
A Cooperative Learning Method Based on Cellular
Learning Automata and Its Application in

Optimization Problems

Milad Mozafari

Department of Mathematics and Computer Science, Amirkabir University of Technology,

Tehran, Iran

Mohammad Ebrahim Shiri1

Department of Mathematics and Computer Science, Amirkabir University of Technology,

Tehran, Iran

Hamid Beigy

Department of Computer Engineering, Sharif University of Technology, Tehran, Iran

Abstract

In this paper, a novel reinforcement learning method inspired by the way humans

learn from others is presented. This method is developed based on cellular

learning automata featuring a modular design and cooperation techniques. The

modular design brings flexibility, reusability and applicability in a wide range

of problems to the method. This paper focuses on analyzing sensitivity of the

method’s parameters and the applicability in optimization problems. Results of

the experiments justify that the new method outperforms similar ones because

of employing knowledge sharing technique, reasonable exploration logic, and

learning rules based on the action trajectory.

Keywords: Cellular automata, Cellular learning automata, Knowledge

sharing, Optimization

1Corresponding author

Preprint submitted to Journal of Computational Science July 15, 2015

1. Introduction

Machine learning is about designing techniques and algorithms by which

intelligent agents automatically learn the optimal acting for a problem using

available data. These techniques are very useful in complex problems whose

space are not completely available or predictable. Machine learning techniques5

fall into three main categories, that are supervised learning [1], unsupervised

learning [2], and reinforcement learning [3]. In the case of supervised learning

techniques, there is a set of training data for which the solutions are available and

the learner tries to infer a function from the training data to map unseen data

with high accuracy. In unsupervised learning techniques, there is no training10

data set and the learner tries to find hidden structures by analyzing different

features of the data. Reinforcement learning techniques, that are involved in

our method, are inspired by behaviorist psychology, in which agents try to

figure out how to act efficiently in an environment by interaction only. With

each action an agent performs, the environment sends a reinforcement signal15

to the agent. Reinforcement signals are the only information the agent receives

about its acting, and reinforcement techniques are about learning optimal acting

in an environment using the reinforcement signals. Reinforcement learning is

applicable to problems in various fields of study such as prediction [4], scheduling

[5], wireless networks [6, 7], robotics [8], ensemble learning [9] to mention a few.20

The variety of applications and the concept of learning from experience, give

rise to the study and design of reinforcement learning techniques for complex

and large-scale problems.

Progress of technology and emergence of powerful processors provide the

ability of parallelism and multi-agent computing which effectively improves the25

performance and the speed of a learning method. We use cellular learning au-

tomata (CLA) [10, 11] which are cellular automata (CA) [12] in which cells

are equipped with learning automata (LA) [13, 14], to design a parallel multi-

agent method. Our method benefits from advantages of both LAs that use

reinforcement learning techniques, and CA as a tool for parallelism and a basis30

2

for modeling the fact that human decisions are influenced by the behavior of

others he refers to [15]. The magnitude of the influence depends on various fac-

tors such as trust, relationship, expertness, and etc. Cellular learning automata

have applications in complex systems and simulations [16], optimization [17, 18],

classification [19], pattern recognition [20], image processing [21], wireless sensor35

networks [22], dynamic channel assignment [23, 24] recommender systems [25]

and many other types of problems.

In multi-agent scenarios it is very useful to let the agents cooperate with each

other and benefit from the knowledge gained by others. Cooperative learning

techniques [26] are a class of techniques that are designed to address coopera-40

tion between agents in multi-agent environments with the purpose of improving

the quality, the accuracy, and the speed of the learning process. Knowledge

sharing [27] is one of the cooperative learning techniques in which agents try to

learn from each other and share what they learn. We use this technique in our

method by letting agents use neighboring agents’ knowledge gathered through45

their individual learning processes.

In this paper, we focus on solving optimization problems and show how

the proposed method can be applied to these problems. We also compare

our method with Cellular Learning Automata based Evolutionary Computing

(CLA-EC) [28] and Recombinative CLA-EC (RCLA-EC) [29], which are the50

most similar methods to ours. CLA-EC is a combination of CLA and evolu-

tionary algorithms and can be applied to optimization problems. For example,

CLA-EC is used for clustering and intrinsic hardware evolution, [30, 31]. Our

experiments show that CLA-EC suffers from the lack of exploration and it is

susceptible to local optima. The authors in [29] addressed this problem and55

proposed RCLA-EC, which is a CLA-EC enhanced with a recombination op-

erator that helps the method to be more exploratory in searching the problem

space. The results of our experiments indicate that our method has a better

performance than both CLA-EC and RCLA-EC, and does not suffer from their

disadvantages. Besides, we examine how our method performs on two real-world60

problems and compare the obtained results with methods other than CLAs.

3

The rest of this paper is organized as follows: In Section 2, we briefly de-

scribe CLAs that are the core of our method. Next, in Section 3 we introduce

our method and describe it in full details. In Section 4, we perform different

experiments to show the sensitivity of different parameters and compare our65

method with both CLA-EC and RCLA-EC. Conclusion and future works are

highlighted in Section 5.

2. Preliminaries

In this section, we give a brief demonstration of CLAs, which are combina-

tions of LAs and CAs. We begin by introducing LAs followed by description of70

CAs and CLAs.

2.1. Learning Automata

An LA is a decision-making machine consisting of a set of inputs, a set

of states, a set of actions, action probabilities, and a learning algorithm in

its primary form. An LA chooses an action in each state based on its action75

probability vector, and performs it on a responsive random environment. The

environment receives the action as an input and produces a reinforcement signal

with a fixed unknown probability distribution (as a response). This response

shows to what extent the performed action is good or bad and the LA uses this

response to update its action probabilities. Action probabilities are crucial to an80

LA’s decisions and form the basis of its learning process. Interactions between

the learning automaton and the random environment are depicted in Figure 1.

The random environment is an entity consisting of a set of inputs, a set

of outputs (reinforcement signals) and an unknown probability distribution for

producing different reinforcement signals. There are three well-known models85

based on the environment’s outputs, which are also the LA’s inputs; if the LA’s

input set is binary (e.g. {0, 1}), the model is known as the P -model, if the

input consists of a set of distinct symbols, it is known as a Q-model, and finally

it is an S-model, if the input set is the interval [0, 1] [13]. Depending on the

4

Figure 1: Interaction between an environment and a learning automaton [13]

problem to be solved, a proper model must be designed in order to achieve the90

best performance.

2.2. Cellular Automata

Cellular automata are dynamic systems consisting of a set of identical au-

tomata in which space and time are discrete. These automata are arranged in

a cellular grid and interact locally with their neighboring automata which are95

defined by popular neighborhood, such as the Von Neumann (Figure 2a), or

any other kind of neighborhoods [32, 33]. Local interactions are defined by a set

of local transition rules indicating the next state of each automaton given the

states of its neighboring automata. Transition rules describe the behavior of a

CA and designing suitable transition rules for a CA is an important task for100

which scientists try to develop useful methods. For instance, the authors in [34]

employ principal component analysis (PCA) to evaluate transition rules of CAs

and retrieve a set of rules which are suitable for different kinds of situations.

