) = (4x − y)dx + (2y − x)dy
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Completing a first order DE

g(x , y) = 2x2 − xy + h(y) so
−x + h′(y) = 2y − x h(y) = y2 + c ,

g(x , y) = 2x2 − xy + y2 + c

Integration factor

µ(x , y)p(x , y)dx + µ(x , y)q(x , y)dy = 0
∂
∂y (µp) = ∂

∂x (µq)

p(x , y)∂µ∂y − q(x , y)∂µ∂x + (∂p∂y −
∂q
∂x )µ = 0. This PDE must be

solved to find the integrating factor.

E.g., x2 − y2 + 2xyy ′ = 0, Assuming
µ = µ(x), µ(x)(x2 − y2)dx + µ(x)(2xy)dy = 0
∂
∂y [µ(x2 − y2)] = ∂

∂x [µ(2xy)]→ xµ′ + 2µ = 0→ µ(x) = x−2

(1− y2

x2 )dx + ( 2y
x )dy = 0→ x + y2/x = c → y2 + (x −a)2 = a2
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Completing a first order DE: excersize

y ′ = x3y−2

(1 + x2)1/2y ′ = 1 + y2

y ′ = xy2 + y2 + xy + y ;Y (1) = 1

(x + 1)y ′ + y2 = 0; y(0) = 1

(2x − y)dx − xdy = 0

(x − 2y)dx + (4y − 2x)dy = 0
ydx−xdy

y2 + xdx = 0

3(x − 1)2dx − 2ydy = 0

ex
2y (1 + 2x2y)dx + x3ex

2ydy = 0

(x2 + y2)2(xdx + ydy) + 2dx + 3dy = 0

(x2 + y2)dx + 2xydy = 0, y(1) = 1
ydx

x2+y2 − xdy
x2+y2 = 0, y(2) = 2

(x − y)dx + (2y − x)dy = 0, y(0) = 1

If µ = µ(x), ∂µ
∂y = 0, dµ

µ =
py−qx

q dx
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Completing a first order DE

If µ = µ(y), dµ
µ =

qx−py
p dy

(x2 − y2)− 2xyy ′ = 0
y + (y2 − x)y ′ = 0
(3xy + y2) + (x2 + xy)y ′ = 0
(3xy + y2)dx + (3xy + x2)dy = 0

µ = x + y

Bernoulli equation: y ′ + a(X )y = b(x)yα use z = y1−α get
z ′ + (1− α)a(x)z − (1− α)b(x) = 0
xy ′ − y = exy3

Riccati equation: y ′ = a(x)y + b(x)y2 + c(x) assume
y = φ(x) to be a private solution and use y = φ(x) + 1/z to
derive z ′ + [a(x) + 2φ(x)b(x)]z = −b(x).
y ′ = 1 + x2 − 2xy + y2, φ(x) = x
y ′ − xy2 + (2x − 1)y = x − 1, φ(x) = 1
y ′ + xy2 − 2x2y + x3 = x + 1, φ(x) = x − 1
y ′ + y2 − (1 + 2ex)y + e2x = 0, φ(x) = ex

y ′ + y2 − 2y + 1 = 0
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Completing a first order DE

If µ = µ(y), dµ
µ =

qx−py
p dy

(x2 − y2)− 2xyy ′ = 0
y + (y2 − x)y ′ = 0
(3xy + y2) + (x2 + xy)y ′ = 0
(3xy + y2)dx + (3xy + x2)dy = 0
µ = x + y
Bernoulli equation: y ′ + a(X )y = b(x)yα use z = y1−α get
z ′ + (1− α)a(x)z − (1− α)b(x) = 0
xy ′ − y = exy3

