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Introduction



Introductio

How do machine learning algorithms understand complex and unstructured inputs?

Computer vision Computational speech

Credit: Aditya Grover
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epresenting input raw data

Computer vision Computational speech

M o w 1 2 2 2 2 w “ o a5

x=(X1,...,x7) and x; = (X1, ..., Xid)

Robotics

x = (X1,...,x7) and x; = (X1, .., Xid)

This process may be: handicrafted or learning-based.
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Representation learning



Representation learning

Representation

learning model X
Machine Learning
Task such as
Input raw date Classification or
clustering or ....
Fixed feature
extraction X

algorithm

Representation Learning:
1. Supervised representation learning

2. Unsupervised representation learning
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Supervised representation learning

1. Let D = {(x1,)1),.-.,(Xn,¥n)} be the dataset, where x; € X" is input raw data and
yi € Y is supervised signal such as a class label in classification or a real-valued target
vector in regression.

2. A supervised representation learning algorithm trains parameterized feature extractor f by
solving a supervised task on D.

3. Feature extractor f : R/ — RY maps an input representation x to a feature representation
f(x) € RY, where d < I.

4. Depending on the supervised task, an additional function, h: RY — R?, yields the output
representation to evaluate a supervised objective function given feature representation

f(x).

5. The objective is to minimize training loss function IA?(f., h) such as a cross-entropy loss to
obtain pre-trained f and h as follows:

Foh=arg minf’hﬁ(f, h)
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Unsupervised representation learning

1. Let D = {x1,...,x,} be the dataset, where x; € X" is input raw data.

2. A unsupervised representation learning algorithm trains parameterized feature extractor 1
by solving an unsupervised task on D.

3. Feature extractor f : R/ — R maps an input representation x to a feature representation
f(x) € RY, where d < I.

4. For example, auto-encoders consider h: RY — R/ reconstruct the input as

5. Auto-encoders are trained by minimizing the following objective function.

)

Foh=arg minfthA?(f, h)
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makes a representation g

. Priors for representation learning
. Smoothness and the curse of dimensionality

Smoothness is useful assumption but it is insufficient to deal with the curse of
dimensionality because the number of up/down of the target functions may grow
exponentially with the number of relevant interacting factors.

. Distributed representations
. Depth and Abstraction
o Deep architectures promote the reuse of features

o Deep architectures can potentially lead to progressively more abstract features at higher
layers of representations

. Disentangling Factors of Variation
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Priors for representation learning

Why explicitly dealing with representations is interesting? One reason is because they can be
convenient to express many general priors about the world around us (Bengio, Courville, and
Vincent 2013).

Examples of such general-purpose priors are the following:
1. Smoothness: Function f (to be learned) is smooth, if x =~ y implies f(x) ~ f(y).

2. Multiple explanatory factors: The data generating distribution is generated by different
underlying factors.

3. Hierarchical organization of explanatory factors: The concepts that are useful for
describing the world can be defined in terms of other concepts, in a hierarchy, with more
abstract concepts higher in the hierarchy, defined in terms of less abstract ones.

4. Semi-supervised learning: With inputs X and target Y to predict, a subset of the
factors explaining X's distribution explain much of Y, given X. Hence, representations
that are useful for p(X) tend to be useful when learning p(Y|X).

5. Shared factors across tasks: With many Y's of interest or many learning tasks in
general, tasks are explained by factors that are shared with other tasks.
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Priors for representation learning (Co

10.

Manifolds: Probability mass concentrates near regions that have a much smaller
dimensionality than the original space where the data live.

Natural clustering: Different values of categorical variables such as object classes are
associated with separate manifolds. More precisely, the local variations on the manifold
tend to preserve the value of a category, and a linear interpolation between examples of
different classes in general involves going through a low-density region, i.e., P(X|Y =)
for different i tend to be well separated and not overlap much.

Temporal and spatial coherence: Consecutive (from a sequence) or spatially nearby
observations tend to be associated with the same value of relevant categorical concepts or
result in a small move on the surface of the high-density manifold.

Sparsity: For any given observation x, only a small fraction of the possible factors are
relevant.

Simplicity of factor dependencies: In good high-level representations, the factors are
related to each other through simple, typically linear dependencies.

9/ 40



Disentangled representation



Progress in Deep Generativ

1. When humans observe an object, they seek to understand the various properties of this
object such as

o shape,
o size,
o color

with certain prior knowledge (Wang et al. 2023).