Acknowledging that the grid of CAs cannot be infinite in practice, boundary

conditions are needed for the cells placed on the edges of the grid. Figure105

2b depicts how periodic boundary conditions can be imposed in the case of a

two-dimensional grid.

Despite the simple structure of CA, they are able to model non-linear dy-

namics in natural systems, which are very hard to model by other mathematical

5

(a)

(b)

Figure 2: (a) Von Neumann neighborhood for cell ci,j and (b) periodic boundary
condition for a grid of size 4 × 4.

tools like differential equations [35, 36, 37, 38]. Here, we employ CAs to facil-110

itate the modeling of knowledge sharing between agents. For further readings

please see [12].

2.3. Cellular Learning Automata

A CLA is a CA in which cells of the grid are equipped with LAs. In these

automata, there are local learning rules in addition to the evolution rules and115

neighbors affect the learning process of the individuals. Simply put, CLAs can

learn based on the learning capabilities of LAs and evolve based on local rules

of CAs. A d-dimensional CLA is a quintuple CLA = (Zd, ϕ,A,N, F) where

• Zd is a d-dimensional grid of cells;

• ϕ is a finite set of states that each cell can possess;120

• A is a set of LAs, each of which is assigned to a specific cell;

• N = X1, , Xm is a finite subset of Zd that is called the neighborhood

vector;

• F : ϕm → β is the local rule of the CLA where β is a set of valid rein-

forcement signals that can be applied to LA.125

6

CLAs can be updated either synchronously or asynchronously [39]. In syn-

chronous scheme, all cells are synchronized with a global clock and executed at

the same time, while in asynchronous scheme each cell is evolved based on its

own clock. Each of these updating schemes can change the behavior of the un-

derlying CA completely [40, 41]. In [10], a mathematical methodology to study130

the behavior of the synchronous CLA is given and its convergence properties

have been investigated.

2.4. Cellular Learning Automata with Multiple Learning Automata in each Cell

In some problems, there is a need to make a decision about multiple (deci-

sion) variables, for example, channel assignment in cellular mobile networks for135

which several decision variables must be tuned. In these situations it is very

helpful to extend each cell of the CLA to include a set of LAs (where the cardi-

nality equals to the number of decision variables) instead of one [42], and assign

different decision variables to different LAs in each cell.

3. Proposed Method140

In this section, we describe our proposed learning method in detail. One

of the main goals of our method is to create a modular, flexible and reusable

method that fits in many machine learning scenarios by appropriately altering

its modules. We begin by introducing the individual modules, then we give

a detailed demonstration of their interactions, which reveals how agents learn145

acting optimally through interaction with their environments.

3.1. Agent and Environment

Agent and environment are the only two distinct modules in our method

that have no dependencies but inputs and outputs (the way they interact with

each other). In our method, we employ a synchronous CLA whose cells are150

conceived as agents that are arranged in a 2-dimensional grid. An action of an

agent is in the form of a finite-length bit string. To generate such an action, we

apply the idea of using multiple LAs in each cell of the CLA [42]. Here, agents

7

include a finite set of LAs that have only two actions; 0 and 1, and the action

of each agent is generated by concatenating the actions of the associated LAs.155

Therefore, the action set for each agent, is the set of all combinations of zeros

and ones in a finite-length bit string. Agents store two kinds of actions and

their corresponding environment’s response throughout their life-time: (1) the

latest action they have applied to the environment and (2) the best action they

have generated from the beginning of their evolution. They use these actions160

through their learning process which is discussed in the following subsection.

The goal of these agents is to learn the optimal acting in a random environ-

ment by using their individual experience and the knowledge gathered from their

neighboring agents. We use a set of random environments which are respon-

sible for evaluating the agents’ actions and producing a reinforcement signal.165

These random environments are identical and each of them is associated to an

individual agent.

An environment is the module specifying the problem that must be solved

by the agent. Agents know nothing about the problem encapsulated in the

environment, but the result of the action they perform on it. Iteratively, agents170

generate an action and apply it to the environments, then the environments

respond with a reinforcement signal and agents use these signals as a guidance

to learn how to act better in their future trials.

The only dependency between an agent and its environment, is the length

of the action bit string needed to encode solutions of the problem encapsulated175

in the environment. This low degree of dependency makes our method reusable

for solving different kinds of problems without changing the way agents find

a solution. To solve a new problem with our method, it is sufficient to define

the length of the agent’s action and design a proper environment for the new

problem. In Section 4, we illustrate how our method can be used to solve180

optimization problems.

8

Table 1: List of notations used in this paper

Notation Definition
d Size of each dimension of the CLA grid.
Ai,j The agent located in the ith row and the jth column of the

grid.
Ni,j The set of neighboring agents of Ai,j .
Mi,j The set of LAs associated to Ai,j .
n The cardinality of Mi,j for all i, j ∈ {1, 2, ..., d}.
mi,j

t The tth LA associated to Ai,j .
Mi,j(k) The action probability matrix of Ai,j at the kth iteration.

P i,j
t (k) The tth row of Mi,j which is the action probability vector of

mi,j
t .

pi,jt,v(k) The probability that mi,j
t chooses action v ∈ {0, 1} at the kth

iteration.
Bi,j(k) The action (bit string) generated by Ai,j at the kth iteration.

bi,jt (k) The tth bit of Bi,j(k).
wi,j(k) The reinforcement signal produced by the random environment

associated to Ai,j at the kth iteration as a response to the
performed action.

eci,j The ε-escape bit-counter for the agent Ai,j .

3.2. Acting and Learning

Here, we give a precise and detailed description of the agents’ acting and

learning procedures in which several notations are employed. Definitions of the

notations are summarized in Table 1.185

We design an iterative step-wise procedure which involves three phases: de-

cide, act and learn. Each agent generates a new action in the first phase, then

applies it to its own environment in the second phase and finally updates its

action probability matrix using a learning algorithm provided with the environ-

ment’s reinforcement signal as an input, in the third phase. Agents perform190

this procedure iteratively until a stop criterion is met. The remainder of this

subsection describes each phase in details.

When an agent enters the decision phase, each of its LAs chooses an action for

its corresponding bit in the agent’s action bit string, using its associated action

probability vector in the action probability matrix. More precisely, when Ai,j195

enters the decision phase at the kth iteration, each LA mi,j
t decides on choosing

9

1 or 0 for bi,jt (k), based on its action probability vector P i,j
t (k). Therefore, the

automaton mi,j
t assigns the value of 0 with probability pi,jt,0(k) and the value of

1 with the probability pi,jt,1(k) to bi,jt (k).

In the acting phase, agents perform their generated action (from the previous200

phase) on their own environment. Then, environments generate reinforcement

signals and pass them back to their corresponding agent, which inform the agent

about the consequences of its action. As the value of the reinforcement signal

gets lower (higher), the positive (negative) consequences of the performed action

gets more. In the next phase, agents use these signals to update their probability205

matrix in order to find the action with the lowest possible reinforcement signal.

