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Generative models

1. Assume that the observed variable x is a random sample from an underlying process,
whose true distribution p,,.,(x) is unknown.
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2. We attempt to approximate this process with a chosen model, py(x), with parameters ¢
such that x ~ py(x).

3. Learning is the process of searching for the parameter ¢ such that p,(x) well approximates
Pyata(X) for any observed x, i.e.

Po (X) ~ Pdata (X)

4. We wish py(x) to be sufficiently flexible to be able to adapt to the data for obtaining
sufficiently accurate model and to be able to incorporate prior knowledge.

Credit: Aditya Grover
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Maximum Likelihood and Mini-batch SGD

1. The most common criterion for probabilistic models is maximum log-likelihood.

2. Maximization of the log-likelihood criterion is equivalent to minimization of a KL
divergence between the data and model distributions.

3. We attempt to find the parameters 6 that maximize the sum of the log-probabilities.

0 = arg maxy log py(D) = arg max, Z log pg(x/)
i=1

4. We can efficiently compute gradients of this objective function.

5. We can use such gradients to iteratively hill-climb to a local optimum of the the objective
function.

6. If we compute such gradients using all data points, Vg log p,y(D), then this is known as
batch gradient descent.

7. Computation of this derivative is an expensive operation for large dataset.
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Maximum Likelihood and Mini-batch SGD

1.

2.

3.

A more efficient method for optimization is stochastic gradient descent(SGD).
The SGD uses randomly drawn mini-batches of data B C D of size ng.

With mini-batches, we can form an unbiased estimator of the log-likelihood as

1 1 1
2 D)~ | By = — %"
108 py(D) ~ ——log py(5) nBX%;og pa(x)

Symbol ~ means that one of the two sides is an unbiased estimator of the other side.

The unbiased estimator % log py(B) is differentiable, yielding the unbiased stochastic
gradients:

1 1 1
=V log py(D) &~ —Vylog pg(B) = — Vg log py(x)
n s M8 (B

These gradients can be plugged into stochastic gradient-based optimizer.
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Latent Variable Model

1. In economics, we are often interested in measuring things such as quality of life, moral,
happiness, etc.

2. This things cannot be directly measured and are latent.
3. The idea is to link these latent variables to observed ones.

4. For example, assume that the quality of life can be inferred from some linear
combination of some observed variables such as

o wealth

o employment

physical health

education

o leisure time
5. Latent variables are part of model, but we cannot observe.
6. Latent variables are another way to represent the data.
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Principal component analysis (PCA)

1. Let X = (xq,... 7xn)T € R™9 be a dataset of samples x; € R?, and
Z=zy,... ,zn)T € R"*K be the corresponding latent variables z; € R¥.

2. The goal of PCA is to learn a linear bidirectional mapping X <— Z such that as much
information of A" as possible is retained in Z.

3. Let the following linear mapping maps data from latent to observation space.

K
Xi =X+ E ZjjVj
Jj=1

where X is data mean and V = (vq,...,vk) is an orthonormal basis.

4. The goal is to minimize the L, reconstruction loss wrt. Z and V.
n
£zV) = > % — il
i=1
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Latent Variable Model

1. Many probabilistic models have latent variables z.

2. In the case of unconditional modeling of observed variable x, the directed graphical model
would then represent a joint distribution p,(x, z).
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Latent Variable Model

1. The marginal distribution over the observed variables, py(x), is
pox) = [ p(x.2)dz
— [ wolx | 2)po(a)dz

= Ez[py(x | 2)]

2. This is called the marginal likelihood or model evidence when taken as a function of 6.

3. Assume that we cannot calculate the integral exactly. The simplest approach would be to
use the Monte Carlo approximation:

th/mummm
= Eypyolpo(x | 2)]

1
= polx | 24)
np P

4. In the last line, we use samples from the prior over latents z ~ p,(z).
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Latent Variable Model