Riccati equation: y ′ = a(x)y + b(x)y2 + c(x) assume
y = φ(x) to be a private solution and use y = φ(x) + 1/z to
derive z ′ + [a(x) + 2φ(x)b(x)]z = −b(x).
y ′ = 1 + x2 − 2xy + y2, φ(x) = x
y ′ − xy2 + (2x − 1)y = x − 1, φ(x) = 1
y ′ + xy2 − 2x2y + x3 = x + 1, φ(x) = x − 1
y ′ + y2 − (1 + 2ex)y + e2x = 0, φ(x) = ex

y ′ + y2 − 2y + 1 = 0
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Linear differential equations

a0(x)y (n) + a1(x)y (n−1) + · · ·+ an(x)y = b(x)

y (n) + p1(x)y (n−1) + · · ·+ pn(x)y = f (x)

Ln ≡ dn

dxn + p1(x) dn−1

dxn−1 + · · ·+ pn(x)

Ln[y ] = f (x)

Existence and uniqueness theorem: If p1, p2, · · · , pn and f are
continuous on the interval I, ∀x0 ∈ I the above equation has
one and only one solution y = φ(x) satisfying
φ(x0) = α1, φ

′(x0) = α2, φ
′′(x0) = α3, · · · , φ(n−1)(x0) = αn.

y ′′ + p(x)y ′ + q(x)y = 0; y(x0) = 0, y ′(x0) = 0 only has the
trivial solution.
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Linear differential equations

xy ′′ + (cos x)y ′ + x
1+x y = 2x solutions can be determined for

each of the intervals (−∞,−1), (−1, 0) and (0,∞).

Homogeneous differential equations have f(x)=0. E.g.,
y ′′ + p(x)y ′ + q(x)y = 0.

Operator L is called linear iff for arbitrary constants
c1, c2, c3, · · · , ck and functions
φ1, φ2, · · · , φk ; L[c1φ1 + c2φ2 + · · ·+ ckφk ] =
c1L[φ1] + c2L[φ2] + · · ·+ ckL[φk ].

c1φ1 + c2φ2 + · · ·+ ckφk =
∑

i ciφi is a linear combination of
the k functions φi .

If φ1, φ2, · · · , φk are solutions of Ln[y ] = 0 each linear
combination of them is a solution as
Ln[
∑k

i=1 ciφi ] =
∑k

i=1 ciLn[φi ] = 0.
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Homogeneous Linear differential equations

L2[y ] = y ′′ − y = 0

y ′′′ + y ′ = 0

m functions g1, g2, · · · , gm are linearly independent on the
interval I iff c1g1(x) + c2g2(x) + · · ·+ cmgm(x) = 0 implies
that c1 = c2 = · · · = cm = 0.

The set of functions g1, g2, · · · , gm are linearly dependent on
the interval I if there is a set of constants c1, c2, · · · , cm
including at least one non zero ci such that for
∀x ∈ I c1g1(x) + c2g2(x) + · · ·+ cmgm(x) = 0.

E.g., {er1x , er2x}.
E.g., {ex , e−x , cosh x}.
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Wronskian

Introduced by Polish mathematician Jozef Wronski.

If f1, f2, · · · , fn are (n-1) times differentiable functions on I,

W (f1, f2, · · · , fn) =

∣∣∣∣∣∣∣∣∣
f1(x) f2(x) · · · fn(x)
f ′1(x) f ′2(x) · · · f ′n(x)

...
...

...

f
(n−1)

1 (x) f
(n−1)

2 (x) · · · f
(n−1)
n (x)

∣∣∣∣∣∣∣∣∣
E.g., W (x2, x3) =

∣∣∣∣ x2 x3

2x 3x2

∣∣∣∣ = x4

E.g., W (1, ex , e−x) =

∣∣∣∣∣∣
1 ex e−x

0 ex −e−x
0 ex e−x

∣∣∣∣∣∣ = 2
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Wronskian

Theorem: Given p(x) and q(x) continuous on I, two solutions
of L2[y ] = y ′′ + p(x)y ′ + q(x)y = 0 are linearly independent on
I iff their Wronskian is non-zero on I.

If φ1 and φ2 are dependent
∃b1, b2 6= 0| b1φ1 + b2φ2 = 0 b1φ

′
1 + b2φ

′
2 = 0[

φ1 φ2

φ′1 φ′2

] [
b1

b2

]
= 0

Nonzero Wronskian implies b1 = b2 = 0 and that φ1 is linearly
independent from φ2.