As mentioned before, agents generate their actions based on their own action

probability matrix. In the learning phase, LAs of each agent update the elements

of their corresponding action probability vectors using a learning procedure. In

our method, there are two types of learning procedures; individual learning210

and cooperative learning procedures. In the case of the former, each agent

tries to learn based on its own previous actions and the reinforcement signals

from the environment (learning from experience), while agents try to learn from

the knowledge shared by their neighboring agents in the case of the latter.

We control the impact of cooperative learning procedure by the parameter λ,215

which denotes the probability that the cooperative learning is invoked after each

individual learning procedure. So high λ-values result in a more cooperative

method.

In the individual learning procedure, the action probability matrix of each

agent is updated based on the learning rules. For each action Bi,j(k) performed220

by agent Ai,j at the kth iteration and its corresponding reinforcement signal

wi,j(k), the action probability matrix Mi,j(k) is updated using the following

rules:

10

• If wi,j(k) < wi,j(k − 1) then for all t ∈ {1, 2, ..., n} and v ∈ {0, 1}:

pi,jt,v(k + 1) =

pi,jt,v(k) + (2v − 1)
(
bi,jt (k)− bi,jt (k − 1)

)(
ηQ
(

1− pi,j
t,bi,jt (k)

(k)
)) (1)

where

Q =
wi,j(k − 1)− wi,j(k)

wi,j(k − 1)
= 1− wi,j(k)

wi,j(k − 1)
. (2)

• If wi,j(k) > wi,j(k − 1) then for all t ∈ {1, 2, ..., n} and v ∈ {0, 1}:

pi,jt,v(k + 1) =

pi,jt,v(k) + (1− 2v)
(
bi,jt (k)− bi,jt (k − 1)

)(
ηQ
(

1− pi,j
t,bi,jt (k)

(k)
)) (3)

where

Q′ =
wi,j(k)− wi,j(k − 1)

wi,j(k)
= 1− wi,j(k − 1)

wi,j(k)
. (4)

These learning rules are designed in a way that whenever an agent receives225

a response for the new action, it compares it with the previous signal and sends

the signal to a subset of its LAs who choose a different action as compared to

the previously selected one, after which, each LA updates its probability vector

toward the action that results in the lower reinforcement signal (better action).

Let C denote the set of indices of the LAs of an agent whose corresponding230

bits in the newly generated action bit string take different values in comparison

with the values in the previous action bit string. When new changes in action

bit string results in an improvement, i.e. wi,j(k) < wi,j(k − 1), the probability

vectors of the LAs in C must be updated in a way that the generation of an

action similar to the new one becomes more probable. Hence, for each bit235

bi,jt (k) where t ∈ C, if its previous value is 0 and its current value is 1, the

automaton mi,j
t decreases the probability of choosing action 0 and increases the

probability of choosing action 1, and conversely if bi,jt (k) is 1 (Equation (1)).

The coefficient Q controls the magnitude by which the probabilities change.

11

According to Equation (2), the more the new action improves the reinforcement240

signal (smaller wi,j(k)), the more Q approaches 1, which causes bigger changes

in probabilities.

The learning rules for the case of wi,j(k) > wi,j(k − 1) (i.e., changes in the

newly generated action are bad) are similar, but LAs now change the proba-

bilities so that the generation of an action similar to the previous one becomes245

more probable (Equation (3)).

In some problems where the difference between two reinforcement signals can

be high, the value of Q or Q′ may become large and cause rapid convergence

toward local optima. To address this problem, we introduced a smoothening

parameter η ∈ [0, 1] in the learning equations controlling the rate of convergence.250

In a cooperative learning procedure, all the agents share their best action

with their neighbors. Each agent compares its latest action value, i.e. wi,j(k), to

the best action values of its neighbors and tries to learn the best action among

neighbors using the same learning rules in the individual learning procedure by

choosing the best neighbor’s action as its own new action. More precisely, each255

agent imitates the best action among its neighbors instead of generating a new

action based on its own knowledge (probability vectors).

In our method, there is a chance of being trapped in local optima in the

case of complex optimization problems involving many local optima. Therefore,

we designed a procedure called ε-escape to increase the chance of escaping from

local optima when solving complex optimization problems. This procedure is ex-

ecuted with probability ε after each action generation. In this procedure, agent

Ai,j chooses eci,j bits of its generated action bit string randomly and inverts

not only the bits themselves but also the probabilities in their corresponding

probability vectors. More precisely, assume that the probability of ε holds at

the iteration k of the procedure. If we denote the set of indices of the selected

bits of the action bit string Bij(k) by

Si,j(k) = {s1, s2, ..., seci,j}, (5)

12

Figure 3: An example of running the escape procedure when eci,j = 3 and selected
bit indices are 1,4,5

then, for each bit bi,jr (k) where r ∈ Si,j(k), the agent replaces the bi,jr (k) with

1−bi,jr (k) and swaps the values of pi,jr,1(k) and pi,jr,0(k) (Figure 3). For each agent

Ai,j , eci,j is initialized with 1 and is increased each time the ε-escape procedure260

is called. This increment is cyclic, which means that whenever the value of eci,j

reaches n, the increment operator resets it to 1.

Algorithm 1 illustrates the pseudo code of the acting and learning procedures

in our method.

4. Experimental Results265

In this section, we are going to answer the following questions through per-

forming different experiments:

1. How do the parameters λ (cooperation), ε (exploration), and η (convergence

speed) influence the agents’ learning behavior?

2. How well does the proposed method overcome local optima in comparison270

with CLA-EC and RCLA-EC?

3. How does our method succeed in solving hard optimization problems in com-

parison with CLA-EC and RCLA-EC?

4. How does our method’s performance compare with other methods that are

not based on CLAs?275

4.1. Parameter Sensitivity

To address the first question, it is of vital importance to investigate the

sensitivity of parameters individually. Therefore, we need a problem with simple

space, in which any changes in the agents’ learning behavior can be clearly

13

Algorithm 1: Acting and learning in the proposed method

inputs: A (set of all agents), E (set of all environments), d (grid size), n

(length of agent’s action), λ (cooperation probability), ε (ε-escape

probability), η (smoothening constant)

1 Set k to 1.

2 foreach agent Ai,j in A do

3 Assign neighboring agents.

4 Set all action probabilities to 0.5.

5 Generate a random action bit string.

6 Perform the action on the environment.

7 Store the generated action as the best action.

8 Set eci,j to 1.

9 while the stop criteria is not met do

10 foreach agent Ai,j in A do

11 Initialize Bi,j(k) with an empty bit string.

12 foreach automaton mi,j
t inMi,j do

13 Choose an action.

14 Concatenate Bi,j(k) with the chosen action.

15 Perform ε-escape with probability of ε on Bi,j(k).

16 Perform Bi,j(k) on the environment.

17 Receive the environment’s response wi,j(k).

18 Update action probability matrix Mi,j(k) by the learning rules.

19 if wi,j(k) < wi,j(k − 1) then

20 Update the best action with Bi,j(k).

21 Increase k by 1.

22 if the probability λ holds then

23 foreach agent Ai,j in A do

24 Find the best action among the neighbors.

25 Imitate the best action as a new action.

26 Receive the environment’s response wi,j(k).

27 Update action probability matrix Mi,j(k) by the learning rules.

28 Replace the best action with the current action.

29 Increase k by 1.

14

illustrated. To show how changes in the design parameters affect the learning280

behavior of agents, we used the OneMax problem, which involves maximizing

the number of ones in a bit string of length n. To solve this problem with our

method, we assigned n to the action’s length and designed the environment in

such a way that it produces reinforcement signals using the following function:

wi,j(k) = n−
n∑

t=1

bi,jt (k). (6)

Despite the simplicity of the OneMax problem and the fact that the optimum285

solution is known a priori, it is a well-suited problem to illustrate the impact of

different parameters on the agents’ learning behavior.