Observable Data Feature Space Factors of Variation
e Representation learning Data generation
~i ! - Tk B Object Size Bat
IR AR Objcct Shape

b ﬁ
H H M i —| Encoder AR Generator | ==
‘ ] -
SEE | |

2. A disentangled representation can be defined as one where single latent units are sensitive
to changes in single generative factors, while being relatively invariant to changes in other
factors (Bengio, Courville, and Vincent 2013).
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Categorization of disentangled representation learning approaches ﬂgﬁl

Vanilla VAE-based
Group Theory based
GAN Based

Dimension-wise

Dimension-wise vs.
Vector-wise

Vector-wise

Flat |
Flat vs. Hierarchical
Hierarchical |
Disentangled 1 |
. ; Unsupervise
Representation f}upemse,d Vj' P
. nsupervise i
Learmng p Supervised |
Independence
Independent vs. Assumption

Casual

N N N /S

Causal Assumption |

Others

11/ 40



Dimension-wise and Vector-wise DRL

1. In dimension-wise methods, generative factors are fine-grained and a single dimension (or

several dimensions) represents one generative factor.

2. In vector-wise methods, generative factors are coarse-grained and different vectors
represent different types of semantic meanings.
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rchical DRL

1. In flat DRL, all the factors are parallel and at the same abstraction level.

2. In hierarchical DRL, the factors of variation have different levels of semantic abstraction
(hierarchical structures), either dependent or independent across levels.
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Supervised and Unsupervised DRL

1. In unsupervised learning, the goal is automated discovery of interpretable factorized latent
representations.

2. The pure unsupervised DRL is theoretically impossible without inductive bias on methods
and data sets.

3. In other words, disentanglement itself does not occur naturally.

4. In supervised DRL, the learner has access to annotations (labels) of the representation for
a very limited number of observations, for example through human annotation.

5. The supervised DRL setting is not universally applicable, especially when the observations
are not human interpretable.

6. Hence, a completely unsupervised approach would be elegant, collecting a small number of
human annotations is simple and cheap.
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Independent and Casual DRL

1. In independent DRL, that latent factors are statistically independent, so that they are
supposed to be independently disentangled through independent or factorial regularization.

2. The causal DRL, underlying factors are not independent and hold certain causal relations.

3. Casual DRL methods potentially achieve more interpretable and robust representations via

disentangling causal factors.
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Disentangled representation learning

1. Given a dataset D = (x,...,x,), where each data point is associated with M labeled

factor of variation v = (vi, ..., vk).

2. Assume that there exists a mapping from x to m groups of latent representations
z=(z,...,2m) which follows distribution q(z | x).

zZ1
22

v1
v2

VK Zm

3. Disentangled representation learning can be defined as a process of decorrelating
information in the data into separate informative representation, each of which

corresponds to a concept defined by humans.
4. Important properties of disentangled representation (Do and Tran 2020).
o Informativeness
o Separability and independence

o Interpretability
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Informativeness

1. Informativeness of a particular representation (or a group of representation) z; w.r.t the
data x is defined as mutual information between z; and x:

i) = X Z'XOiq(Zi|X)Z X
/(x7z,)—/x/zpd()q(,| yiog 5z o

where
/ pa(x) a2 | x)dx

X

2. To represent the data faithfully, a representation z; should be informative of x, meaning
1(x, z;) should be large.

3. Since I(x,z;) = H(z) — H(z | x), a large value of /(x, z;) means that H(z; | x) ~ 0 given
that H(z;) can be chosen to be relatively fixed.

4. In other words, if z is informative w.r.t to x, then q(z | x) usually has small variance.

5. Assume that there exists a mapping from x to m groups of latent representations
z=(z1,...,2n) which follows distribution q(z | x).
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Separability and independence

1. Two representation z; and z; are separable w.r.t the data x if they do not share common
information about x, that is:

I(x, zi,z)=0

where /(x, z;, z;j) denotes multivariate mutual information defined as:

p(x,y) p(x, 2) p(y, 2)
Ix.v.2) ZZZ N Sy, 2) p(x) p(y) p(2)

2. I(x, z;, zj) can be decomposed into standard bivariate mutual information terms as:
I(X’Zi’Zj) = I(Zl'vzj) - /(Z/’Zj | X)

3. If I(x, z, zj) > 0, then if z; and z; contain redundant information about x.

4. Achieving separability w.r.t to x does not guarantee that z and z; are separable in general.

5. z; and z; are fully separable or statistically independent if and only if /(z;, z;) = 0.