1. The marginal distribution over the observed variables, py(x), is

po(x) = / po(,2)dz

2. Such an implicit distribution over x can be quite flexible.
o If z is discrete and p,(x | z) is a Gaussian distribution, then p,(x) is a mixture of Gaussian.

o If z is continuous, then p,(x) can be seen as an infinite mixture, which are potentially more
powerful than discrete mixture.
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Linear Gaussian Latent Variable Model

1. Let us consider the following situation
o We consider continuous random variables only, i.e., x € R and z € R¥.
o The distrubution of z is the standard Gaussian, i.e., p(z) = N (0,1).

o The dependency between z and z is linear and we assume a Gaussian additive noise:
x=Wz+b+e

where ¢ ~ N(0, o?l)
The property of the Gaussian distribution yields:

p(x | z) = N (x| Wz—l—b,azl)

2. This model is known as the probabilistic PCA.
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Linear Gaussian Latent Variable Model

1. Then, we can take advantage of properties of a linear combination of two vectors of
normally-distributed random variables as

p(x) = [ plx | 2)plz)dz
= /N(x | Wz +b,al)N(z ]| 0,1)dz

=N(x|b,WW' +o°I).

2. We can calculate the logarithm of the (marginal) likelihood function In p(x).
3. We can also calculate the true posterior over z.
4. We can also calculate the true posterior over z.

p(z | x) =N (MW (x — ), 0 M)

where M = WTW + ¢21.
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Deep Latent Variable Model

1. We use term deep latent variable model (DLVM) to denote a latent variable model,
Py (X, z), whose distribution are parameterized by neural networks.

2. When the prior is Gaussian, the model is called deep latent gaussian model (DLGM).

3. One advantage of DLVM is that even when each factor in the directed model is relatively
simple, the marginal distribution, p,(x), can be very complex.

4. This expressiveness makes DLVMs attractive for approximating complicated underlying
distribution p,.,(x).

5. Perhaps the simplest and the most common DLVM is specified as factorization with the
following structure:

Py(x,2) = py(x) Py(2)

where py(z) and py(x | z) are specified.
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Maximum Likelihood Learning

1. The central object in generative models is to approximate the true underlying distribution
of the data p,,.,(x) with the distribution p,(x, z).

2. Assume that we have a dataset D = {x3,...,x,} that are i.i.d. and fully-observed.
3. We maximise the probability of observing the data with respect to the parameters 6.

4. The maximum likelihood fit is

1 n
0 = arg max, - Z log pg(x;)
i=1

5. In latent variable model, we have

o) = / po(x | 2) py(2)dz

6. The maximum likelihood fit is

1 n
6 = arg max, - Z log (/ po(x | 2) pe(z)dz>
i=1

7. The main difficulty of maximum likelihood learning in DLVMs is that the marginal

probability of data under the model is typically intractable.
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Intractability

1. The intractability is due to the following have not an analytic solution or efficient
estimator.

o) = / po(x,2)dz
- / po(x | 2) py(2)dz

2. Hence, we cannot differentiate it w.r.t # and optimize it as in fully observable models.
3. The intractability of p,(x) is related to the intractability of posterior p,(x | z).

4. Since py(x,z) is efficient to compute, if p,(x) is tractable then p,(x | z) is tractable and
vice versa.

Po(x,2)

P 1) = 50

5. Approximate inference techniques allows to approximate p,(x | z) and py(x) in DLVMs.
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Estimating the log-likelihood

1. An alternative method is to estimate expected log-likelihood.

1 n
0= arg maxy ; Z |Og EZN p(z| x,-)[ pe(X,', Z)]
i=1

2. How to calculate py(z | x;)?
3. Guess most likely z given x; and pretend it is the right one.

4. But, there are many possible values of z, so use the distribution p(z | x).

Credit: Sergey Levine
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Estimating the log-likelihood

1. How to calculate py(z | x;)?
2. Can bound log p(x;)?

g p(x) =log | p(x; | 2)p(z)dz

z

ai(z) ,,
zlog/p(xf | 2) p(z) 2
2 qi(z )
= log Equ,(z){ x,q (zz P(z } Jensen's ineq. log E[y] > E[log y]