4.1.1. Impact of λ

To show how cooperation affects the learning performance, we ran our method

to solve 10 different instances of the OneMax problem for n = 10, 20, ..., 100 with290

a 10×10 grid (100 agents). For each of the problem instances, we examined the

performance of our method with six different λ-values. Besides, we set ε = 0

and η = 1 to avoid the effects of the ε-escape procedure and the smoothening

coefficient, respectively. Each of the experiments was repeated 100 times and

the average number of decisions (action generations) needed to reach the op-295

timum bit string was considered as the performance measure. Results of the

experiments show that higher values for λ result in higher learning performance

(Figure 4).

As depicted in figure 4, performance of the non-cooperative method (λ = 0)

dramatically decreases for large instances, while the performance of the cooper-300

ative methods (λ > 0) decreases only slightly as the number of bits increases.

4.1.2. Impact of ε

Here, we performed experiments for different values of ε from 0 (no explo-

ration) to 0.1. We also used only one agent to omit the impact of cooperation

and set η = 1 to avoid effects of smoothening on these experiments. All of these305

experiments were performed 100 times on different instances of the OneMax

15

13

 Environments accept agents’ action and output the number of zeros in the received

action as the reinforcement signal. Precisely, the environment’s response for an action

of the agent 𝐴𝑖𝑗 is generated as follows:

𝑤𝑖𝑗
𝑘 = 𝑙 − ∑ 𝑎𝑡

𝑖𝑗
(𝑘)𝑙

𝑡=1 (19)

Despite the simplicity of the MaxOne problem and the fact that the optimum solution

is known a priori, it is a well-suited problem to illustrate the impact of different

parameters on our model’s behavior.

4.2. Impact of 𝜆

To show how the cooperation affects the performance of the model, we run our model to solve

10 different instances of the MaxOne problem with a 10 × 10 grid (100 agents). For each of

the problem’s instances, we examine our model with 6 different values for 𝜆 from a non-

cooperative model to a high-cooperative one. We also set 𝜖 = 0 and 𝜂 = 1 to avoid the effects

of the 𝑒 − 𝑒𝑠𝑐𝑎𝑝𝑒 procedure and the smoothening coefficient, respectively. Each of the

experiments is repeated several times and the average number of an agent’s decisions (action

generation) to reach the target bit string is considered as a performance measure. Results of the

experiments show that higher values for 𝜆 result in models with higher performance. As

depicted in figure 6, performance of the non-cooperative model (𝜆 = 0) dramatically decreases

for large bit string’s lengths while the performance of the cooperative models (𝜆 > 0) does not

change very much.

Figure 6. Impact of cooperation on model's performance.

0

50

100

150

200

250

300

350

10 20 30 40 50 60 70 80 90 100

A
ve

ra
ge

 N
u

m
b

e
r

o
f

D
e

ci
si

o
n

s

The Bit String's Length

λ = 0 λ = 0.2 λ = 0.4 λ = 0.6 λ = 0.8 λ = 1

Figure 4: Impact of cooperation (λ) on agents’ learning performance in solving the
OneMax problem.

problem with n ∈ {10, 20, ..., 70} and the agent was allowed to perform at most

5 × 106 actions. The logarithm of the average number of distinct actions that

were examined by the agent to reach the goal, was considered as a measure to

assess the effect of the parameter ε.310

As the value of ε increases, the agent explores more distinct actions from

its action set to find the optimal action (Figure 5). Exploration helps the

agent to explore more actions and escape from local optima, but it is of great

importance to assign a tailored value to ε according to the problem at stake.

An unreasonable high value for ε, distracts the agent and does not allow it to315

exploit the problem space properly.

4.1.3. Impact of η

To show the effects of the smoothening parameter on agents’ behavior, we

performed experiments for different values of η from 1 (no smoothening) decreas-

ing to 0.2. We also used only one agent to remove the impact of cooperation320

and set ε = 0 to avoid effects of exploration on these experiments. All of these

experiments were performed 100 times on different instances of the OneMax

problem with n ∈ {10, 20, ..., 70, 80} and the agent was allowed to perform at

most 5×106 actions. The logarithm of the average number of actions the agent

16

1

2

3

4

5

6

7

10 20 30 40 50 60 70 80

Lo
g

A
ve

ra
ge

 N
u

m
b

e
r

o
f

D
e

ci
si

o
n

s

The Bit String's Length

ƞ = 1 ƞ = 0.8 ƞ = 0.6 ƞ = 0.4 ƞ = 0.2

1

2

3

4

5

6

7

10 20 30 40 50 60 70

Lo
g

A
ve

ra
ge

 N
u

m
b

e
r

o
f

D
is

ti
n

ct
 A

ct
io

n
s

The Bit String's Length

Ɛ = 0 Ɛ = 0.02 Ɛ = 0.04 Ɛ = 0.06 Ɛ = 0.08 Ɛ = 0.1

Figure 5: Impact of the ε-escape procedure on agents’ learning behavior in solving
the OneMax problem.

tries to reach the goal was used to assess the effect of this parameter on agent’s325

learning behavior.

As shown in Figure 6, the speed of convergence decreases and the agent

needs more tries to learn the optimal action as η decreases. Although it is not

desirable to decrease the learning speed in all problems, it is essential in some

problems to avoid rapid convergence toward non-optimal actions.330

4.1.4. Choosing suitable values for parameters

The OneMax experiments illustrate the influence of each design parameter

on the learning behavior of agents. Assigning different values for these parame-

ters directly affects the performance of the method. Therefore, it is necessary to

tune them according to the problem at hand and the desired behavior of agents.335

This can be done by relying on the following guidelines:

(λ) Results show that higher values for λ improve the learning experience

of the agents. Yet in real scenarios, where the communication between

hardware brings along costs, it is necessary to reduce this value.