6. If we have access to all representations z, we can generally say that representation z; is
fully separable from z; if and only if /(z;, z4;) = 0.

7. There is a trade-off between informativeness, independence, and the number of
latent variables. 18 / 40



Interpretability

1. Obtaining independence and informative representations does not guarantee
interpretability by humans.

2. To achieve interpretability, we should provide model with a set of predefined concepts v.

3. In this case, a representation z; is interpretable w.r.t v if it only contains information
about vy.

4. Full interpretability can be defined as

/(Z,', Vk) = H(Z,') = H(Vk)

5. If we want z; to generalize beyond the observed vy, the model should accurately predict vy

given z;.
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Disentangled representation learning

Definition (Group)

A group is a set G with a binary operation * satisfying the following axioms:
1. Identity: There is some e € G such that for all a, we have ax e = a.
2. Inverse: For all a € G, there is some a~ ! € G such that ax a1 = e.

3. Associativity: For all a,b,c € G, we have (a* b)xc=ax(bxc).

Definition (Symmetry Group)

A symmetry group of degree n, denoted by S,, is a group whose elements are the
permutations on the set {1,2,...,n} and the binary operation is function composition o.
Note that |S,| = n!.

Definition (Group Action)
An action of a group G on a set X is a mapping o : G x X — X, satisfying the following
properties:

gro(gox)=(g1+g)ox for all g1,80 € G and x € X

Xoe=x forall x e X
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Disentangled representation learning

Definition (Disentangled representation learnin (Higgins et al. 2018))

Consider symmetry group G, world state space V), data space X, and representation space Z.
Assume G can be decomposed as a direct product G = G; X Gy X ... X G,.

O————0

. Codes /
Factors Observation Representations

Suppose there is a generative process g : V +— X and an inference process f : X — Z.
Representation Z is disentangled with respect to G if:
1. Thereis an action of Gon Z, h:V — Z.
2. There exists a mapping h : V — Z which is equivariant between the action of G on V
and Z. This condition can be formulated as uo h(v) = h(uov), Yue G,¥ve .

)

3. The action of G on Z is disentangled with respect to the decomposition of G. In other
words, there is a decomposition Z = Z; X Z, X ... X Z, such that each Z; is affected
only by G; and invariant to G;, Vj # .
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Evaluating DRL methods




Properties disentangled representation

1. Eastwood and Williams proposed a framework for the evaluation of disentangled

representations (Eastwood and Williams 2018).

2. They proposed three desirable properties of a disentangled representation: explicitness,
compactness, and modularity.

o Explicitness: The amount of information that a representation captures about the underlying
factors of variation. This property is called informativeness in (ibid.).

o Compactness: The degree to which each underlying factor is captured by a single code
variable. This property is called completeness in (ibid.).

o Modularity: The degree to which a representation factorizes or disentangles the underlying
factors of variation, with each variable (or dimension) capturing at most one generative
factor. This property is called disentanglement in (ibid.).

3. Holistic methods capture two or more properties in a single score.
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Taxonomy of disentanglement metrics

Taxonomy of supervised disentanglement metrics (Carbonneau et al. 2023).

Disentanglement
Metric Families

Y

Intervention-based ] Predictor-based ] Information-based ]
. ; Holistic

Holistic Modularity
> > . > - DCIMIG

- IRS - DCI Modularity _ JEMMIG
| _ Z-min Vari —>| - DCI Compactness — - MIG-sup

= ZFim arl.ance - SAP - Modularity Score

- Z-max Variance

Explicitness C
L» - DCI Explicitness BN Compaciess

- MIG-RMIG

- Explicitness Score
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Intervention-Based Metrics

. Codes/
Factors Observation Representations

1. The metrics in this family evaluate disentanglement by fixing factors and creating subsets
of data points.

2. Codes and factors in the subsets are compared to produce a score.
3. To sample the fixed-size data subsets, these methods discretize the factor space.

4. This sampling procedure necessitates large quantities of diverse data samples to produce a
meaningful score.

5. Advantages: These metrics do not make any assumptions on the factor—code relations.

6. Disadvantages: There are several hyper-parameters to adjust such as the size and the
number of data subsets, the discretization granularity, classifier hyper-parameters, or the
choice of a distance function.
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Intervention-Based Metrics (Z-Diff)

Codes/

Factors Observation Representations

1. The Z-diff metric (8-VAE metric) selects pairs of instances to create batches. In a batch,
a factor v; is chosen randomly.