= B, q,z)[log p(x; IZ) + log p(z)] + H(a;)

3. Let to approximate with q;(z) = N(u;, 0;).

Credit: Sergey Levine 17 / 57



Estimating the log-likelihood
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Estimating the log-likelihood

1. Can bound log p(x;)?

(xi | 2) p(2)

p
log p(x;) > E,n ) |log W) = B, q)[log p(xi | 2) + log p(2)] +H(q;)

Maximizing this maximizes log p(x;)

2. Whet do we except this to do? £, (;)[log p(x; | z) + log p(z) + log p(x;)] + H(q;)

this maximizes the first part

T, 2 . ..
plzi,2) this also maximizes the second part

(makes it as wide as possible)

> 2

Credit: Sergey Levine
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Estimating the log-likelihood

1. We bound log p(x;) as

(xi | 2)p(2)

p
log p(xi) 2 Ezq,2) ['Og e ] = E,q,llog p(xi | 2) +log p(z)] + H(q;)

Li(p,qi)

2. What makes a good q;(z) and approximate in what sense?

p?;(lzi;)} = Eanqe) [log

= —E,wq,llog p(xi | z) + log p(z)]

+ Ezvq,2)[log ai(2)] + Ezvq,z)[log p(xi)]

= — K, q,»[log p(xi | ) + log p(z)] — H(q;) + log p(x;)
= —L(p, q:) + log p(x;)

Dia(a,(2) || p(z | %)) = Ean g0 [bg q()p())}

3. Thus, we have

log p(xi) = Dke(a;(2) | p(z | xi)) + L(p, ai)

4. Hence, we obtain log p(x;) > L(p, gi).
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Estimating the log-likelihood

1. We bound log p(x;) as

log p(xi) > E,nq,z)llog p(xi | 2) + log p(z)] + H(q;)

Li(p,qi)

2. We also found Dk (q;(z) || p(z | x;)) as

Dke(a;(2) || p(z | xi)) = —E,nq (5)llog p(x; | 2) + log p(z)] — H(q;) + log p(x;)
———

Li(p,qi) Independent of q;

3. Hence maximizing L;(p, q;) with respect to g; minimizes KL-divergence.

4. Then, we define the optimizing function as

1
0= arg maxg— Zﬁi(p, qi)
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Estimating the log-likelihood

1. We bound log p(x;) as

log p(xi) > E,nq,z)llog p(xi | 2) + log p(z)] + H(q;)

Li(p,qi)

2. Then, we define the optimizing function as

1
0= arg max,- Zﬁi(p, qi)

3. We use the following gradient-based algorithm to find the parameters 6.

for each x; € B do
Calculate Vo Li(p, gi).

Sample z ~ q;(z). > VoLi(p, qi) ~ log py(x; | 2)
0+ 0+VoLi(p,qi) > Update g; to maximize £;(p, g;).
end for

Let q;(z) = N(pi, o), then use V. Li(p, ;) and V. Li(p, g;) to update 1; and o;.
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Amortized Variational Inference

1. We bound log p(x;) as

log p(xi) > E,nq,z)llog p(xi | 2) + log p(z)] + H(q;)

Li(p,qi)

2. We want to approximate p(z) by q;(z) for all x;, or equivalently we want to approximate
po(z | x) by q4(z [ x) for all x.

3. Hence, it is simple to show that variational lower bound equals to

Po(zax) :|
a4(z | x)
L(p, q) = log pg(x) — Dir(pe(z | X) | a4(z | x)) < log py(x)

,C(p, q) = Ez~q¢(z) [IOg

4. The KL divergence is known as the variational gap.

In py(x)

ELE()(X: 0,¢)

I R 9
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Amortized Variational Inference

1. The problem is how to estimate log q(z | x) in which the posterior distribution is different
for each data point x. This means that we need to learn different variational parameters ¢
for each data point x.