(η) Choosing the optimal value for η depends on the maximum and mini-340

mum value of the reinforcement signal. Assigning higher (lower) values to

17

1

2

3

4

5

6

7

10 20 30 40 50 60 70 80

Lo
g

A
ve

ra
ge

 N
u

m
b

e
r

o
f

D
e

ci
si

o
n

s

The Bit String's Length

ƞ = 1 ƞ = 0.8 ƞ = 0.6 ƞ = 0.4 ƞ = 0.2

1

2

3

4

5

6

7

10 20 30 40 50 60 70

Lo
g

A
ve

ra
ge

 N
u

m
b

e
r

o
f

D
is

ti
n

ct
 A

ct
io

n
s

The Bit String's Length

Ɛ = 0 Ɛ = 0.02 Ɛ = 0.04 Ɛ = 0.06 Ɛ = 0.08 Ɛ = 0.1

Figure 6: Impact of the smoothening parameter (η) on agent’s learning behavior in
solving the OneMax problem.

η in case of environments with small (large) range of responses, is better

in practice.

(ε) Choosing an appropriate value for this parameter is a bit hard. Since

ε affects the rate of exploration, there is a need for prior knowledge about345

the problem space to assign a suitable value. Unfortunately, for most

of the hard problems, it is not possible to predict the problem space a

priori. According to our findings, it is a good practice to begin with lower

values and gradually increase it until the desired behavior or performance

is reached.350

In the following experiments, we chose parameters values in agreement with

the above guidelines.

4.2. Escaping from Local Optima

As mentioned before, the methods that are the closest related to ours, namely

CLA-EC and RCLA-EC, have problems in exploration and they are very sus-355

ceptible to become trapped in local optima. We chose the Trap problem, which

18

Figure 7: The environment’s responses for the Trap problem instance of size n. Best
(lowest possible) response is 0 for the string that has zero number of ones.

is similar to the OneMax problem, but we now aim at a binary string in which

all bits are zero. In other words, we want to minimize the following function:

wi,j(k) =

(
1−

(
n∏

t=1

(
1− bi,jt (k)

)))(
1 + n−

n∑
t=1

bi,jt (k)

)
. (7)

Equation (7) behaves like a trap function, which makes optimization algo-

rithms end up in the deceptive local optimum (string of all ones) as the best360

solution. Figure 7 illustrates the environment’s response for the Trap problem

instance of size n.

In our experiments, CLA-EC always failed to find the global optimum of

the Trap problem. Learning rules of a CLA-EC make it act in a greedy manner

and it suffers from the lack of exploration. Consequently, CLA-EC does not365

explore other potential solutions in a complex problem space involving many

local optima. The authors of [29] proposed RCLA-EC in which they added a

recombination procedure to CLA-ECs, as such designing a method that is both

explorative and exploitative. RCLA-EC uses shuffle crossover [43] to recombine

solution genome of a cell with its adjacent cells’ genomes. This approach helps370

RCLA-EC to explore the problem space, but it failed in instances with length

19

Figure 8: Performance of the proposed method in solving the Trap problem.

larger than 10 in our experiments. We ran our method with lengths from 25 to

500 and averaged the number of tries over agents as a performance measure. We

used 100 agents and a Von Neumann neighborhood. We also set λ = 1 to have

a highly cooperative method, ε = 0.05 to escape from the trap, and η = 1 since375

there is no need to lower the convergence rate in this problem. Results show

that our method is able to solve the Trap problem and the average number of

decisions made by the agents is almost linear with respect to the length of the

bit string (Figure 8).

Table 2 illustrates the experimental results that we collected by running380

CLA-EC, RCLA-EC and our method for the Trap problem of length 25. As

shown in the results, neither CLA-EC nor RCLA-EC succeeds in finding the

global optimum in their 100 trials, while our method always finds the global

optimum.

We also examined our method to see whether it finds the global optimum385

or not, using η-values only. As shown in Table 3, relying on η-values solely

cannot help the agents in finding the global optimum in this problem. However,

η-values do help agents search the problem space locally, while higher ε-values

increase the chance of escaping local optima.

20

4.3. Solving Classical Optimization Problems390

We designed two experiments in which solving two NP-Hard optimization

problems is the goal. These two experiments not only show the flexibility of our

method but also demonstrate its superiority over CLA-EC and RCLA-EC. We

examined our method for the following NP-Complete optimization problems;

bin packing [44] and maximum cut [45]. Because of their complexity class, any395

other NP problem can be reduced to them in polynomial time. Consequently,

by covering these problems we actually cover any other NP problem.

4.3.1. Bin packing problem

We compared our method and both CLA-EC and RCLA-EC in solving the

one-dimensional bin packing problem [46]. In each instance of this problem,400

there are n items {1, 2, ..., n} with weights of {c1, ..., cn}. The goal is to pack

these items in a minimum number of bins with the same maximum capacity of

M .

Since a problem instance with n items can be packed into n bins at the worst

case, we assigned each dlog2 ne-bit block of the action bit string to each of the405

items. Therefore, the bin number in which the item i is packed, is encoded as

a binary number located between positions ((i− 1)dlog2 ne) + 1 to idlog2 ne of

the action bit string, which results in a action bit string of length ndlog2 ne.

Because of the constraints of the problem instances, it is possible that an

agent performs an infeasible action (solution). If the performed action is decoded

as a feasible solution, the environment generates a reinforcement signal equal to

the number of distinct bins encoded in the performed action bit string. More

Table 2: Performance of the CLA-EC, RCLA-EC, and the proposed method in opti-
mizing the Trap problem of length 25. Success Rate denotes the percentage of trials
in which the global optimum found.

Method
Best

Fitness
Average
Fitness

Success Rate

CLA-EC 1 1 0%
RCLA-EC 1 1 0%
Proposed Method 0 0 100%

21

precisely if,

T = {number (((i− 1)dlog2 ne) + 1, idlog2 ne) | i ∈ {1, 2, ..., n}}, (8)

then the reinforcement signal is

wi,j(k) = |T |, (9)

where number(x,y) is a function that converts the binary number located be-

tween positions x and y of the action bit string to the corresponding decimal410

number. In the case of an infeasible action, the environment adds n + 1 units

to the signal computed with Equations (8) and (9), which guarantees that a

reinforcement signal invoked by an infeasible action is always larger than the

ones for feasible actions.

We performed nine different experiments from 10 items to 50 items. The415

maximum capacity of bins was set to 1 and each item had a weight in the

range of [0, 1]. In each instance of the problem, the items’ weight were assigned

in a way that the optimum solution were known in advance so that we could

check whether a method finds the optimum or not. Our method found the

optimum solution in all settings, whereas CLA-EC and RCLA-EC found only420

near optimum solutions (Table 4).

4.3.2. Maximum cut problem

We tested our method and both CLA-EC and RCLA-EC on several bench-

marks of the Weighted Maximum Cut (max-cut) problem described in [47].

Table 3: Performance of various configurations of the proposed method in optimizing
the Trap problem of length 25.

Method
Best

Fitness
Average
Fitness

Success Rate

Proposed Method (ε = 0.05, η = 1) 0 0 100%
Proposed Method (ε = 0, η = 0.6) 1 1 0%
Proposed Method (ε = 0, η = 0.4) 1 1 0%
Proposed Method (ε = 0, η = 0.2) 1 1 0%

22

Table 4: Comparison between proposed method, CLA-EC and RCLA-EC in solving
1-Dimensional Bin Packing problem based on the best and the average of the number
of bins they found over all of the trials (best values are boldfaced).