Assume {φ1, φ2} are linearly independent and
∃x0 W (φ1, φ2)(x0) = 0[
φ1(x0) φ2(x0)
φ′1(x0) φ′2(x0)

] [
b1

b2

]
= 0 has nontrivial solutions b10, b20

96/125



Wronskian

Define ψ(x) = b10φ1(x) + b20φ2(x)

ψ(x0) = b10φ1(x0) + b20φ2(x0) = 0

ψ′(x0) = b10φ
′
1(x0) + b20φ

′
2(x0) = 0

ψ(x) is the solution to Ln[y ] = 0, ψ(x0) = 0, ψ′(x0) = 0
According to the existence and uniqueness theorem ψ ≡ 0.

This implies linear dependence of {φ1, φ2}.
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Wronskian

Theorem: Wronskian of the solutions to the L2[y ] = 0 on I are
either never zero or always zero.

Proof: W (φ1, φ2)(x) = φ1φ
′
2 − φ2φ

′
1,

dW
dx = φ1φ

′′
2 − φ2φ

′′
1 =

p(x)(φ′1φ2 − φ′2φ1) = −p(x)W

Abel relation: W (φ1, φ2)(x) = ce
−

∫ x
x0

p(t)dt
, x ∈ I

W (φ1, φ2)(x) = W (φ1, φ2)(x0)e
−

∫ x
x0

p(t)dt
, x ∈ I

If p1(x), p2(x), · · · , pn(x) are continuous on the interval I, then
solutions φ1(x), φ2(x), · · · , φn(x) of
Ln[y ] = y (n) + p1(x)y (n−1) + · · ·+ pn(x)y = 0 are linearly
independent iff their Wronskian is nonzero.

Further, dW
dx + p1(x)W = 0
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Wronskian

W (φ1, · · · , φn)(x) = W (φ1, · · · , φn)(x0)e
−

∫ x
x0

p1(t)dt
, x ∈ I

y ′′′ − 4y ′′ + 5y ′ − 2y = 0 has solutions
φ1 = ex , φ2 = xex , φ3 = e2x , these constitute a fundamental
set of solutions.

Theorem: Linear homogeneous differential equation of order n
has n linearly independent solutions.

Proof: consider

Ln[y ] = 0; y(x0) = 1, y ′(x0) = 0, y ′′(x0) = 0, · · · , y (n−1)(x0) = 0

Ln[y ] = 0; y(x0) = 0, y ′(x0) = 1, y ′′(x0) = 0, · · · , y (n−1)(x0) = 0
...

...

Ln[y ] = 0; y(x0) = 0, y ′(x0) = 0, y ′′(x0) = 0, · · · , y (n−1)(x0) = 1
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# of solutions of a LHDE

By existence and uniqueness theorem the above equations have
solutions φ1(x), φ2(x), · · · , φn(x)

c1φ1(x) + c2φ2(x) + · · ·+ cnφn(x) = 0

c1φ
′
1(x) + c2φ

′
2(x) + · · ·+ cnφ

′
n(x) = 0

c1φ
′′
1(x) + c2φ

′′
2(x) + · · ·+ cnφ

′′
n(x) = 0

... =
...

c1φ
(n−1)
1 (x) + c2φ

(n−1)
2 (x) + · · ·+ cnφ

(n−1)
n (x) = 0

Substitute x = x0 to derive c1 = c2 = · · · = cn = 0

n linearly independent solutions of a linear differential equation
of order n are called a fundamental set of that equation.
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Linear vector space of solutions

Theorem: If p1(x), p2(x), · · · , pn(x) are continuous on the
interval I, and if solutions φ1(x), φ2(x), · · · , φn(x) are a
fundamental set of
Ln[y ] = y (n) + p1(x)y (n−1) + · · ·+ pn(x)y = 0 on I, for every
solution φ(x) there is a unique set c1, · · · , cn such that
φ(x) = c1φ1(x) + c2φ2(x) + · · ·+ cnφn(x)