2. To overcome this issue, we use amortized variational inference.

3. In amortized variational inference, we train an external neural network to predict the
variational parameters instead of optimizing ELBO per data point.

4. This network is called the inference network and from now on, ¢ parameters will refer to
the inference network weights.

5. The main model (decoder network) and the inference network are trained simultaneously
by maximizing ELBO with respect to both 6 and ¢.

6. Once we train the inference network, we can compute the variational posterior for a new
data point by simply feeding the data point to the network.
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Amortized Variational Inference

Prior distribution: pe(z)

..
.,

Encoder: qq(z|x)

Decoder: pe(x|z)

A

X-space

Dataset: D

25 / 57



Amortized Variational Inference
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Credit: Synthesis Al
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Computing the gradient of ELBO

1. We need to maximize ELBO with respect to both the model and variational parameters.
This means that we need to compute the gradients of:

L(p,q) = log pg(x) — Dkr(pe(z | %) || a4(z | x)) < log py(x)

2. Unbiased gradients of the ELBO with respect to 0 are:
VoL(p, q)(x) = Vo Eq,(z|x [log ps(x,2) —log q4(z | x)]
= Eq, (%[ Veo(log py(x,2) — log q,(z | x))]
~ Vg (log py(x,2) — log q4(z | x))
= Vg log py(x,2z)

3. Although exact gradient calculation with respect to the model parameters is possible, a
much better approach is to use Monte Carlo sampling.

4. We generate a handful of samples for the variational posterior and average them. That
way we estimate the gradients instead of calculating them in a closed form.

K
1
VoL(p,q)(x) = X ZVe log po(x,2z¥) where 2~ q,(z | x)
k=1

5. Then, use back-propagation algorithm to update the model parameters. )
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Computing the gradient of ELBO

1. Unbiased gradients with respect to the variational parameters ¢ are more difficult to
obtain, since the ELBO's expectation is taken with respect to the distribution q,(z | x),
which is a function ¢:

VsL(p,q)(x) = Vg Eq¢(z|x) [Iog py(x,z) — log q¢(z | x)]
# Eq,z1x[Ve(log ps(x,2) — log q4(z | x))]

2. Why cannot we to obtain the above gradient?

3. If we can calculate such a gradient, we can use back-propagation algorithm to update the

variational parameters.

28 / 57



Reparameterization trick

1. The is transforming a sample from a fixed, known distribution to a sample from q,(z | x).

2. If we consider the Gaussian distribution, we can express z with respect to a fixed €, where

e~ N(0,1).

z=p+o0¢ where € ~ N(0,1)

3. The € term introduces the stochastic part and it is not involved in the training process.

Input <o Ideally they are identical. =~ ---------------------- " Recoi:s":lded
~ w! pu
X R X
Probabilistic Encoder
q0(2[x)
Mean w Sampled
latent vector
Probabilistic
b I— . . Decoder x'
po(x|2)
o
Std. dev
_ An compressed low dimensional
z=pt+to0e representation of the input.
e~ N(0,I)
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Gradient of expectation under change of variable

1. Given change of variable, expectations can be rewritten in terms of ¢:

10l (2)] = Ep[f(2)]

2. Then, the expectation and gradient operators become commutative, and we can form a
simple Monte Carlo estimator

Vo Eq,10[f(2)] = Vo Ep(of(2)]

= Ep(e) [V¢f(2)]
~ V¢ f(Z)
,// R
Backprop // f Backprop '\‘ f /
’ ] ‘,//

O

",/Z = (Z/H s e) Stochastic Node

x Z ~py(Z|p,0)

Determlnlgtic Node
e~ N(0,1)

Fixed Distribution ( No Parameters )
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Gradient of ELBO

1. Under the reparameterization, we can replace an expectation with respect to q,(z | x)
with one with respect to p(e).

2. The ELBO can be rewritten as:
L(p-q)(x) = Eq,(z1x[log pg(x,2) — log q,(z | x)]

|
= Epe) [log pg(x,2) — log qy(z | x)]