Proposed Method CLA-EC RCLA-EC

Items
Best

Known
Average Best Average Best Average Best

10 3 3 3 3.71 3 3.7 3
15 5 5 5 6.42 5 5.3 5
20 6 6 6 8.72 7 8.14 7
25 8 8 8 11.05 11 10.34 9
30 9 9 9 13.3 12 12.5 11
35 11 11 11 18.4 17 17.07 15
40 12 12.73 12 21.25 20 19.5 18
45 14 14 14 23.9 23 22.3 21
50 15 15.64 15 26.3 25 24.2 22

Consider a graph G = (V,E) with vertex set V = {v1, ..., vn} and edge set425

E ⊆ {{x, y} | ∀x, y ∈ V, x 6= y}. Let fx,y be the weight associated with edge

(x, y) in E. A cut (S, S′) is a partitioning of V into two sets being S and

S′ = V \ S. The value of a cut (S, S′) is given by the following expression:

cut(S, S′) =
∑

x∈S,y∈S′,y>x

fx,y, (10)

where the goal in the max-cut problem is to find the cut in G that yields

the maximum cut value.430

To solve this problem, each bit of the action is associated with a node of the

graphG. If the bit located at the position x has the value 1 (0), its corresponding

node vx in G belongs to the partition set S (S′).

Since agents try to minimize the environment’s response, it should be com-

puted in such a way that the minimization of the environment’s response corre-

sponds to maximization of the value of the cut. For this reason, the environment

computes the reinforcement signal of an action using the following equation:

wi,j(k) =

n∑
t1=1

n∑
t2=t1+1

ft1,t2

(
bi,jt1 (k) + bi,jt2 (k)− 2bi,jt1 (k)bi,jt2 (k)

)
(11)

In all of the chosen benchmarks, there is a weighted graph with 125 vertices

23

Table 5: Comparison between proposed method, CLA-EC and RCLA-EC in solving
max-cut problem based on the best and the average of the cut values they found over
all of the trials (best values are boldfaced).

Proposed Method CLA-EC RCLA-EC

Instance
Best

Known
Average Best Average Best Average Best

sg3dl051000 110 107.45 110 85.64 92 82 86
sg3dl052000 112 106.2 112 84.4 88 84.4 88
sg3dl053000 106 103.4 106 81.8 90 80.6 86
sg3dl054000 114 106.2 114 83.8 88 82.8 86
sg3dl055000 112 106.6 112 84.2 88 83 92
sg3dl056000 110 105.6 110 86 94 80.8 86
sg3dl057000 112 106.2 112 82.8 86 83 92
sg3dl058000 108 103.4 108 83 88 80.8 86
sg3dl059000 110 105.2 110 84 88 81 86
sg3dl0510000 112 106.6 112 84.6 90 82.2 86

and 375 edges with weights belonging to the set {−1, 0, 1}. Table 5 summarizes435

the performance of the three methods in solving ten different weighted max-cut

instances. The proposed method not only found the best-known solution in all

of the instances, but also the averages of the answers in different trials are very

close to the best-known answers, while CLA-EC and RCLA-EC did not perform

well in tackling this problem.440

4.4. Solving Real-World Optimization Problems

We implicitly illustrated the performance of our method in comparison with

many other methods that are examined on the selected max-cut benchmarks

in our previous experiment. Here, we are going to solve two real-world opti-

mization problems and explicitly compare the performance proposed method to445

other optimization algorithms which participated in the competition of the 2011

Congress on Evolutionary Computation (CEC2011) [48]. We ran and evaluated

our method on the problems T01 and T07 under the same evaluation criteria

as employed by the other methods considering the rules stated in the problem

set.450

As shown in Table 6, our method found the best possible solution for the

problem T01. Besides, it approached the best solution for the problem T07 and

24

Table 6: Comparison between proposed method and other methods published in
CEC2011 in solving problems T01 and T07 based on the best and the average of the
fitness values they found over 25 trials (best values are boldfaced).

T01 T07
Method Best Average Best Average

Proposed Method 0 1.6376E-07 6.5822E-01 8.8081E-01
Adap.DE [49] 0 3.85 0.5 0.5
CDASA [50] 3.28E-18 1.01E+01 6.76E-01 9.39E-01
DE − ΛCr [51] 7.21E-15 8.77E-01 6.66E-01 8.85E-01
DE −RHC [52] 5.02E-20 8.91 9.51E-01 1.15
EA−DE −MA [53] 1.17E-11 7.60227 0.5 5.8474E-01
ED −DE [54] 0 0 5.19E-01 1.19
ENSML DE [55] 0 1.78 1.28 1.42
GA−MPC [56] 0 0 0.5 7.48E-01
Mod DE LS [57] 3E-06 2.6E-05 7.2305E-01 8.3277E-01
mSBX −GA [58] 6.7922E-05 4.1976 6.7903E-01 9.8388E-01
RGA [59] 1E-04 9.2907 6.765E-01 9.65E-01
SAMODE [60] 0 1.2120 0.5 8.17E-01
WI DE [61] 0 3.28 0.5 6.56E-01

outperformed seven of the other methods.

It is worth mentioning that our method uses binary strings for decision

making. Therefore, to solve the problems with real-valued variables, it needs455

to encode them as binary strings. As the variables accept a wider range of

values with higher precision, much more bits are required for encoding them.

For instance, suppose that there are 20 real-valued variables in the interval [0,1].

To have 4-digit precision, we need to assign 10 bits (210 = 1024) for each of the

variables, which results in bit strings of length 200. This means that agents460

should decide on 200 variables instead of 20, which leads to a larger search

space and a harder task. Still, our method shows good performance on both

real-world optimization problems and obtained competitive results.

5. Conclusion and Future Works

In this paper, we have presented a novel learning method based on CLA and465

cooperative learning techniques. The proposed method has been configured

and applied to optimization problems. We have performed several experiments

to investigate the impact of design parameters on our method and the agents’

25

learning behavior. Besides, We have performed several experiments to compare

our method with CLA-EC and RCLA-EC in solving optimization problems. Our470

method gives promising results, which is a consequence of three main differences

between our method and CLA-EC and RCLA-EC:

(1) Learning rules based on agents’ action trajectory

Previous methods consider agents’ best action as the main parameter in

their learning process which makes them behave in a greedy manner and475

does not allow them to sense the changes in the problem space. Here, we

designed the learning rules based on agents’ action trajectory.

(2) Local optima escape procedure

CLA-EC does not consider exploration and does not perform well in prob-

lems containing local optima. Although RCLA-EC uses shuffle crossover as480

a recombination operator for exploration, it does not have a good perfor-

mance in complex problems since it blindly shuffles and recombines solu-

tions. We designed an escape procedure by which agents change their action

bit string (solution) gradually, and results have shown that this procedure

increases the chance of escaping from local optima.485

(3) Cooperation

Cooperation in previous works is based on a voting method by which agents

count their neighbors’ votes about the potential solution and decide based

on higher votes. Our method uses a knowledge sharing technique by which

agents use their best neighbor’s action to improve their learning process.490

We have shown that this way of cooperation increases the method’s perfor-

mance.