Proof: Assume
φ(x0) = α0, φ

′(x0) = α1, · · · , φ(n−1)(x0) = αn−1

c1φ1(x0) + c2φ2(x0) + · · ·+ cnφn(x0) = α0

c1φ
′
1(x0) + c2φ

′
2(x0) + · · ·+ cnφ

′
n(x0) = α1

... =
...

c1φ
(n−1)
1 (x0) + c2φ

(n−1)
2 (x0) + · · ·+ cnφ

(n−1)
n (x0) = αn−1
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Linear vector space of solutions

if solutions φ1(x), φ2(x), · · · , φn(x) are a fundamental set of
Ln[y ] = y (n) + p1(x)y (n−1) + · · ·+ pn(x)y = 0 on I,
W (φ1, · · · , φn)(x) 6= 0. Thus the above system has unique
solutions c0

1 , · · · , c0
n . Define

ψ = c0
1φ1(x) + c0

2φ2(x) + · · ·+ c0
nφn(x)

According to existence and uniqueness theorem ψ = φ.
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Linear nonhomogeneous differential equations

Consider a private solution φp(x) of
Ln[y ] = y (n) + p1(x)y (n−1) + · · ·+ pn(x)y = f (x) where pi (x)
and f (x) are continuous on I, and {φ1(x), φ2(x), · · · , φn(x)} is
a fundamental set of the corresponding linear homogeneous
DE. If φ(x) is any other solution to the Ln[y ] = f (x) then
Ln[φ− φp] = Ln[φ]− Ln[φp] = 0 thus φ = ciφi + φp
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Linear nonhomogeneous differential equations

Theorem: If φp(x) is a private solution of Ln[y ] = f (x), every
solution can be written as φ(x) = ckφk(x) + φp(x) this is
called a general solution.

Find the general solution to y (4) + 2y ′′ + y = x

φp = x , {cos x , sin x , x cos x , x sin x}, φ(x) =?

E.g., y ′′ − y = x , y(0) = 0, y ′(0) = 1

φp = −x {ex , e−x}
E.g.,
x2y ′′ + 4xy ′ + 2y = 6x + 1, x > 0, y(1) = 2, y(2) = 1

φp = x + 1/2, {1/x , 1/x2}
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Linear differential equations: Exercise

If L[y ] = y ′′ + ay ′ + by , find a) L[cos x ], b) L[x2], c) L[x r ], d)
L[erx ]

If L[y ] = y (n) + a1y
(n−1) + · · ·+ any determine L[erx ]

L[y ] = x2y ′′ + axy ′ + by determine L[x r ], do the same for
L[y ] = x3y ′′′ + a1x

2y ′′ + a2xy
′ + a3y

Check validity of given solution and determine its validity
integral. xy ′′ + y ′ = 0; φ(x) = ln( 1

x )

4x2y ′′ + 4xy ′ + (4x2 − 1)y = 0; φ(x) =
√

2
πx sin x

(1− x2)y ′′ = −2xy ′ + 6y ; φ(x) = 3x2 − 1

(1− x2)y ′′ = −2xy ′ + 2y + 2; φ(x) = x tanh−1 x

Show that φ1(x) = 1
9x

3 and φ2(x) = 1
9 (x3/2 + 1)2 satisfy

(y ′)2 − xy = 0 on the interval (0,∞). Do their sum satisfy this
DE?
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Linear differential equations: Exercise

y ′ − 3y2/3 = 0 has the general solution y = (x + c)3. Test if
linear combinations of these solutions are solutions. Test the
independence of different solutions? Consider the following

solutions: a) φ(x) =

{
(x − a)3 x ≤ a

0 x > a
b)