2. Then, a fixed number of pairs are formed with samples v! and v? that have the same

value for the chosen factor (v = v2).

!

3. Pairs are represented by the absolute difference of the codes associated with the samples
(p=l2' —2°|).

4. The intuition is that code dimensions associated with the fixed factor should have the
same value, which means a smaller difference than the other code dimensions.

5. The mean of all pair differences in the subset creates a point in a final training set.
6. The process is repeated several times to constitute a sizable training set.
7. Finally, a linear classifier is trained on the dataset to predict which factor was fixed.

8. The accuracy of the classifier is the Z-diff score. 25 /40



Intervention-Based Metrics (Z-Min Variance)

6.

. Codes/
Factors Observation Representations

. In Z-min variance (FactorVAE metric), code dimensions encoding a factor should be equal

if the factor value is the same.
All codes are normalized by their standard deviation computed over the complete dataset.

For a subset, a factor is randomly selected and fixed at a random value. The subset
contains sampled instances for which the selected factor is fixed at the selected value.

Variance is computed over the normalized codes in the subset. The code dimension with
the lowest variance is associated with the fixed factor.

Several subsets are created and the factor—code associations are used as data points in a
majority vote classifier.

The Z-min Variance score is the mean accuracy of the classifier.

Other metrics such as Z-Max Variance (R-FactorVAE) and Interventional Robustness Score

were proposed.
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Predictor-Based Metrics

Predictor / Regrossor

f
y 2 4)@
Codes /

Factors Observation Representations

1. These metrics train regressors or classifiers to predict factor realizations from codes
(r(z) = v).

2. Then, the predictor is analyzed to assess the usefulness of each code dimension in
predicting the factors.

3. These methods are naturally suited to measure explicitness.

4. They are typically equipped to deal with continuous factors as well as categorical factors
simply by choosing an appropriate predictor.

5. However, compared to information-based metrics, they require more design choices and
hyperparameter tuning. This means that a metric is more likely to behave differently from

one implementation to another.
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Predictor-Based Metrics (DCI score)

Predictor / Regrossor

f
H——®

Factors Observation

Codes /
Representations

1. Eastwood and Williams proposed a complete framework to evaluate disentangled
representations instead of a single metric (Eastwood and Williams 2018).

2. They report separate scores for modularity, compactness, and explicitness, which they call
disentanglement, completeness, and informativeness (DCl).

3. Regressors are trained to predict factors from codes. Modularity and compactness are
estimated by inspecting the regressor's inner parameters to infer predictive importance
weights Rj; for each factor and code dimension pair.

4. They use a linear lasso regressor or a random forest for nonlinear factor—code mappings.

5. For lasso regressor, the importance weights R;; are the magnitudes of the weights learned

by the model, while the Gini importance of code dimensions is used with random forests.
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Predictor-Based Metrics (DCI score)

Predictor / Regrossor

f
H——®

Factors Observation

Codes /
Representations

1. The compactness for factor v; is given by

d

G=1 +ZPij log4 pij
=

where pj; is the probability that code dimension z; is important to predict v;.

2. These probabilities for all factors obtained by dividing each importance weight by the sum
of all importance weights related to this factor:
pi = — i
i = ~d
Zj:l Rij

3. The compactness of the whole representation is the average compactness over all factors.
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Predictor-Based Metrics (DCI score)

1. The modularity for code dimension z; is given by

Dj =1+ pjlog, pj
i=1

where p;; is the probability that code dimension z; is important to predict v;.

2. These probabilities are for all factors obtained as:

R;
Pij = m
L Y Ry

3. The modularity score for the whole representation is a weighted average of the individual
code dimension modularity scores Z;j:l p;D;.

4. The scores are weighted by p; to account for codes that are less important to predict
factors.

_ XLRy
d
Zk:l 2:11 Rix

Pj
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Predictor-Based Metrics (DCI score)

Predictor / Regrossor

f
H——®

Factors Observation

Codes /
Representations

1. The prediction error of the regressor measures the explicitness of the representation.

2. With normalized inputs and outputs, it is possible to compute the estimation error for a
completely random mapping and use it to normalize the score between 0 and 1.

3. A representation is not explicit if the mean squared error (MSE) of the predictor is higher
than the expected MSE between two uniformally distributed random variables (X and Y).
It can be shown that MSE = E[(X — Y)?| = L.