We have also evaluated the performance of our method in comparison with

a bunch of optimization algorithms in solving two real-world optimization prob-

lems. These corroborated the excellence of the proposed method.495

Employing trust management systems and expertness in agents’ cooperation

and applying the method to multi-agent reinforcement learning scenarios are

other directions for future researches.

26

References

[1] S. Kotsiantis, Supervised machine learning: A review of classification tech-500

niques, Informatica 31 (2007) 249–268.

[2] S. Marsland, Unsupervised learning, in: J. Fagerberg, D. Mowery, R. Nel-

son (Eds.), Machine Learning: An Algorithmic Perspective, CRC Press,

2011.

[3] A. G. Barto, Reinforcement learning: An introduction, MIT press, 1998.505

[4] T. Shimokawa, K. Suzuki, T. Misawa, Y. Okano, Predicting investment

behavior: An augmented reinforcement learning model, Neurocomputing

72 (2009) 3447–3461.

[5] C. Chen, B. Xia, B.-h. Zhou, L. Xi, A reinforcement learning based ap-

proach for a multiple-load carrier scheduling problem, Journal of Intelligent510

Manufacturing (2013) 1–13.

[6] M. Boushaba, A. Hafid, A. Belbekkouche, M. Gendreau, Reinforcement

learning based routing in wireless mesh networks, Wireless networks 19

(2013) 2079–2091.

[7] K.-L. A. Yau, K. H. Kwong, C. Shen, Reinforcement learning models for515

scheduling in wireless networks, Frontiers of Computer Science 7 (2013)

754–766.

[8] T. Hester, P. Stone, Texplore: real-time sample-efficient reinforcement

learning for robots, Machine Learning 90 (2013) 385–429.

[9] I. Partalas, G. Tsoumakas, I. Vlahavas, Pruning an ensemble of classifiers520

via reinforcement learning, Neurocomputing 72 (2009) 1900–1909.

[10] H. Beigy, M. R. Meybodi, A mathematical framework for cellular learning

automata, Advances in Complex Systems 7 (2004) 295–319.

27

[11] M. Meybodi, H. Beigy, M. Taherkhani, Cellular learning automata, in:

Proceedings of 6th Annual International Computer Society of Iran Com-525

puter Conference (CSICC2001), Isfahan, Iran, 2001, pp. 153–163.

[12] J. L. Schiff, Cellular automata: a discrete view of the world, volume 45,

John Wiley & Sons, 2011.

[13] K. S. Narendra, M. Thathachar, Learning automata-a survey, IEEE Trans-

actions on Systems, Man and Cybernetics (1974) 323–334.530

[14] M. Thathachar, P. S. Sastry, Varieties of learning automata: an overview,

IEEE Transactions on Systems, Man, and Cybernetics, Part B 32 (2002)

711–722.

[15] P. Mavrodiev, C. J. Tessone, F. Schweitzer, Quantifying the effects of social

influence, Nature Publishing Group, Scientific reports 3 (2013).535

[16] M. Mozafari, R. Alizadeh, A cellular learning automata model of invest-

ment behavior in the stock market, Neurocomputing 122 (2013) 470–479.

[17] J. A. Torkestani, M. R. Meybodi, A cellular learning automata-based al-

gorithm for solving the vertex coloring problem, Expert Systems with

Applications 38 (2011) 9237–9247.540

[18] R. Vafashoar, M. Meybodi, A. M. Azandaryani, CLA-DE: a hybrid model

based on cellular learning automata for numerical optimization, Applied

Intelligence 36 (2012) 735–748.

[19] M. Esmaeilpour, V. Naderifar, Z. Shukur, Cellular learning automata ap-

proach for data classification, International Journal of Innovative Comput-545

ing, Information and Control 8 (2012) 8063–8076.

[20] M. Ahangaran, H. Beigy, Cellular learning automata with external input

and its applications in pattern recognition, in: Fifth International Con-

ference on Soft Computing, Computing with Words and Perceptions in

28

System Analysis, Decision and Control (ICSCCW2009), IEEE, 2009, pp.550

1–4.

[21] A. A. Abin, M. Fotouhi, S. Kasaei, A new dynamic cellular learning

automata-based skin detector, Multimedia Systems 15 (2009) 309–323.

[22] M. Esnaashari, M. R. Meybodi, A cellular learning automata-based de-

ployment strategy for mobile wireless sensor networks, Journal of Parallel555

and Distributed Computing 71 (2011) 988–1001.

[23] H. Beigy, M. R. Meybodi, A self-organizing channel assignment algorithm:

A cellular learning automata approach, in: Intelligent Data Engineering

and Automated Learning, Springer, 2003, pp. 119–126.

[24] H. Beigy, M. R. Meybodi, Cellular learning automata based dynamic chan-560

nel assignment algorithms, International Journal of Computational Intelli-

gence and Applications 8 (2009) 287–314.

[25] M. Talabeigi, R. Forsati, M. R. Meybodi, A hybrid web recommender

system based on cellular learning automata, in: 2010 IEEE International

Conference on Granular Computing (GrC), IEEE, 2010, pp. 453–458.565

[26] L. Panait, S. Luke, Cooperative multi-agent learning: The state of the art,

Autonomous Agents and Multi-Agent Systems 11 (2005) 387–434.

[27] R. Garćıa-Mart́ınez, D. Borrajo, P. Maceri, P. Britos, Learning by knowl-

edge sharing in autonomous intelligent systems, in: Advances in Artificial

Intelligence-IBERAMIA-SBIA 2006, Springer, 2006, pp. 128–137.570

[28] R. Rastegar, M. Meybodi, A new evolutionary computing model based on

cellular learning automata, in: 2004 IEEE Conference on Cybernetics and

Intelligent Systems, volume 1, IEEE, 2004, pp. 433–438.

[29] B. Jafarpour, M. R. Meybodi, Recombinative CLA-EC, in: 19th IEEE

International Conference on Tools with Artificial Intelligence, (ICTAI2007),575

volume 1, IEEE, 2007, pp. 415–422.

29

[30] R. Rastegar, M. Rahmati, M. Meybodi, A clustering algorithm using cel-

lular learning automata based evolutionary algorithm, in: Adaptive and

Natural Computing Algorithms, Springer, 2005, pp. 144–150.

[31] A. Hariri, R. Rastegar, K. Navi, M. S. Zamani, M. R. Meybodi, Cellular580

learning automata based evolutionary computing (CLA-EC) for intrinsic

hardware evolution, in: NASA / DoD Conference on Evolvable Hardware

(EH2005), Washington, DC, USA, IEEE, 2005, pp. 294–297.