φ(x) =

{
0 x ≤ b

(x − b)3 x > b
c) φ(x) =


(x − a)3 x ≤ a

0 b > x > a

(x − b)3 x ≥ b

Show that functions 1, x , x2, · · · , xn constitute a linearly
independent set.
Prove that n solutions of the DE
L[y ] = y (n) + p1(x)y (n−1) + · · ·+ pn(x)y = 0 are linearly
independent iff their Wronskian is nonzero.
Drive the Abel relation for n=3. To this end show that

w ′ =

∣∣∣∣∣∣
φ1 φ2 φ3

φ′1 φ′2 φ′3
φ′′′1 φ′′′2 φ′′′3

∣∣∣∣∣∣
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Linear DE with constant coefficients

y (n) + a1y
(n−1) + a2y

(n−2) + · · ·+ any = 0

Ln = dn

dxn + a1
dn−1

dxn−1 + · · ·+ an = Dn + a1D
n−1 + · · ·+ an

L[y ] = (L1 · · · Lk)[y ]

If φ is a solution to Li [y ] = 0 then
L[φ] = (L1 · · · Li−1Li+1 · · · Lk)Li [φ] = 0

In this way solutions of linear homogeneous DE with constant
coefficients of order n can be deduced from solutions of DEs of
order one and two.

E.g.,
Ln[y ] = y ′′+y ′−2y = 0 = (D2+D−2)y = (D−1)(D+2)y = 0

{ex , e−2x}
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Linear DE with constant coefficients: exercise

Prove that roots of a polynomial with real coefficients appear
in complex conjugate pairs.

Prove that each polynomial of odd degree has at least one real
root.

Prove that each polynomial can be written as a product of first
and second order polynomials with real coefficient.

Write these polynomials as multiplication of first and second
dergree polynomials.

D3 +1, D3−1, D4 +1, D4 +2D2 +10, D3−D2 +D−1.
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L homogeneous second order DE with constant coefficients

For a second order DE L[y ] = y ′′ + ay ′ + by = 0 try solutions
of the form φ(x) = esx

L[esx ] = p(s)esx p(s) = s2 + as + b is called characteristic
polynomial of the DE.

p(s) = 0 is the characteristic equation of the DE.

p(s) = 0→ s = s1, s2

s1 6= s2 φ(x) = c1e
s1x + c2e

s2x including the case of complex
conjugate roots.

If s1 = a + bi then s2 = a− bi . {e(a+bi)x , e(a−bi)x} or
{eax cos bx , eax sin bx}
A homogeneous equation in x is said to have a double root, or
repeated root, at a if is a factor of the equation. At the double
root, the graph of the equation is tangent to the x-axis.

s1 = s2
∂
∂s L[esx ] = L[ ∂∂s e

sx ] = L[xesx ]

L[xes1x ] = p′(s1)es1x + p(s1)xes1x = 0

φ(x) = (c1 + c2x)es1x
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L homogeneous second order DE with constant coefficients

E.g., y ′′ + 2y ′ + 10y = 0, y(0) = 1, y ′(0) = 0

E.g., y ′′ + 2y ′ + y = 0, y(0) = 1, y ′(0) = 0
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Higher order LHDE with constant coefficients

L[y ] = y (n) + a1y
(n−1) + · · ·+ any = 0

L[esx ] = p(s)esx where p(s) = sn + a1s
n−1 + · · ·+ an is the

characteristic equation of our DE.

If s1, s2, · · · , sj are roots of characteristic equation with
multiplicities of n1, n2, · · · , nj the fundamental set is as follows:

{es1x , xes1x , · · · , xn1−1es1x , es2x , xes2x , · · · , xn2−1es2x ,

· · · , esjx , xesjx , · · · , xnj−1esjx}

E.g., y (6) + 2y ′′′ + y = 0→ (D3 + 1)2y = 0

D3(D − 1)2(D + 1)2y = 0
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Higher order LHDE with constant coefficients: Exercise

Write a fundamental set for each of the following equations.