3. As a result we can form a simple Monte Carlo estimator Z(p.q)(x) of the
individual-datapoint ELBO, where we use a single noise sample ¢ from p(e):

L(p.q)(x) = log py(x,z) — log q,(z | x)

4. HW: Show that this gradient is an unbiased estimator of the exact single-datapoint ELBO
gradient.
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Results of VAE

1. Consider the first and third rows of the following figure:
o The first line is deterministic autoencoder

o The third row is VAE

2. Despite success on small scale datasets, when applied to more complex datasets such as
natural images, samples tend to be unrealistic and blurry.
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Results of VAE

1. Consider an autoencoder

Reconstructed
Input <-----ooooooooeoooo Ideally they are identical. ------------------ > input
x~x
Bottleneck!

Encoder Decoder ,
x 9¢ ‘ I fe X

An compressed low dimensional
representation of the input.

2. The goal of autoencoder is to minimize reconstruction loss given by

m
o,

in{[|X — X||2
g]{ll 1<}

3. This means that a good intermediate representation not only can capture latent variables,

but also benefits a full decompression process.
33 /57



Results of VAE

1. Recall that the goal of VAE is to estimate p(x,z) as
p(z)p(x | 2) = p(x) = p(x) p(z | x)
2. Then, we learn both p(x | z) and p(z | x).
3. We need to pick one:
o Assume that p(x | z) is simple and then try to find a complex p(z | x);
o Assume that p(z | x) is simple and find a complex p(x | 2).
4. VAEs take the first option and assume that p(x | z) = N(f(z),al).
5. Thus, p(z)p(x | z) is a Gaussian distribution.
6. On the other hand, what about p(x)p(z | x)?
7. We need to find a very complex distribution p(z | x).

8. There are several ways, where VAE uses approximation: the encoder produces a simple
distribution q,(z) = N (j1e, ogl).

9. This approximation states that q,(z) ~ p(z | x).
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Results of VAE

1. Now consider the loss function of VAE

L(p, q)=/q(2) jog 2%:2) =/q(z) |0gp("<|]z)p(z)

q(z) (z)
— [ at@iog (x| 2)dz + [ a(a)iog 22z

= / qa(z) log N(f(z), 01)dz — Dki(a(z) || p(z))

— 7§||x — f(2)|?> = Dke(a(2) || p(2))

2. Hence, we need to maximize the above objective function:
o The first term wants to make f(z) as close as possible to x.
o The second term wants to make q(z) as close as possible to p(z).

3. In other words, we want to minimize the following objective function

L(p.a)= 5ol F@IF + Drala(z) || p(z)

S Regularization Loss: £
Reconstruction Loss: L e € &

4. On solution is to enrich encoder and decoder networks.
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Variants of VAE




Introduction

1. How can we interpret the latent vector of VAE?

2. A model trained on photos of human faces might capture
o gentle,
e skin color,

hair color,

o hair length,

e emotion,

glasses (if any),
o many other relatively independent factors.

3. Such a disentangled representation is very beneficial to facial image generation.
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Beta-VAE

1. Beta-VAE is a modification of VAE with a special emphasis to discover disentangled latent
factors (Higgins et al. 2017).

2. In B-VAE, we want to maximize the probability of generating real data, while keeping the
distance between the real and estimated posterior distributions small (less than a small
constant 0):

max Ex p,. (x) [EZN%(Z|X) log py(x | z)} subject to  Dxe(q,(z | x) || p(z)) <6

)

3. We can rewrite it as a Lagrangian with a Lagrangian multiplier 5 under the KKT
condition.

4. The above optimization problem with only one inequality constraint is equivalent to
maximizing F (¢, 0, 3) as :
F(6,0,8) = Eznq,(z|x log Po(x | 2) = B(Dke(ay(z | %) || p(2)) — )
= Ez~q¢(z|x) log pé(x | Z) - ﬂDKL(q¢(Z | X) H p(z)) + 5o
> Eyq,(z]x) 108 Po(x | 2) — BDki(ay(z | x) || p(2)) Since 8,6 > 0
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Beta-VAE

1. Hence, the loss function of beta-VAE is defined as
LeeTa(9,0,8) = —Esnq, (2% log po(x | 2) + BDki(ag(z | x) | p(2))
where the Lagrangian multiplier 3 is considered as a hyper-parameter.