[32] J. Baran, P. Petrovic, M. Schoenauer, Cellular automata with irreg-

ular structure: a compact representation, in: Fourth IEEE Interna-585

tional Conference on Self-Adaptive and Self-Organizing Systems Workshop

(SASOW2010), IEEE, 2010, pp. 85–90.

[33] J. M. Baetens, B. De Baets, Cellular automata on irregular tessellations,

Dynamical Systems 27 (2012) 411–430.

[34] M. Najafi, H. Beigy, Using PCA to improve evolutionary cellular automata590

algorithms, in: Proceedings of the 10th Annual Conference on Genetic and

Evolutionary Computation, ACM, 2008, pp. 1129–1130.

[35] D. Iudin, Y. D. Sergeyev, M. Hayakawa, Infinity computations in cellular

automaton forest-fire model, Communications in Nonlinear Science and

Numerical Simulation 20 (2015) 861–870.595

[36] A. A. Patel, S. K. Lemieux, R. A. Gatenby, Cellular automaton model of

tumor growth, Academic Radiology 5 (1998) 751.

[37] H. Hiyoshi, Y. Tanioka, T. Hamamoto, K. Matsumoto, K. Chiba, Pedes-

trian movement model based on voronoi cellular automata, Transportation

Research Procedia 2 (2014) 336–343.600

[38] M. Bezbradica, H. J. Ruskin, M. Crane, Comparative analysis of asyn-

chronous cellular automata in stochastic pharmaceutical modelling, Jour-

nal of Computational Science 5 (2014) 834–840.

30

[39] H. Beigy, M. R. Meybodi, Asynchronous cellular learning automata, Au-

tomatica 44 (2008) 1350–1357.605

[40] J. Baetens, P. V. der Ween, B. D. Baets, Effect of asynchronous updating

on the stability of cellular automata, Chaos, Solitons & Fractals 45 (2012)

383–394.

[41] B. Schnfisch, A. de Roos, Synchronous and asynchronous updating in

cellular automata, Biosystems 51 (1999) 123–143.610

[42] H. Beigy, M. R. Meybodi, Cellular learning automata with multiple learn-

ing automata in each cell and its applications, IEEE Transactions on Sys-

tems, Man, and Cybernetics, Part B 40 (2010) 54–65.

[43] D. Simon, Evolutionary optimization algorithms, John Wiley & Sons, 2013.

[44] B. Korte, J. Vygen, Bin-packing, in: Combinatorial Optimization, vol-615

ume 21 of Algorithms and Combinatorics 21, Springer Berlin Heidelberg,

2006, pp. 426–441.

[45] R. M. Karp, Reducibility among combinatorial problems, Springer, 1972.

[46] D. S. Johnson, A. Demers, J. D. Ullman, M. R. Garey, R. L. Graham,

Worst-case performance bounds for simple one-dimensional packing algo-620

rithms, SIAM Journal on Computing 3 (1974) 299–325.

[47] P. Festa, P. M. Pardalos, M. G. Resende, C. C. Ribeiro, Randomized

heuristics for the max-cut problem, Optimization methods and software 17

(2002) 1033–1058.

[48] S. Das, P. Suganthan, Problem definitions and evaluation criteria for CEC625

2011 competition on testing evolutionary algorithms on real world opti-

mization problems, Jadavpur University, Nanyang Technological Univer-

sity, Kolkata (2010).

[49] M. Asafuddoula, T. Ray, R. Sarker, An adaptive differential evolution

algorithm and its performance on real world optimization problems, in:630

31

2011 IEEE Congress on Evolutionary Computation (CEC), 2011, pp. 1057–

1062.

[50] P. Korosec, J. Silc, The continuous differential ant-stigmergy algorithm

applied to real-world optimization problems, in: 2011 IEEE Congress on

Evolutionary Computation (CEC), 2011, pp. 1327–1334.635

[51] G. Reynoso-Meza, J. Sanchis, X. Blasco, J. Herrero, Hybrid DE algorithm

with adaptive crossover operator for solving real-world numerical optimiza-

tion problems, in: 2011 IEEE Congress on Evolutionary Computation

(CEC), 2011, pp. 1551–1556.

[52] A. LaTorre, S. Muelas, J.-M. Pena, Benchmarking a hybrid DE-RHC al-640

gorithm on real world problems, in: 2011 IEEE Congress on Evolutionary

Computation (CEC), 2011, pp. 1027–1033.

[53] H. Singh, T. Ray, Performance of a hybrid EA-DE-memetic algorithm on

CEC 2011 real world optimization problems, in: 2011 IEEE Congress on

Evolutionary Computation (CEC), 2011, pp. 1322–1326.645

[54] Y. Wang, B. Li, K. Zhang, Estimation of distribution and differential

evolution cooperation for real-world numerical optimization problems, in:

2011 IEEE Congress on Evolutionary Computation (CEC), 2011, pp. 1315–

1321.

[55] R. Mallipeddi, P. Suganthan, Ensemble differential evolution algorithm for650

CEC2011 problems, in: 2011 IEEE Congress on Evolutionary Computation

(CEC), 2011, pp. 1557–1564.

[56] S. Elsayed, R. Sarker, D. Essam, GA with a new multi-parent crossover for

solving IEEE-CEC2011 competition problems, in: 2011 IEEE Congress on

Evolutionary Computation (CEC), 2011, pp. 1034–1040.655

[57] A. Mandal, A. Das, P. Mukherjee, S. Das, P. Suganthan, Modified dif-

ferential evolution with local search algorithm for real world optimization,

32

in: 2011 IEEE Congress on Evolutionary Computation (CEC), 2011, pp.

1565–1572.

[58] S. Bandaru, R. Tulshyan, K. Deb, Modified SBX and adaptive mutation660

for real world single objective optimization, in: 2011 IEEE Congress on

Evolutionary Computation (CEC), 2011, pp. 1335–1342.

[59] A. Saha, T. Ray, How does the good old genetic algorithm fare at real

world optimization?, in: 2011 IEEE Congress on Evolutionary Computa-

tion (CEC), 2011, pp. 1049–1056.665

[60] S. Elsayed, R. Sarker, D. Essam, Differential evolution with multiple strate-

gies for solving CEC2011 real-world numerical optimization problems, in:

2011 IEEE Congress on Evolutionary Computation (CEC), 2011, pp. 1041–

1048.

[61] U. Haider, S. Das, D. Maity, A. Abraham, P. Dasgupta, Self adaptive670

cluster based and weed inspired differential evolution algorithm for real

world optimization, in: 2011 IEEE Congress on Evolutionary Computation

(CEC), 2011, pp. 750–756.

33

	Introduction
	Preliminaries
	Learning Automata
	Cellular Automata
	Cellular Learning Automata
	Cellular Learning Automata with Multiple Learning Automata in each Cell

	Proposed Method
	Agent and Environment
	Acting and Learning

	Experimental Results
	Parameter Sensitivity
	Impact of
	Impact of
	Impact of
	Choosing suitable values for parameters

	Escaping from Local Optima
	Solving Classical Optimization Problems
	Bin packing problem
	Maximum cut problem

	Solving Real-World Optimization Problems

	Conclusion and Future Works