D5y = 0

(D + 2)4y = 0

(D2 + 4)(D − 3)2y = 0

(D2 + 16)[(D − 1)2 + 6]2y = 0

(D2 − 1)2(D2 + 2D + 2)4y = 0
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Finding private solutions: Variation of parameters

L[y ] = y ′′ + p(x)y ′ + q(x)y = f (x) with {φ1, φ2} as a
fundamental set.
Assume φp = u1φ1 + u2φ2

φ′p = u′1φ1 + u′2φ2 + u1φ
′
1 + u2φ

′
2

Assume u′1φ1 + u′2φ2 = 0. Thus φ′p = u1φ
′
1 + u2φ

′
2.

φ′′p = u1φ
′′
1 + u2φ

′′
2 + u′1φ

′
1 + u′2φ

′
2.

L[φp] = φ′′p + p(x)φ′p + q(x)φp = u1φ
′′
1 + u2φ

′′
2 + u′1φ

′
1 +

u′2φ
′
2 + p(x)(u1φ

′
1 + u2φ

′
2) + q(x)(u1φ1 + u2φ2) =

u1(−pφ′1 − qφ1) + u2(−pφ′2 − qφ2) + u′1φ
′
1 + u′2φ

′
2 +

p(x)(u1φ
′
1 + u2φ

′
2) + q(x)(u1φ1 + u2φ2) = f (x)

u′1φ
′
1 + u′2φ

′
2 = f[

φ1 φ2

φ′1 φ′2

] [
u′1
u′2

]
=

[
0

f (x)

]
By Cramer’s rule: u′1 = −f (x)φ2(x)

W (φ1,φ2) u′2 = f (x)φ1(x)
W (φ1,φ2)

u1(x) = −
∫ x
x0

f (s)φ2(s)
W (φ1,φ2)(s)ds, u2(x) =

∫ x
x0

f (s)φ1(s)
W (φ1,φ2)(s)ds

Finaly, φp(x) =
∫ x
x0

φ2(x)φ1(s)−φ1(x)φ2(s)
W (φ1,φ2)(s) f (s)ds

113/125



Finding private solutions: Variation of parameters

Suppose dny
dtn + p1(t) dn−1

dtn−1 y + · · ·+ pn(t)y = g(t)

Solve the corresponding homogeneous differential equation to
get: yh(t) = C1y1(t) + C2y2(t) + ...+ Cnyn(t).

Assume a particular solution to the nonhomogeneous
differential equation is of the form:
Y (t) = u1(t)y1(t) + u2(t)y2(t) + ...+ un(t)yn(t).

Solve the following system of equations for
u′1(t), u′2(t), . . . , u′n(t).

u′1(t)y1(t) + u′2(t)y2(t) + ...+ u′n(t)yn(t) = 0
u′1(t)y ′1(t) + u′2(t)y ′2(t) + ...+ u′n(t)y ′n(t) = 0

...

u′1(t)y
(n−1)
1 (t) + u′2(t)y

(n−1)
2 (t) + ...+ u′n(t)y

(n−1)
n (t) = g(t)
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Finding private solutions: Variation of parameters

y ′′ − 2y ′ + y = ex

1+x2 where the fundamental set is {ex , xex}
y ′′′ + y ′ = tan x

y ′′′ − y ′ + 2y = e−x sin x

y ′′ + y = 1
cos x

(D2 + 10D − 12)y = (e2x+1)2

e2x

(4D2 − 8D + 5)y = ex tan2(x/2)

y (4) + y = g(t)
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Undetermined multipliers method for finding PS

One can guess the general form of the private solution and
substitute in the DE to find the undetermined multipliers in the
general form.

y ′′ + y = 3x2 + 4→ (D2 + 1)y = 3x2 + 4

Note that D3(3x2 + 4) = 0→ D3(D2 + 1)y = 0

y = c1 + c2x + c3x
2 + c4 cos x + c5 sin x

Substituting y into original DE determines multiples except for
cos x and sin x multiples as they are solutions of the
corresponding homogeneous equation and cancel out.

E.g., y ′′ + 2y = ex
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Undetermined multipliers method for finding PS

y ′′′ + y ′ = sin x

Since (D2 + 1) sin x = 0, (D2 + 1)(D3 + D)y = 0

(D − 2)3y = 3e2x

Since (D − 2)(3e2x) = 0, (D − 2)4y = 0. Thus φp(x) = cx3e2x

The method of undetermined multiples has the following
limitations.