4. Thus, explicitness can be written as 1 — 6 MSE .
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Predictor-Based Metrics (Explicitness score)

Predictor / Regrossor

f
y 2 4)@
Codes /

Factors Observation Representations

1. Ridgeway and Mozer use a classifier trained on the entire latent code to predict factor

classes, assuming that factors have discrete values.

2. They suggest using a simple classifier such as logistic regression and report classification
performance using the AUC-ROC.

3. The final score is the average AUC-ROC over all classes for all factors.

4. The AUC-ROC minimal value is 0.5, which means that the score needs to be normalized
to obtain a value between 0 and 1.
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Information-Based Metrics

MI
g f
v X
. Codes/
Factors Observation

Representations

1. Information-based metrics compute a disentanglement score by estimating the M| between
factors and codes.

I(v,2) = Z Z p(i,j)log L)

pyt p(i) x p(J)
o Factor and code spaces are discretized in B, and B, bins, and p(i) and p(j) are estimated as
the proportion of samples assigned to bins i and j, respectively, over all samples.
o Similarly, p(i,J) is the proportion of samples assigned to both bins i and j.

2. These methods require fewer hyperparameters than intervention- and predictor-based
metrics.

3. In addition, they do not make assumptions on the nature of the factor—code relations.
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Information-Based Metrics (Mutual Information Gap)

Ml
g f
V X
. Codes/
Factors Observation Representations

1. Mutual Information Gap (MIG) computes the MI between each code and factor, /(v;, z;).
2. Then, the code dimension with maximum Ml is identified /(v;, z.) for each factor.
3. Next, the second highest MI, /(v;, z,), is subtracted from this maximal value.

4. This difference constitutes the gap, which is normalized by the entropy of the factor.

V,',Z*) - I(Vi7ZO)

_ I
MIG = o)

5. The MIG score of all factors is averaged to report one score.

6. In addition, robust MIG (RMIG) was proposed.
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Information-Based Metrics (JEMMIG)

1. MIG verifies that the information related to a factor is expressed by only one code
dimension (compactness).

2. However, modularity is not directly measured. For instance, a code dimension could
contain information about more than one factor.

3. Joint entropy minus mutual information gap (JEMMIG) addresses this drawback by
including the joint entropy of the factor and its best code as

JEMMIG = H(v;, z.) — I(vi, z.) + 1(vi, 2o)

4. This metric indicates a high disentanglement quality with a lower score.

5. The maximum value is bounded by H(v;) + logB., where B, is the number of bins used in
the code space discretization.

6. Hence, the normalized version of JEMMIG is being used

H(vi,z.) — I(vi, z.) + I(vi, 20)

JEMMIG =1 —
H(vi) + logB;

7. JEMMIG is reported as the average for all factors.
35 /40



Information-Based Metrics (DCIMIG )

1. DCIMIG is a metric inspired by DCI and MIG. But it reports a single score for all three
properties.

o As MIG, it computes MI gaps between factors and code dimensions.

o As DCI, it analyzes a factor—code importance matrix.

2. Then, factor with /(v.,z;) and /(vo, z;) is identified for each code and obtain the gap
Ry = 1(vi, 2) — 1(vor 2).

3. Each of these gaps R; relates to a code dimension and the factor for which Ml is maximal.
4. For each factor v;, finds all associated gaps R; and use them as score S; for this factor.

5. If there are more than one R; associated with the factor, S; equals the highest v;. If there
are none, S; = 0.

6. Finally, the metric is the sum of all scores normalized by the total factor entropy

DCIMIG = =11
2ty H(vi)
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Information-Based Metrics (Modularity Score)

MI
g f
v X
. Codes/
Factors Observation

Representations

1. The factor v,, which shares the maximum MI for each code dimension z;, is identified.

2. This maximal Ml value (/(v., z)) is then compared with MI values of all other factors

Liev,. (v 7)?

dularity =1 - ————
modularity (m—1)i(v., 2

where V., as the set of all factors except v, and m as the number of factors.

3. The average modularity score over all codes is reported.
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Conclusions
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Conclusions

1. Experimental results show different limitations for each metric.

2. Discretization hinders reliability under limited amount of data, noise, and nonlinear
factor—code relations.

3. Predictor-based metrics, when parameterized carefully, ware the best performing family of
solutions.

4. It is better that each disentanglement property should be measured separately for better
interpretability.
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