2. Since —LgeTa(9, 0, 5) is the lower bound of the Lagrangian, minimizing the loss is
equivalent to maximizing the Lagrangian.

3. Considering j3,
o when 5 = 1, we have standard VAE, and

o when 3 > 1, it applies a stronger constraint on the latent bottleneck and limits the
representation capacity of z.

4. For some conditionally independent generative factors, keeping them disentangled is the
most efficient representation.

5. Therefore a higher 3 encourages more efficient latent encoding and hence disentanglement.

6. Hence, a higher 5 may create a trade-off between reconstruction quality and the extent of
disentanglement.
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Results of Beta-VAE

1. Consider Latent factors learnt by 5-VAE on celebA data set.

(a) Skin colour

(b) Age/gender

2. This experiment shows that 3-VAE discovers some factors in an unsupervised manner that
encode skin colour, transition from an elderly male to younger female, and image
saturation.
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Beta-VAE

1. Consider the loss function of Beta-VAE

LeeTa(9,0, 8) = —Eznq,(z]x) log Po(x | 2) + 8Dk (ay(z | x) || p(2))

2. Assume that every pixel xi is conditionally independent given z.Then, the first term
becomes

IEzr\zqd)(z\x) |Og p9(x | Z) z~q¢ |OgH p9 Xk | z

Eovq,( Zlog po(xk | 2)
3. Dividing both sides of Lgeta(¢, 6, 3) by n produces
B
Leeta(9,0, 8) & — o, (21 [Exllog py(xk | 2)]] + = DKL(%(Z |x) I| pe(z)) (1)

4. We design $-VAE to learn conditionally independent factors of variation in the data.

5. Hence we assume conditional independence of every latent z,, given x.
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Beta-VAE

1. Since our prior p(z) is an isotropic unit Gaussian, we can re-write the second term of
ﬁBETA(@, 9, B) as:

Die(ag(z | x) Il p(2)) = / do(z | x) Iog%(?zgx)

—Z/ dy(2k | x) log (Z )x)
= KEy [/ (2 | x) Iog%(zkx)]

Zk p(Zk)

where K is dimensionality of latent variable

2. Combining the above terms produces

K Z X
EBETA(¢7 0 ﬁ) ZN%(Z x)[Ek[Iog Pe(Xk | Z)]] + j E [/Zk q¢(z;< ‘ X) Iog cwp((;J))]

()

3. Hence, Bhorm = % which is equivalent to optimising the original S-VAE.
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Vector Quantized-Variational AutoEncoder

1. The VQ-VAE model learns a discrete latent variable by the encoder (Oord, Vinyals, and
Kavukcuoglu 2017).

2. Discrete representations may be a more natural fit for problems like language, speech,
reasoning.

3. Vector quantisation is a method to map d-dimensional vectors into a finite set of code
vectors.

4. Let E be the latent embedding space, codebook in VQ-VAE.
5. An individual embedding vector is e; (for i =1..., M).

6. The encoder output E(x) = z, goes through a nearest-neighbor lookup to match to one of
M embedding vectors.

z4(x) = Quantize(E(x)) = e where k = arg min;||x — €;||2

7. Then this matched code vector, E(x) = ze, becomes the input for the decoder D(.).
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Vector Quantised-Variational AutoEncoder