In L[y ] = f (x), L must contain only constant coefficients.

f(x) must contain functions which satisfy a homogeneous linear
DE with constant coefficient.
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Undetermined multipliers method for finding PS

If f (x) = pn(x) = a0x
n + a1x

n−1 + · · ·+ an → φp(x) =
x r (A0x

n + A1x
n−1 + · · ·+ An)

If
f (x) = pn(x)eαx → φp(x) = x r (A0x

n + A1x
n−1 + · · ·+ An)eαx

If f (x) = pn(x)eαx sinβx or f (x) = pn(x)eαx cosβx then
φp(x) = x r (A0x

n + A1x
n−1 + · · ·+ An)eαx cosβx + x r (A0x

n +
A1x

n−1 + · · ·+ An)eαx sinβx

L[y ] = y ′′′ + y ′′ = 3x3 − 1

y ′′ + 4y = xex

y ′′ − y = x2ex sin x

If L[y ] = f1(x) + f2(x) + · · ·+ fk(x) and
L[φp1] = f1(x), L[φp2] = f2(x), · · · , L[φpk ] = fk(x) then by
linearity of L,
L[φp1 + φp2 + · · ·+ φpk ] = f1(x) + f2(x) + · · ·+ fk(x)
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Undetermined multipliers method for finding PS

y ′′ + 4y = xex + x sin 2x

y ′′′ + 3y ′′ = 2 + x2

y ′′ + 4y ′ + 4y = xe−x

y ′′ + 9y = 2x sin 3x
d2y
dt2 − 4dy

dt + 8y = e2t(1 + sin 2t)
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Euler differential equation

nth order homogeneous Euler equation:
(x − x0)ny (n) + a1(x − x0)n−1y (n−1) + · · ·+ any = 0

x0 is the singularity of the Euler equation.

Consider L[y ] = x2y ′′ + axy ′ + by = 0, x > 0

Impose the change of variable t = ln x . y ′ = 1
x
dy
dt

y ′′ = d2y
dt2 ( dt

dx )2 + d2t
dx2

dy
dt = 1

x2
d2y
dt2 − 1

x2
dy
dt

d2y
dt2 + (a− 1)dydt + by = 0

Characteristic equation: s2 + (a− 1)s + b = 0

Depending on ∆ for the characteristic equation fundamental
set is {es1t = x s1 , es2t = x s2}, {es1t = x s1 , tes1t =
x s1 ln x}, {xα cos(β ln x), xα sin(β ln x)}
If we substitute x s for y, L[x s ] = [s2 + (a− 1)s + b]x s = 0
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Euler differential equation

The characteristic equation p(s) = s2 + (a− 1)s + b = 0. If
∆ > 0→ φ(x) = c1x

s1 + c2x
s2 , x > 0 where x s1 = es1 ln x

If ∆ = 0 we note that
∂
∂s L[x s ] = L[x s ln x ] = p′(s)x s + p(s)x s ln x

At s = s1, L[x s1 ln x ] = p′(s1)x s1 + p(s1)x s1 ln x = 0. Thus
φ(x) = c1x

s1 + c2x
s1 ln x , x > 0

If ∆ < 0→ φ(x) = eαx(c1 cos(β ln x) + c2 sin(β ln x)), x > 0

For x < 0 we make the change of variable ζ = −x . Euler

equation become ζ2 d2y
dζ2 + aζ dy

dζ + by = 0

φ(ζ) =


c1ζ

s1 + c2ζ
s2 s1 6= s2 ∈ <

c1ζ
s1 + c2ζ

s1 ln ζ s1 = s2 ∈ <
c1ζ

α cos(β ln ζ) + c2ζ
α sin(β ln ζ) s = α± iβ
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Euler differential equation

Combining solutions for x > 0 and x < 0.

φ(|x |) =


c1|x |s1 + c2|x |s2

c1|x |s1 + c2|x |s1 ln |x |
c1|x |α cos(β ln |x |) + c2|x |α sin(β ln |x |)

x2y ′′ + 2xy ′ + 2y = 0; y(1) = 0, y ′(1) = 0

x2y − 5xy ′ + 13y = 0

x2y ′′ + 5xy ′ + 4y = 0

x2y ′′ − 3xy ′ + 4y = ln x

x2y ′′ + 4xy ′ − 6y = 0

Order reduction technique:
L[y ] = x2y ′′ + x3y ′ − 2(1 + x2)y = x
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Series

∑∞
k=o ak(x − a)k = a0 + a1(x − a) + a2(x − a)2 + · · · where

ak ∈ R, k ∈ N
The sequence {sn(x)} where sn(x) =

∑n
k=o ak(x − a)k is a

partial sum sequence for the above series.

The above power series is convergent at point x0 if the partial
sum sequence {sn(x)} is convergent at point x0. I.e.,
limn→∞ sn(x0) = s(x0)

s(x0) is the sum of the above series at point x0.

limn→∞
∑n

k=o ak(x0 − a)k =
∑∞

k=o ak(x0 − a)k = s(x0)

Set a = 0,
∑n

k=o akx
k = a0 + a1x + a2x

2 + · · · . This is
absolutely convergent iff

∑
|akxk | is convergent.

Convergence radius, convergence interval or region of
convergence.

limn→∞ |an+1xn+1

anxn
|
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Series

Every power series defines a continuous differentiable function
over its radius of convergence.

∑∞
k=0 akx

k = f (x)

(
∑∞

k=0 akx
k)(
∑∞

k=0 bkx
k) =

∑∞
k=0 ckx

k where

ck =
∑k

m=0 ak−mbm =
∑k

m=0 bk−mam
Uniqueness of the taylor series.

Find the convergence interval for
∑∞

n=0
2n

n+1x
n and∑∞

n=1
(x+1)n

2nn
1

(1−x)2 = d
dx

1
(1−x) =

∑∞
n=1 nx

n−1

Linear indepence of power series starting from different powers
of x.

If p(x) and q(x) are analytic around x0 then
y ′′ + p(x)y ′ + q(x)y = 0 has analytic solution around the point
x0.

E.g., Determine a series solution for the following differential
equation about x0 = 0, y ′′ + xy ′ + y = 0.

φ(x) =
∑∞

k=0 akx
k
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Series

∑∞
k=0(k + 2)(k + 1)akx

k +
∑∞

k=1 kakx
k +

∑∞
k=0 akx

k = 0

φ(x) = a0[1 +
∑∞

k=1(−1)k x2k

(2k)(2k−2)···(4)(2) ] + a1[x +∑∞
k=1(−1)k x2k+1

(2k+1)(2k−1)···(5)(3) ]

Legendre differential equation,
(1− x2)y ′′ − 2xy ′ + λ(λ+ 1)y = 0

Solution would converge on the interval (-1,1).∑∞
k=0[(k + 2)(k + 1)ak+2 + (λ− k)(λ+ k + 1)ak ]xk = 0

For natural values of λ one of the solutions would be a
polynomial. These are Legendre polynomials.

If p(x) and q(x) are analytic around x0 then
y ′′ + p(x)y ′ + q(x)y = f (x) has solution φ(x) such that
φ(x0) = a and φ′(x0) = b, Taylor series of the solution would
have a convergence radius greater than the smallest of the
convergence radius of p, q and f at x0.
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Numeric solution to a differential equation

Start by substituting Taylor series of p and q in the
corresponding homogenous equation. To derive
φh(x) = a0 + a1x +

∑∞
k=2(αka0 + βka1)xk

Lemma: If
∑

ckx
k has convergence radius

R∗ > 0 ∀r < R∗ ∃M : |ck |rk ≤ M

Numerically Solve the equation dy(t)
dt = −λy(t) and compare

the resulting solution to exact solution.
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