1. Note that the discrete latent variables can have different shapes in different applications;
for example,

o 1D for speech,
o 2D for image, and
o 3D for video

2. Hence, the VQ-VAE becomes .

vuuruuuR

e‘ ezej eK
Embedding 1
Space ]
I
1
1 zq(x) e, vL
| >
D
vL 1 z,(x)
/S
'/—\ < 1
q(zlx) | L |
el 1
3 ! 2o 1
Z_(x) ~ q(z|x,
2,00 > o 2, X (%) ~ a(zlx)
53
Encoder Posterior categorical distribution: Decoder
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Vector Quantised-Variational AutoEncoder

1. Here, we have

1 if k = argmin;||ze(x) — €2
0 otherwise

q<z=ek|x)={

2. Since argmin is non-differentiable on a discrete space, the gradients Ly g_vag from
decoder input z, is copied to the encoder output z.

3. Loss function for VQ-VAE is

Lvg-vae = |lx = D(ex)ll3 + |lsg[E(x)] — exl3 + Bllx — sg [ex]|I3

reconstruction loss VQ loss commitment loss

where sg[.] is the stop gradient operator.

4. The embedding vectors in the codebook is updated through EMA (exponential moving
average).
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Vector Quantised-Variational AutoEncoder

1. Given a code vector e;, say we have n; encoder output vectors, {z,-_J-}J'.ll, that are
quantized to e;

0 =m0

where (t) refers to batch sequence in time. N; and m; are accumulated vector count and
volume, respectively.

2. Left: ImageNet 128 x 128 x 3 images. Right: reconstructions from a VQ-VAE with a
32 x 32 x 1 and latent space, with K = 512.
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Variants of VAE

Hierarchical VAE



Hierarchical VAE

1. Some researchers have proposed hierarchical VAEs (Sgnderby et al. 2016).

L-1

p(x | z) = p(x | z1) H P(z« | zi+1)

k=1

2. There are some VAEs are effectively stacked on top of each other

q4(22|21) Po(21]22)

q(21]%) Po(x|z4)
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archical VAE

1. There are two potential advantages of using hierarchical VAEs:
o They could improve the Evidence Lower Bound (ELBO) and decrease reconstruction error.

o The stack of latent variables z, might learn a feature hierarchy similar to those learned by
convolutional neural networks.

2. It is shown that that if the purpose is to learn structured, hierarchical features, using a
hierarchical VAE has limitations (Zhao, Song, and Ermon 2017).

3. Homework: Drive variational inference for hierarchical VAE.

4. Homework: Read (Sgnderby et al. 2016) and (Zhao, Song, and Ermon 2017).
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Variants of VAE

Conditional VAE?

2These slides are taken from Christopher Beckham's Blog




Conditional VAE

Reconstructed

Input «----oooe e Ideally they are identical. ~ -----------------omooom input

x~x
— Probabilistic Encoder —

94 (2[x)

Mean Sampled
H latent vector
o o 4’. "

Std. dev H
An compressed low dimensional

Z=pt+to0e representation of the input.
L e~ N(0,I) L

Probabilistic
Decoder

Po(x|z)

1. In a conditional VAE, we have (Kingma, Mohamed, et al. 2014)

o a conditional generative model p,(z,x | c) on latent variables z, data x, conditioned on c
and parameterized by ¢ and

o a conditional inference network q,(z | x,c) conditioned on c and parameterized by ¢ s.t.
2. Given a true conditional data distribution p(x | c) for all ¢, we want to learn (0, ¢) s.t.
o py(x | c) approximates p(x | €) for all c and

o q,4(z | x,c) approximates p(z | x, c) for all x, c.
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Conditional VAE

1. The inference process, in which latent representation is extracted from actual samples, is
qc,b(xa z, C) = q(,b(z | X, C) q(X, C).

2. To obtain a sample (z,x, c) from this joint we simply perform the following:

X, € ~ q(x,c) ground truth
z~ q¢(z | x,€)
where
e q(x,c) is the ground truth data distribution,
o q,(z | x,c) is the learnable variational posterior.

3. The generative process, in which samples are generated, is

z,c ~ p(z,c) prior

x ~ py(x | z,¢c)
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Conditional VAE

1. Since joint distribution for both processes are p,(x,z,c) and q,(x,z,c), we can derive
their KL distribution.

2. Let Dr(q || p) = Dke(ay(x.z.€) || py(x,z.c)). Thus, we have
Pe(xazyc)]

argmax, ,— Dki(q || P) = Eq,(xz2,0) [Iog d4(x,2,¢)

po(x | z,€) p(x, )

=E I — Eqoll ,

qqs(ZXvC)[Og a,(z | x,c) ax,c)[log a(x, c)]
= ]Eq (x,2,€) [log pg(x l z,c) p(z,c)] — const.

¢ q(zb(z | X,C)

P(z,c)
= — | — t.
]E%(x,z,c)[log pe(X | Z,C)] + Eq¢(z|x,c) |:|Og q¢(z | x,c):| cons

= ]Eqd,(z,x,c)[log Pe(x | Z,C)] - DKL(q¢(Z | X,C) || p(Z,C))

3. This gives the typical formulation of the ELBO which we see in most VAE papers.
4. Now, we must specify p(z,c). We have two cases
o When they are independent

o When they are dependent
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Conditional VAE (When z and c are independent)

1. When z and c are independent, we have p(z,c) = p(z) p(c).

2. This means that the joint distribution of the generative process factorises into:

Po(x,2,€) = py(x | z,€) p(2) p(c)

3. This leads us to the following ELBO

- DKL(q¢>(xvz’ C) || Pe(x7za C)) = IEq¢(X,Z,C)[|Og Pe(x | Z,C)]

+ Eq,(x20) [Iog (p(z)J + log p(c)

q4(z | x, €

= likelihood — Dk.(q,(z | x,€) || p(z)) + constants.

4. Here, p(c) is prior for c but it falls out of the KL term since it is a constant.
o This factorisation is useful to encode if we are seeking to learn

disentangled representations.
o This would make for a very controllable generative process where we

could arbitrarily mix and match style and content variables from
different examples to create new ones.
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Conditional VAE (When z and c are dependent)

1. In general z and ¢ may not be independent, we have p(z,c) = p(z | c) p(c).

2. This means that the joint distribution of the generative process factorises into:

Po(xaza C) = pG(X | Z7C) p(Z | C) p(C)

3. This leads us to the following ELBO
- DKL(%(X, Z, C) H pg(X, z, C)) = IEqqs(x,z,c)[lc’g pg(x | z, C)]

p(z]c)
2z ] )]  log p(c)

= likelihood — Dk.(q,(z | x,€) || p(z | €)) + constants.

+E q,(x,2,€) |:|Og

4. Here, p(c) is prior for c but it falls out of the KL term since it is a constant.

po(zlc) p(c)

po(x|z, )
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The role of the beta term

1. By looking at both versions of the ELBO, we can write them as:
rg?{fE%(x,Z’c)[log po(x | z,€)] + BDke(ag(z | x,c) || p(z|c))} Dependent case
?Q{—E%(X’Z’c)[log po(x | z,€)] + BDke(ays(z | x,€) || p(2))} Independent case

2. The first equation is maximising the likelihood of the data with respect to samples from
the inference network.

3. In order for this to happen, z should encode as much information about x as possible
through the variational posterior q,, which is our learned encoder.

4. The second term is working against the first, because it is enforcing that each per example
variational posterior must be close to the prior distribution.

5. Since the prior is not a function of x, it implies that some information about x in the
encoding pathway has to be lost.

6. Homework: Please above optimization functions from mutual information perspective,
and describe what happens.

7. Homework: Please read (Rathakumar et al. 2023), (Guo et al. 2024) and (Harvey,
Naderiparizi, and Wood 2022).
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References




Reading

1. Peper An Introduction to Variational Autoencoders (Kingma and Welling 2019).
2. Chapter 21 of Probabilistic Machine Learning: Advanced Topics (Murphy 2023).

3. Chapter 4 of Deep Generative Modeling (Tomczak 2022).
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